دانلود گزارش کامل کارآموزی رشته مهندسی صنایع نیروگاه بخار بافرمت ورد وقابل ویرایش تعدادصفحات 88
گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی
این پروژه کارآموزی بسیار دقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی است
• دما
هدف از ایجاد یک سیستم تهویة مطبوع در وهلة اول تغییر دما و رساندن آن به میزان دلخواه است . این حد بسته به شرایط اقلیمی و بیولوژیکی و سلیقة شخصی متفاوت و بین 15+ تا C 0 30+ در نظر گرفته می شود . در شرایط خاص ( غیر از محیط کار و زندکی ) مانند سردخانه ها یا گرمخانه ها این دما می تواند در هر بارة دیکر تغییر کند . سیستمهای تهویة مطبوع یا تغییر دما ( گرم یا سرد کردن ) و انتقال هوا از سیستم به محیط این تغییر درجه حرارت را سبب می شوند . • تعریف دما یک بارامتر فیزیکی است که به قدری ملموس و قابل حس می باشد که نیاز به تعریف ندارد . ولی حد یخ زدن و بخار شدن آب خالص در فشار بارومتریک سطح دریا به عنوان شاخص ارزیابی و واحد گذاری درجه حرارت به کار می رود . دما در واحد درجه سانتی کراد ، درجه فارنهایت و کلوین سنجیده می شود و جهت اندازه گیری آن روشهای کوناکونی مانند تغییر حجم ، روش مقاومتی ، ترموکوبل ، مادون قرمز و کریستالی موجود است . همانگونه که در دماسنجهای جیوه ای و الکلی مشاهده می شود تغییر حجم جیوه یا الکل موجود در یک لولة شیشه ای مدرج قابل قرائت می باشد . به دلیل شکننده بودن ، محدودة اندازه گیری محدود و دقت ناکافی ، استفاده از این وسایل منسوخ شده است . روش مقاومتی از دقیق ترین روشهای سنجش دما است که مقاومت احساسگر با تغییر دما به صورت خطی تغییر کرده و با سنجش مقاومت الکتریکی به صورت مستقیم یا توسط مدار الکترونیکی بل ، میزان درجه حرارت قابل سنجش است . آلیازهای بلاتین یا نیکل از متداول ترین احساسگرهای درجه حرارت مقاومتی هستند ( مانند P : 100 ) که دارای محدودة اندازه کیری 100- تا C 0 600+ و دقت 2/0 + تا C 0 4/0 می باشند . ترموکوبل از دو فلز غیر همجنس تشکیل شده است که با تغییر درجه حرارت میزان تبادل الکترونی آنها در نقطه بیوند تغییر می کند . این تبادل الکترون سبب ایجاد ولتازی ( در حد میلی ولت ) قابل اندازه کیری و متناسب با درجه حرارت می شود . بسته به جنس این دو ترکیب فلزی ، نوع ترموکوبل ، حساسیت آن و در نتیجه کاربرد آن متفاوت است . از ترموکوبلها بیشتر برای سنجش دماهای بالا ( حتی تا C 0 1500 ) استفاده می شود . در سیستمهای تهویه مطبوع ترموکبل نوع آ. که از دو فلز آهن و مس – نیکل ساخته شده است بیشترین کاربرد را دارد که با دقت 4/0+ تا C 0 0/1 دما را در بازة 50- تا C 0 750+ اندازه کیری می کند . احساسکرهای مادون قرمز نسل جدیدی از ادوات سنجش دما می باشند که میزان دما را به صورت بدون تماس اندازه کیری می کنند . این روش فقط برای سنجش دمای سطوح و مواد به کار می رود و برای سنجش دمای هوا کاربرد ندارد . آقای فرد و تینمایر که قبلاً در بخش تبرید شرکت کروشل مشغول به کار بود ، در سال 1915 یک شرکت مستقل در شیکاکو تأسیس کرد . این شرکت مشغول تولید کمبرسورهای افقی و دو مرحله ای دی اکسید کربنی شد . این شرکت بس از تحلیل بازار دی اکسیدکربن در سال 1930 تبدیل به یک بیمانکار تهویه مطبوع شد که بعدها توسط بسرانش تا سال ها اداره می شد . شرکت و لقب لیفده در اواخر قرن نوزدهم و سال های آغازین قرن بیستم به دلیل کاهش دستکاههای دی اکسیدکربنی به تولید کمبرسورهای آمونیاکی روآورد . فعالیت اصلی آنها ، تولید سیستم های آمونیاکی برای نوشابه سازی ها و دیکر کاربردهای سردخانه ای بوده است . از سایر شرکت هایی که به ساخت ىستکاه های دی اکسید کربنی می برداختند ، می توان به شرکت کربن دیل و آمریکن کربنیک اشارد کرد . دی اکسیدکربن – مبردایمن شرکت کروشل در اواخر 1890 ، شرکت های بیشرو در سال 1897 شرکت کروشل ، برای ساخت کمبرسورهای دی اکسیدکربنی شعبه ای مستقل را در شیکاکو تأسیس کرد و نام آن را شرکت دستکاه های یخ سازی کروشل نهاد . این شرکت به تولید گمبرسور ، کندانسور ، کولر های آبی و آب نمک ، دی اکسید کربن برفشار و شیرآلات و اتصالات مربوطه می برداخت . این شرکت در سال 1942 با شرکت تبرید برانشویک ، که به تولید کمبرسورهای آمونیاکی و متعلقات آنها دمای تر محلی مؤثر را به اندازه ی یک یا دو درجه بایین بیاورند . دامنه ی جغرافیایی ایران و امکان استفاده از سرمایش تبخیری با استفاده از آمارهای هواشناسی بویزه استفاده اؤ جداول کتاب بهنه بندی اقلیمی ایران براحتی می توان نتیجه کیری کرد که در اکثر نقاط ایران می توان از سرمایش تبخیری برای ایجاد آسایش در فضاهای داخل یا خارج استفاده کرد . جداول بیوکلیماتیک آن کتاب که یک نمونه از آن در شکل (3) آورده شده بخوبی محدوده های باسخکویی انواع کوناکون سیستم های سرمایشی و کرمایشی را برای شهرهای دارای یک اقلیم که با شماره مشخص شده اند را نشان می دهد . این شهرها در جدول (1) همراه با سایر داده های آب و هوایی شان نشان داده شده اند . نکته ی بسیار مهمی را که باید یادآور شد و اکثر مهندسان طراح به دلیل عدم آشنایی با اصول هواشناسی آن را در نظر نمی گیرند این حقیقت است که معمولاً افزایش رطوبت نسبی در ساعات اولیه ی صبح رخ می دهد که در همان ساعات نیز کمترین دما را داریم گاهی نیز شبنم صبحگاهی بوجود می آید که به معنی وقوع رطوبت نسبی 100 % و دمای نقطه ی شبنم در نزدیکی سطح زمین است . پس معمولاً در نزدیکی سبیده دم یعنی هنکامی که زمین ، ساختمان ها و سایر اشیاء گرمای خود را کاملاً بس داده اند با وجود آنکه رطوبت نسبی بالا می رود اما دما بایین است و اتفاقاً اکثراً در همان ساعات است که کولرهای آبی بیشترین سرمایش را ایجاد می کنند . برعکس در هوای صاف در طول روز وقتی که بیشترین دما را داریم معمولاً مقارن با حداقل رطوبت نسبی است . جدول گزارش هواشناسی روزانه سال 1373 ( 1994 ) مربوط به ایستگاه زئوفیزیک تهران که از سالنامه ی هواشناسی اقتباس و خلاصه ی آن در جدول شماره ( 2 ) ارائه شده است این حقیقت را نشان می دهد . البته چنانچه میزان میانگین دما در همان ساعات نیز ارائه می شد این نکته مستندتر می کردید . سرمایش حکمفرماست کرچه باید کرمای ورودی به فرایند را جدا از گرمای هوای ورودی به حساب آورد زیرا از لحاظ نظری طبیعت بی درو بودن فرآیند را خدشه دار می کند . بنابراین برخورد آفتاب یا ورود گرما به داخل کولر که ناشی از هوای داغ بیرون است باعث می گردد که بردارها شیب بیشتری داشته باشند و در نتیجه نیاز به دماهای حباب خشک اولیه بایین تری باشد تا بتوان به آسایش برابر دست یافت . این امر در مورد گرمای ورودی از طریق آب ورودی که درنتیجه ی قرار کرفتن لوله ی طولانی روی بام سیاه رنک داغ بوجود می آید نیز صادق است . مقدار چنین انحرافی در هر مورد نصب فرق می کند و فراتر از محاسبات است . اما کولرهای خوب با رنگ بازتابنده ی نور که به دقت نصب ، وصل و راه اندازی شده باشند و با حداکثر ظرفیت خود کار کنند ، گرمای اضافی برآنها اثر کمتری می کذارد . با این وجود ، یک درجه ی فارنهایت ( C 0 56/0 ) حباب تر بایین تر می تواند مشکل را به خوبی جبران نماید .
عنوان صفحه
آشنایی با مکان کار آموزی ................................................ 1
تست سیستم های تهویه مطبوع.......................................... 2
دماهای طرح متداول ............................................................. 8
الزامات هوای تازه................................................................. 11
پاکسازی هوا.......................................................................... 12
حرکت و سرعت مجاز هوا در سرمایش تبخیری ........... 13
شرایط قابل توصیه برای داخل در تابستان ..................... 16
برج های خنک کن............................................................... 21
بازرسی منظم برج خنک کن ............................................. 27
آشنایی با انوع دستگاهها و سیستم های تبخیری ......... 29
انتخاب برج خنک کن پر بازده بر مبنای رنج یا پروچ ..... 36
گرمای محسوس و نهان ................................................... 43
تاملی بر مفهوم اندازه بهینه شهر...................................... 45
سرمایش مفید و آسایش ................................................. 52
اصول تهویه مطبوع ........................................................... 56
چک لیست راه اندازی برج خنک کن............................... 58
انتخاب سیستم تهویه مطبوع .......................................... 60
کمپرسورهای تبرید ...........................................................61
کمپرسورهای مارپیچی ..................................................... 64
مزایای کمپرسورهای مارپیچی....................................... 77
آنالیز و مقایسه سیستم های تبرید ............................... 83
تصفیه آب برج خنک کن ............................................. 88
در اینجا یک گزارش کامل از کارآموزی در نیروگاه گازی ارائه شده است که شامل معرفی قسمت های مختلف یک نیروگاه گازی به همراه توضیحات مربوط به هر قسمت به صورت کامل و اجزای مختلف به کار رفته در نیروگاه نظیر انواع شیرآلات،ولوها و وسایل مختلف دیگر می باشد.
گزارش ارائه شده به صورت فایل ورد می باشد.(قابل ویرایش)
تعداد صفحات:25
هیدروژن اولین و ساده ترین عنصر و پس از آن هلیم، کربن، ازت، اکسیژن و... فلزات روی، مس، آهن، نیکل و... و بالاخره آخرین عنصر طبیعی به شماره ۹۲، عنصر اورانیوم است. بشر توانسته است به طور مصنوعی و به کمک واکنش های هسته ای در راکتورهای اتمی و یا به کمک شتاب دهنده های قوی بیش از ۲۰ عنصر دیگر بسازد که تمام آن ها ناپایدارند و عمر کوتاه دارند و به سرعت با انتشار پرتوهایی تخریب می شوند. اتم های یک عنصر از اجتماع ذرات بنیادی به نام پرتون، نوترون و الکترون تشکیل یافته اند. پروتون بار مثبت و الکترون بار منفی و نوترون فاقد بار است.
تعداد پروتون ها نام و محل قرار گرفتن عنصر را در جدول تناوبی (جدول مندلیف مشخص می کند. اتم هیدروژن یک پروتون دارد و در خانه شماره ۱ جدول و اتم هلیم در خانه شماره ۲ ، اتم سدیم در خانه شماره ۱۱ و... و اتم اورانیوم در خانه شماره ۹۲ قرار دارد. یعنی دارای ۹۲ پروتون است .
ایزوتوپ های اورانیوم
تعداد نوترون ها در اتم های مختلف یک عنصر همواره یکسان نیست که برای مشخص کردن آنها از کلمه ایزوتوپ استفاده می شود. بنابراین اتم های مختلف یک عنصر را ایزوتوپ می گویند . مثلاً عنصر هیدروژن سه ایزوتوپ دارد: هیدروژن معمولی که فقط یک پروتون دارد و فاقد نوترون است. هیدروژن سنگین یک پروتون و یک نوترون دارد که به آن دوتریم گویند و نهایتاً تریتیم که از دو نوترون و یک پروتون تشکیل شده و ناپایدار است و طی زمان تجزیه می شود .
ایزوتوپ سنگین هیدروژن یعنی دوتریم در نیروگاه های اتمی کاربرد دارد و از الکترولیز آب به دست می آید. در جنگ دوم جهانی آلمانی ها برای ساختن نیروگاه اتمی و تهیه بمب اتمی در سوئد و نروژ مقادیر بسیار زیادی آب سنگین تهیه کرده بودند که انگلیسی ها متوجه منظور آلمانی ها شده و مخازن و دستگاه های الکترولیز آنها را نابود کردند .
ساختار نیروگاه اتمی
انواع راکتور
غنی سازی اورانیم
چرا سقف نیروگاه های اتمی گنبدی شکل است؟
SMES یا ابرسانای ذخیره کننده انرژی مغناطیسی چیست؟
مقدمه
ابررسانایی:
ابرسانای ذخیره کننده انرژی مغناطیسی
آب سنگین چیست؟
شامل 39 صفحه فایل word
چکیده :
میدانیم که هسته از پروتون (با بار مثبت) و نوترون (بدون بار الکتریکی) تشکیل شده است. بنابراین بار الکتریکی آن مثبت است. اگر بتوانیم هسته را به طریقی به دو تکه تقسیم کنیم، تکهها در اثر نیروی دافعه الکتریکی خیلی سریع از هم فاصله گرفته و انرژی جنبشی فوق العادهای پیدا میکنند. در کنار این تکهها ذرات دیگری مثل نوترون و اشعههای گاما و بتا نیز تولید میشود. انرژی جنبشی تکهها و انرژی ذرات و پرتوهای بوجود آمده ، در اثر برهمکنش ذرات با مواد اطراف ، سرانجام به انرژی گرمایی تبدیل میشود. مثلا در واکنش هستهای که در طی آن 235U به دو تکه تبدیل میشود، انرژی کلی معادل با 200MeV را آزاد میکند. این مقدار انرژی میتواند حدود 20 میلیارد کیلوگالری گرما را در ازای هر کیلوگرم سوخت تولید کند. این مقدار گرما 2800000 بار برگتر از حدود 7000 کیلوگالری گرمایی است که از سوختن هر کیلوگرم زغال سنگ حاصل میشود. گرمای حاصل از واکنش هستهای در محیط راکتور هستهای تولید و پرداخته میشود. بعبارتی در طی مراحلی در راکتور این گرما پس از مهارشدن انرژی آزاد شده واکنش هستهای تولید و پس از خنک سازی کافی با آهنگ مناسبی به خارج منتقل میشود. گرمای حاصله آبی را که در مرحله خنک سازی بعنوان خنک کننده بکار میرود را به بخار آب تبدیل میکند. بخار آب تولید شده ، همانند آنچه در تولید برق از زعال سنگ ، نفت یا گاز متداول است، بسوی توربین فرستاده میشود تا با راه اندازی مولد ، توان الکتریکی مورد نیاز را تولید کند. در واقع ، راکتور همراه با مولد بخار ، جانشین دیگ بخار در نیروگاههای معمولی شده است.
فهرست :
نیروگاه های اتمی
شکافت یا شکست اتمی
جوش یا گداخت اتمی
نحوه آزاد شدن انرژی هستهای
کاربرد حرارتی انرژی هستهای
سوخت راکتورهای هستهای
غنى سازى اورانیوم
چرخه سوخت هسته ای
راکتورهاى هستهاى
نیروگاه هستهای
انرژی بستگی هستهای
کاربرد انرژی هسته ای در تولید برق
نیروگاه شکافت هسته ای
نیروگاه جوش هسته ای
فرآیند عملیاتی نیروگاه اتمی بوشهر
مدار خنک کننده
اجزای راکتور
نیروگاه اتمی بوشهر و محیط زیست
وظیفه سیستمهای ایمنی در هنگام بروز احتمالی حادثه
نوع فایل : Word
تعداد صفحات : 37 صفحه
تعداد صفحات : 400
فرمت فایل: word(قابل ویرایش)
فهرست مطالب:
فصل اول:پمپ
قسمت اول: تقسیم بندی پمپها 2
قسمت دوم: انتخاب پمپ و تعاریف 5
قسمت سوم: پمپهای گریز از مرکز 15
قسمت چهارم: پمپهای پروانه ای و توربینی 24
قسمت پنجم: پمپهای دوار 30
قسمت ششم: پمپهای پیستونی 45
قسمت هفتم: پمپهای اندازهگیر 58
قسمت هشتم: پمپهای خاص 70
قسمت نهم: نگهداری پمپ 79
فصل دوم: بویلر
مقدمه 92
تقسیم بندی بر اساس ظرفیت 92
تقسیم بندی بر اساس تیپ و شکل 95
تقسیم بندی از نظر محتوای لوله ها 96
تقسیم بندی از نظر سیر کولاسیون سیال عامل 97
اجزای تشکیل دهنده ی دیگ های بخار 98
بررسی دیگ های لوله آبی 105
انتقال حرارت در لوله آتشی ها و لوله آبی 112
کاربری و انتخاب دیگ های بخار 119
فصل سوم : کوره
مقدمه 130
ساختمان کورهها 130
انواع کورهها 135
کورههای سنتی 136
کوره هوفمن 137
کوره های ماشین بخار 138
کورههای مخصوص 139
انواع کورههای الکتریکی 146
کوره های مقاومتی 148
مزایا و معایب استفاده از کوره های الکتریکی 151
انتقال حرارت در کورهها 152
کاربرد کورهها در صنعت 161
نکاتی پیرامون انتخاب کورهها 164
مدار آب / بخار کوره 169
انتقال حرارت در دسته لولهها 173
فصل چهارم: توربین ها
1-4 تعریف مفهوم 182
1-1-4 خروجی 182
2-1-4 سرعت مخصوص 182
3-1-4 خلاء زائی 184
4-1-4 سرعت رانش 186
2-4 انواع توربینها 189
1-2-4 توربین پلتون 189
2-2-4 توربین فرانسیس 191
3-2-4 توربین کاپلان 194
4-2-4 توربینهای لولهای 198
1-4-2-4 توربین حبابی 199
2-4-2-4 توربین لولهای 201
3-4-2-4 طراحی ژنراتور حاشیهای 202
فصل پنجم – کندانسور
مقدمه 206
چگالنده های سطحی 207
چگالندههای خنک شونده با جریان هوای سرد بصورت تماسی 208
اطلاعات کلی در مورد حذف هوا از چگالندههای توربینی بخار 218
برجهای خنککن 219
خصوصیات مبدلهای هوایی 223
جزئیات طراحی خنککنهای هوایی 225
انتخاب کندانسور 228
طبقه بندی کندانسورها برای کاربردهای صنعتی 230
طراحی حرارتی کندانسورها 233
محافظت و تمیز کاری کندانسورها 241
محدودکنندة عمرکاری 244
نشت آب سردکننده به کندانسورها 247
تمیز کردن کندانسورها 253
فصل ششم : ژنراتور
مقدمه 260
پیشینه تاریخی 261
استانداردها و مشخصات 265
عملکرد ژنراتور 267
اعمال بار 272
انواع ژنراتورها 273
ژنراتورهای توربینی با ظرفیت کمتر 273
ژنراتورهای سنکرون قطب برجسته آبی 275
ژنراتورهای قطب برجسته دیزلی 281
ژنراتورهای القایی 281
فصل هفتم :مبدل های حرارتی
مقدمه 283
دسته بندی مبدل های گرمایی 284
مبدل های لوله ای 284
مبدل های گرمایی صفحه ای 294
مبدل های گرمایی با سطوح پره دار 304
کثیف شدن مبدل های حرارتی 309
تغییرات زمانی فاکتور لایه ی جرمی 311
مکانیزم های جرم گرفتگی 314
تأثیر سرعت سیال 321
تأثیر درجه حرارت 322
فاکتور لایه جرمی در عمل 328
فصل هشتم: برج خنک کن
برج های خنک کن 331 برج های خنک کن تر 332
آب جبرانی 334
برج های خنک کن باجریان طبیعی هوا 334 برج های خنک کن باجریان مکانیکی هوا 336
برج با جریان هوای دمیده شده 336
برج باجریان هوای مکیده شده 337
جدول مقایسه برجها باجریان مکیده شده ودمیده شده 339
برج باجریان مکیده شده مخالف ومتقاطع 339
انتخاب نوع برج خنک کن تر 340
برج های خنک کن خشک 340
برج های خنک کن خشک مستقیم 342
برج های خنک کن خشک غیرمستقیم 343
برج های خنک کن تروخشک 349
یخ زدگی برج خنک کن 351
جدول مقایسه برج های خنک کن 352
جدول هزینه های یکساله برج های خنک کن 353
فصل نهم :راکتورهای هسته ای
مقدمه 355
انواع راکتور 356
اجزای جانبی راکتورها 363
طراحی راکتور 376
فصل دهم : خشک کن ها
مقدمه 380
خشک کن های ثابت 381
خشک کن های ناپیوسته 382
خشک کن های مستقیم 382
خشک کن های غیر مستقیم 383
خشک کن های انجمادی 384
خشک کن های مداوم 385
خشک کن های تونلی 386
خشک کن های بشکه ای 386
خشک کن های پاششی 377
منابع و ماخذ 388
قسمت اول
مقدمه
تقریباً در کلیه فرآیندهای شیمیایی، جابجایی سیال(گاز و مایع) صورت میگیرد. انرژی لازم برای حرکت سیال توسط پمپ، کپرسور و دمنده تأمین میشود. به کمک این دستگاهها میتوان بر انرژی مکانیکی این دستگاه ها افزود و باعث ازدیاد سرعت، فشار یا ارتفاع آنها شد. لازمة استفادة بهینه از دستگاه های یاد شده، آگاهی به اصول ترمودینامیک و مکانیک سیالات میباشد.
از پمپ در جابه جایی سیال مایع، از دمنده در انتقال سیال گازی، از کمپرسور در فشردهسازی و انتقال سیال گازی و از نقالهها و بالابرها در حمل و نقل پیسوته و مکانیکی مواد جامد استفاده میشود و نقاله در هر شکل، اندازه و وزن ( از یک گرم تا چند تن ) کاربرد دارند. در این فصل به منظور آشنایی با دستگاه های انتقال مواد توضیح مختصری پیرامون هر یک ارایه میشود. پمپ
دستگاهی است که با دریافت انرژی مکانیکی از یک منبع خارجی، آن را به سیال انتقال میدهد. بدین ترتیب انرژی سیال خروجی از پمپ افزایش مییابد. از این وسیله برای جابه جایی سیال در مدارهای مختلف هیدرولیکی، شبکه های لولهکشی، ارتفاع معین و به طور کلی انتقال سیال از یک نقطه به نقطه دیگر استفاده میشود. انرژی مورد نیاز در یک پمپ به عواملی چون ارتفاع سیال جابه جا شده، فشار سیال در مقصد، طول و قطر لوله، سرعت جریان و خواص فیزیکی سیال همچون گرانروی و چگالی بستگی دارد.
کاربرد پمپها در صنایع شیمیایی
کاربرد پمپها در صنایع شیمیایی فراوان میباشد؛ در زیر به مواردی از آنها اشاره میکنیم.
الف - پمپ کردن مایعاتی نظیر سولفوریک اسید، محصولات نفتی چون بنزین و نفتا از منبع ذخیره به محل فرآیند،
ب – پمپ کردن سیال به واکنشگاه،
ج- پمپ کردن سیال از مبادلهکن گرمایی،
د- پمپ کردن واکنش دهندهها به درون واکنشگاه،
هـ - پمپ آب خنک
و- پمپ نفت خام یا گاز طبیعی برای مسافتهای طولانی.
تقسیم بندی پمپها
پمپها براساس نحوة انتقال انرژی به سیال به قرار زیر تقسیم بندی میشوند.
الف- پمپهای دینامیکی: انتقال انرژی به سیال در این پمپها دائمی است. پمپهای گریز از مرکز، پمپهای محیطی و پمپهای خاص از انواع پمپهای دینامیکی میباشند.
ب- پمپهای جابهجایی: انتقال انرژی به سیال در این پمپها با تناوب صورت میگیرد. از انواع آنها میتوان به پمپهای رفت و برگشتی و پمپهای گردشی اشاره نمود.
تقسیم بندی کاملتری از پمپها در نمودار 1-1 ارایه شده است.
در ادامة بحث توضیح مختصری پیرامون پمپهای گریز از مرکز و رفت و برگشتی ارایده میشود. در این پمپها بیشترین کاربرد را در صنایع شیمیایی دارند.
مقدمه
در این قسمت به بررسی برخی از اصطلاحات و تعاریف مورد استفاده در هنگام انتخاب پمپ با بحث دربارة طرز کار آن خواهیم پرداخت. اطلاعاتی نیز دربارة ارتفاع مکش
(Suction Lift)، ارتفاع رانش (Discharge Head )، تلفات اصطکاک لوله ها، و تلفات اصطکاک مواد ارائه خواهد شد.
بیشتر این اصطلاحات توسط مهندسی که پمپ را انتخاب یا طراحی میکند به کار گرفته میشوند. این اصطلاحات همچنین توسط گروه نگهداری و تعمیرات در هنگام بازدید عملکرد پمپ نیز مورد استفاده قرار میگیرند. استفاده صحیح از این اصطلاحات در مورد پمپهای مختلف اجازه میدهد تا همه بفهمند دربارة چه موضوعی بحث میشود.
دانستن اینکه فرسایش عادی لولهها ، خوردگی و تغییرات سیستم لولهکشی چه تأثیری بر مقاومت سیال میگذارد، حایز اهمیت است. اگر بخواهید کارتان را به نحو مؤثر انجام داده و به دانش خود دربارة تجهیزات مورد استفاده بیفزایید لازم است اصول مربوطه و چگونگی تأثیر آنها بر کار پمپ را درک کنید.
مسایل مربوط به پمپ
- معمولاً هنگامی که یک فرد متخصص نگهداری و تعمیرات برای تعمیر پمپ اعزام میگردد، با مشکلاتی از قبیل نشتی، آب بندی و یاتاقانها مواجه میشود. گاهی لازم میشود کل پمپ عوض شود. شاید خود شما مستقیماً یا هنگامی که به عنوان دستیار کار میکردید با این مشکلات برخورد کرده باشید. شما با داشتن این تجربه حماً دریافتهاید که اگرچه ظاهر پمپ ها ممکن است شبیه هم باشد، اما قطعات داخلی آنها ممکن است کاملاً متفاوت باشند. همچنین میدانید که پمپ ها در صنایع انواع گوناگونی دارند و هریک از آنها ساختمان و طرز کار خاص خود را دارد.
- بیشتر مشکلات گفته شده جزئی هستند؛ (البته تعویض قطعات داخلی پمپها ممکن است یک مشکل کلی به شمار آید). اما گاهی اوقات ممکن است از شما خواسته شود پمپی را تعمیر کنید که هیچ نشان ظاهری از خرابی ندارد. این مشکلات میتواند ناشی از فشار ناقسمتت آب، وجود هوا در آب، یا عدم توانایی یک پمپ در انتقال آب از یک مخزن به سایر نقاط باشد. در این موارد، تعویض واشر ، یا کاسه نمد یا سایز قطعات در عملکرد پمپ تأثیری نمیگذارد. البته نخستین اقدامی که باید بکنید بررسی سیستم و حصول اطمینان از کارکرد صحیح سایر قطعات است.
- برای آنکه عملکرد پمپ را بهتر درک کنید، و نقاط مشکل آفرین را بهتر بشناسید، باید با چند تعریف آشنا شوید. این تعاریف همراه با چند مثال و مسئله در زیر خواهد آمد. اولین گروه این تعاریف به پمپهای آبی مربوط میشود که بالاتر از سطح آب قرار میگیرند. در این حالت مطابق شکل 1-1 ابتندا باید آب را تا سطح پمپ بالا آورد تا سپس توسط پمپ به دیگر نقاط منتقل شود.