هدف از این اراِئه و تحقیق بررسی روشهای مطرح داده کاوی است .داده کاوی هر نوع استخراج دانش و یا الگواز داده های موجود در پایگاه داده است که این دانشها و الگوها ضمنی و مستتر در داده ها هستند ,از داده کاوی می توان جهت امور رده بندی (Classification ) و تخمین (Estimation) ,پیش بینی (Prediction) و خوشه بندی (Clustering)استفاده کرد .داده کاوی دارای محاسن فراوانی است . از مهمترین آن محاسن کشف کردن دانش نهفته در سیستم است که به شناخت بهتر سیستم کمک می کند .به عنوان مثال می توان به استفاده ترکیبی از روش خوشه بندی جهت تخصیص بودجه به دسته های مختلف از کتب اشاره کرد .
سیستمهای داده کاوی تقریبا از اوایل دهه 1990 مورد توجه قرار گرفتند . علت این امر نیز آن بود که تا آن زمان سازمانها بیشتر در پی ایجاد سیستمهای عملیاتی کامپیوتری بودند که به وسیله آنها بتوانند داده های موجود در سازمان خود را سازماندهی کنند . پس از ایجاد این سیستمها ,روزانه حجم زیادی از اطلاعات جمع آوری میشد که تفسیر کردن آنها از عهده انسان خارج بود . به همین دلیل , نیاز به تکنیکی بود که از میان انبوه داده معنی استخراج کند و داده کاوی به همین منظور ایجاد و رشد یافت .
بنابر این هدف اصلی از داده کاوی ,کشف دانش نهفته در محیط مورد بررسی است که این دانش می تواند شکلهای گوناگونی داسته باشد . دانش استخراج شده می تواند به فرم الگوهای موجود در داده ها باشد که کشف این الگوها منجر به شناخت بهتر سیستم نیز می شود . الگوهای استخراجی عموما بیانگر روابط بین ویژگیهای سیستم هستند بعنوان مثال در سیستم تجاری یک الگو می تواند بیانگر رابطه بین نوع کالا و میزان تقاضای آن باشد .
در این تحقیق داده کاوی مورد بحث قرار می گیرد . علل استفاده از داده کاوی و منابعی که داده کاوی بر روی آنها اعمال می شود ,علاوه بر این خلاصه ای از روشهای رایج داده کاوی ارائه شده است . تکنیکهای داده کاوی و قوانین وابستگی و الگوریتمهای موجود (Apriori , Aprior TID, Partition, Eclat ,Max Eclat , Vector ) و الگوریتم با ساختار Trie وfp grow و الگوریتمهای کاهشی مورد بررسی قرار می گیرند و در هر مورد مثالها , موارد کاربرد ,تکنیکها و نقاط قوت و ضعف مورد بررسی قرار گرفته اند .
چکیده
مقدمه
کشف دانش در پایگاه داده
آیا داده کاوی برای حل مسائل ما مناسب است؟
جمع آوری داده ها
بکارگیری نتایج
استراتژیهای داده کاوی
پیش گویی Perdiction
Unsupervised Clustering دسته بندی بدون کنترل
تکنیکهای داده کاوی تحت کنترل
شبکه عصبی
برگشت آماری
قوانین وابستگی
الگوریتم Apriori
الگوریتم Aprior TID
الگوریتم partition
الگوریتم های MaxEclat,Eclat
الگوریتم با ساختار trie
الگوریتم fp-grow
ساخت fp- tree
Fp-tree شرطی
الگوریتم برداری
نگهداری قوانین وابستگی
الگوریتم کاهشی
با افزایش چشمگیر حجم اطلاعات و توسعه وب، نیاز به روش ها و تکنیک هایی که بتوانند امکان دستیابی کارا به دادهها و استخراج اطلاعات از آنها را فراهم کنند، بیش از پیش احساس می شود. وب کاوی یکی از زمینه های تحقیقاتی است که با به کارگیری تکنیک های داده کاوی به کشف و استخراج خودکار اطلاعات از اسناد و سرویسهای وب می پردازد. در واقع وب کاوی، فرآیند کشف اطلاعات و دانش ناشناخته و مفید از داده های وب می باشد. روش های وب کاوی بر اساس آن که چه نوع داده ای را مورد کاوش قرار می دهند، به سه دسته کاوش محتوای وب، کاوش ساختار وب و کاوش استفاده از وب تقسیم می شوند. طی این گزارش پس از معرفی وب کاوی و بررسی مراحل آن، ارتباط وب کاوی با سایر زمینه های تحقیقاتی بررسی شده و به چالش ها، مشکلات و کاربردهای این زمینه تحقیقاتی اشاره می شود. همچنین هر یک از انواع وب کاوی به تفصیل مورد بررسی قرار می گیرند که در این پروژه بیشتر به وب کاوی در صنعت می پردازم. برای این منظور مدل ها، الگوریتم ها و کاربردهای هر طبقه معرفی می شوند.
با توسعه سیستم های اطلاعاتی، داده به یکی از منابع پراهمیت سازمان ها مبدل گشته است. بنابراین روش ها و تکنیک هایی برای دستیابی کارا به داده، اشتراک داده، استخراج اطلاعات از داده و استفاده از این اطلاعات، مورد نیاز می باشد. با ایجاد و گسترش وب و افزایش چشمگیر حجم اطلاعات، نیاز به این روش ها و تکنیک ها بیش از پیش احساس می شود. وب، محیطی وسیع، متنوع و پویا است که کاربران متعدد اسناد خود را در آن منتشر می کنند. در حال حاضر بیش از دو بیلیون صفحه در وب موجود است و این تعداد با نرخ 3/7 میلیون صفحه در روز افزایش مییابد. با توجه به حجم وسیع اطلاعات در وب، مدیریت آن با ابزارهای سنتی تقریبا غیر ممکن است و ابزارها و روش هایی نو برای مدیریت آن مورد نیاز است. به طور کلی کاربران وب در استفاده از آن با مشکلات زیر روبرو هستند:
فهرست :
مقدمه
فصل دوم: داده کاوی
مقدمه ای بر داده کاوی
چه چیزی سبب پیدایش داده کاوی شده است؟
مراحل کشف دانش
جایگاه داده کاوی در میان علوم مختلف
داده کاوی چه کارهایی نمی تواند انجام دهد؟
داده کاوی و انبار داده ها
داده کاوی و OLAP
کاربرد یادگیری ماشین و آمار در داده کاوی
توصیف داده ها در داده کاوی
خلاصه سازی و به تصویر در آوردن داده ها
خوشه بندی
تحلیل لینک
مدل های پیش بینی داده ها
دسته بندی
رگرسیون
سری های زمانی
مدل ها و الگوریتم های داده کاوی
شبکه های عصبی
درخت تصمیم
Multivariate Adaptive Regression Splines(MARS)
Rule induction
Knearest neibour and memorybased reansoning(MBR)
رگرسیون منطقی
تحلیل تفکیکی
مدل افزودنی کلی (GAM)
Boosting
سلسله مراتب انتخابها
داده کاوی و مدیریت بهینه وب سایت ها
دادهکاوی و مدیریت دانش
فصل سوم: وب کاوی
تعریف وب کاوی
مراحل وب کاوی
وب کاوی و زمینه های تحقیقاتی مرتبط
وب کاوی و داده کاوی
وب کاوی و بازیابی اطلاعات
وب کاوی و استخراج اطلاعات
وب کاوی و یادگیری ماشین
انواع وب کاوی
چالش های وب کاوی
مشکلات ومحدودیت های وب کاوی در سایت های فارسی زبان
محتوا کاوی وب
فصل چهارم: وب کاوی در صنعت
انواع وب کاوی در صنعت
وب کاوی در صنعت نفت، گاز و پتروشیمی
مهندسی مخازن/ اکتشاف
مهندسی بهره برداری
مهندسی حفاری
بخشهای مدیریتی
کاربرد های دانش داده کاوی در صنعت بیمه
کاربردهای دانش داده کاوی در مدیریت شهری
کاربردهای داده کاوی در صنعت بانکداری
بخش بندی مشتریان
پژوهش های کاربردی
نتیجه گیری
منابع و ماخذ فارسی
مراجع و ماخذ لاتین و سایتهای اینترنتی
تعداد صفحات : 62
فرمت فایل : Word
پاوری در مورد متن کاوی و توضیحات، کاربرد و نحوه عملکرد آن در دنیای امروز
متن کاوی = کشف دانش از داده ها متنی = متن داده کاوی
عبارتست از کشف اطلاعات جدید و ناشناخته با استخراج اتوماتیک اطلاعات از منابع داده های متنی غیر ساختیافته بوسیله کامپیوتر
شرح مختصر : داده های مورد استفاده در این پروژه از پایگاه داده دانشگاه آزاد قزوین تهیه شده است، این داده ها اطلاعات ۵۰۰ نفر دانشجوی مقطع کارشناسی رشته مهندسی صنایع (گرایش های تکنولوژی صنعتی و تولید صنعتی) است. که در قالب یک فایل اکسل با ۳۸۳۷۷ رکورد می باشد و سنوات تحصیلی ۱۳۸۴ تا ۱۳۹۰ را شامل می شود. مدلی که برای پیشبینی ارتقاء سطح علمی دانشجویان بر اساس اطلاعات موجود در پایگاه داده دانشگاه آزاد قزوین پیشنهاد میشود در زیر شرح داده میشود : در این مدل پیشنهادی مراحل مختلف فرآیند داده کاوی از جمله جمع آوری دادهها، آماده سازی و پیش پردازش داده ها را روی مجموعه آموزشی ذکر شده انجام داده و الگوریتمهای مختلف داده کاوی از جمله خوشه بندی، قوانین انجمنی، درخت تصمیمگیری، برای دادهها به کار گرفته شده است. ابتدا برای عملکرد بهتر الگوریتمهای داده کاوی یک سری عملیات پیشپردازشی روی دادهها انجام داده شده است. همچنین بعد از تجمیع دادهها داخل یک فایل خصیصههای عددی به خصیصه های گروهی معادل تبدیل شده است. برای مثال تمام نمرات دانشجویان به پنج گروه عالی، خوب، متوسط، ضعیف و مردود تقسیم بندی شده است.
تعداد صفحات : 80
فرمت فایل :Word
پاورپوینت داده کاوی الگوهای تکرارشونده در جریان دادهها
در زیر به مختصری ازعناوین و چکیده آنچه شما در این فایل دریافت می کنید اشاره شده است
جریان داده
نکته: فایلی که دریافت میکنید جدیدترین و کاملترین نسخه موجود از پاورپوینت می باشد.
(فایل قابل ویرایش است )
فرمت PowerPoint
تعداد صفحات :40 اسلاید