فرمت فایل : word(قابل ویرایش)
تعداد صفحات:20
فهرست مطالب:
دیفرانسیل وانتگرال 1
خط مماس 3
مشتق پذیری و پیوستگی 8
مشتق یک طرفه 9
چند قضیه در مورد مشتق گیری از توابع جبری 10
مشتق گیری ضمنی 14
مشتقهای مراتب بالاتر 16
مشتق به عنوان آهنگ تغییر 18
قضیه رول 19
خط مماس
بسیاری از مسائل مهم حساب دیفرانسیل وانتگرال، به مسئله پیدا کردن خط مماس وارد بر منحنی در یک نقطه معین روی منحنی مربوط می شوند. در هندسه مسطحه اگر منحنی دایره باشد، خط مماس در یک نقطه P روی دایره، به عنوان خطی تعریف می شود که دایره را فقط در یک نقطه قطع می کند. این تعریف در حالت کلی برای همه منحنیها صادق نیست. به عنوان مثال، خطی که می خواهیم در نقطه P بر منحنی مماس باشد، منحنی را در نقطه دیگری مانند Q قطع خواهد کرد.
در این بخش، تعریف مناسبی از خط مماس بر نمودار یک تابع در نقطه ای روی نمودار، ارائه می دهیم. برای این کار، ضریب زاویه خط مماس در یک نقطه را تعریف می کنیم، زیرا اگر ضریب زاویه یک خط و نقطه ای روی آن معلوم باشند، آن خط معین می شود.
تصور کنید تابع f در x1 پیوسته است. می خواهیم ضریب زاویه خط مماس بر نمودار f در نقطه P(x1,f(x1)) را به دست آوریم. فرض کنید I بازه بازی باشد که شامل x1 است و f بر این بازه تعریف شده است.نقطه دیگر Q(x2,f(x2)) را روی نمودار f در نظر می گیریم به طوری که x2 نیز در I باشد. خطی را که از p و Q می گذرد رسم می کنیم. هر خطی که از دو نقطه یک منحنی بگذرد، خط قاطع نامیده می شود؛ پس خط گذرنده از p و Q یک خط قاطع است. خط قاطع به موازی مقادیر مختلف x2 رسم شده است . یک خط قاطع خاص نشان داده شده است. در این شکل Q در طرف راست P قرار دارد. معهذا، Q می تواند در طرف چپ P نیز باشد .