فرمت فایل : word(قابل ویرایش)
تعداد صفحات:32
فهرست مطالب:
۷.۵ دایره های عدد نویز
– ادمیانس اپتیمم منبع
مثال ۹.۱۴:
۹.۶ دایره های VSWR ثابت .
۹.۷ تقویت کننده های پهن باند و قدرت بالا و چند طبقه ای
۹.۷.۱ آمپلی فایرهای پهن باند.
کاهش عدد نویز در فرکانسهای بالا:
فرکانس جبران شده شبکه های تطبیق:
طراحی آمپلی فایر متعال شده
مدار های فیدبک منفی:
۹.۷.۲ تقویت کننده های قدرت بالا
۹.۷.۳ تقویت کننده های چند طبقه :
۹.۸ خلاصه
چکیده:
در بسیاری از تقویت کننده های RF، برای تقویت سیگنال در سطح نویز حداقل, نیازمند یک سیستم حساب شده می باشیم. متاسفانه طراحی یک تقویت کننده کم نویز با فاکتوهایی نظیر پایداری و بهره سنجیده می شود, برای نمونه در ماکزیمم بهره، نویز حداقل نمی تواند بدست آید. بنابراین اهمیت دارد که روشهایی را که به ما اجازه می دهند که نویز موثر را به عنوان قسمتی از نمودار اسمیت برای هدایت شباهت ها و مشاهده توازن ما بین گین و پایداری نشان می دهد توسعه می دهیم.
از یک نمای تمرینی، جزء موثر تحلیل نویز ، عدد نویز تقویت کننده دو پورتی در فرم ادمیتانسی است .
و یا فرم معادل امپدانسی 9.74
که امپدانس منبع است .
هر دو معادله از ضمیمه H مشتق شدهاند. هنگام استفاده از ترانزیستور بطور معمول چهار پارامتر نویز شناخته می شوند که از طریقdatasheet کارخانه سازنده FET یاBJT یا از طریق اندازه گیریهای مستقیم بدست می آیند . آنها عبارتند از :
- عدد نویز حداقل (همچنین اپتیمم نیز نامیده می شود) که رفتارش بستگی به شرایط پایه ای و عملکرد فرکانسی دارد . اگر وسیله, نویزی نداشته باشد ما میتوانیم Fmin را برابر 1 بدست آوریم.
- مقاومت معادل نویز که برابر عکس رسانایی وسیله میباشد
P 503.
- ادمیانس اپتیمم منبع
بجای امپدانس یا ادمیتانس ، ضریب انعکاس اپتیممoptاغلب لیست می شود. ارتباط ما بین و بوسیله رابطه زیر بیان میشود:
از زمان انتخاب پارامتر S به عنوان مناسب ترین گزینه برای طرحهای فرکانس بالا ما رابطه9.73را به فرمی تبدیل کردیم که ادمیتانسها با ضرایب انعکاس جایگزین شوند.در کنار 9.75 ما از رابطه زیر در 9.73 استفاده می کنیم :
GS می تواند بصورت نوشته شود و نتیجه نهایی بصورت زیر است :
در رابطه 9.77 مقدار Fmin و Rn و شناخته شده هستند.
بطور کلی مهندس طراح برای تنظیم آزادی عمل دارد تا عدد نویز را تحت تاثیر قرار دهد . برای Гs=Гopt می دانیم که کمترین مقدار ممکن عدد نویز برایF= بدست می آید . برای جواب دادن به این سوال که چگونه با یک عدد نویز خاص اجازه می دهند که بگوییم Fk با Гs مرتبط است رابطه 9.77 را باید بصورت زیر بنویسیم:
که عناصر موجود در طرف راست یک شکل معادله برگشتی را ارائه می دهند . یک ثابت Qk که با معادله زیر بیان می شودمعرفی میکنیم:
و ارنج دوباره عبارتها معادله زیر را می دهد:
تقسیم شدن بر (1+Qk) و به توان دو رساندن بعد از مقداری عملیات جبری نتیجه میدهد:
.P 504
این یک معادله برگشتی مورد نیاز در فرم استاندارد است که می تواند بعنوان قسمتی از نمودار اسمیت ظاهر شده باشد .
که موقعیت مرکز دایره dFK با عدد کمپلکس زیر نشان داده شده است :
و با شعاع
دو نکته جالب توجه و جود دارد که از معادله های 9.83 و 9.84 بدست میآیند .
منیمم عدد نویز برای FK=Fmin بدست می آید که با مکان شعاع هماهنگی دارد .
همه مراکز دایره های نویز ثابت در طول یک خط از محیط به نقطه کشیده شدهاند عدد نویز بزرگتر نزدیکتر به مرکز dFk به سمت محیط حرکت می کند و شعاع rFK بزرگتر می شود . مثال زیر توازن بین بهره و عدد نویز را برای تقویت کننده سیگنال کوچک نشان می دهد .
P 505.
مثال 9.14: یک تقویت کننده سیگنال کوچک برای عدد نویز مینیم وگین مشخص با استفاده از ترانزیستورهای یکسان مانند مثال 9-13 طراحی کنید. یک تقویت کننده قدرت نویز پایین با 8dB بهره و عدد نویزی که کمتر از 1.6dB است رامیتوان بافرض این که که ترانزیستورهاپارامترهای نویز زیررا دارندdB Fmin=1.5 ، طراحی کرد.
حل : عدد نویز مستقل از ضریب انعکاس بار است. هر چند تابعی از امپدانس منبع است .
پس مپ کردن دایره گین ثبت بدست آمده در مثال 9.13 به پلان آسان است. با بکار بردن معادلات 9.64 و 9.65 و مقادیر مثال 9.13 با مرکز و شعاع دایره گین ثابت را پیدا می کنیم: 18º dgs=0.29<- و Vgs=0.18 .
یک قرار گرفته در هر جای روی این دایره، مقدار گین مورد نیاز را بر آورده خواهد کرد .
هر چند برای اینکه به جزئیات عدد نویز دست یابیم باید مطمئن باشیم که داخل دایره نویز ثابت FK=2dB قرار دارد.
مرکز دایره نویز ثابت و شعاع آن به ترتیب با استفاده از معادله های 9.83 و 9.84 محاسبه شده اند.
آنها با هم در زیر با ضریب QK لیست شده اند 9.79 را ببینید:
QK=0.2 dFK=0.42 < 45 , rFk=0.36