فرمت فایل : word(قابل ویرایش)
تعداد صفحات:134
چکیده:
آنالیز فوریه
تابع f(x) را تابع متناوب یا دوره ای می گوئیم (Periodic foretion) هرگاه عددی مثل 2L پیدا شود به قسمی که داشته باشیم f(x) = f(x + 2L)
2L f(x) = f(x + 2L)
2L = 2x Exampel : Sin x , Cos x
2L = x Exampel : tog x , Cot x
اگر توابعی متناوب باشند ولی Sin x و Cos x نیستند با استفاده از سری فوریه این توابع متناوب غیر سینوسی و غیر کسینوسی را بر حسب توابع سینوسی و کسینوسی به دست می آوریم . به عنوان مثال :
Sin x dx = Sin x dx = 0
Cos x dx = 2 Cos x dx =0
Sin mx . Cos nx dx = m, n به ازای هر
Sin mx . Sin nx dx =
Cos mx . Cos nx dx =
نکته : حاصلضرب هر عدد طبیعی 2L می شود دوره تناوب آن تابع
2L n(2L)
f(x) = Sinx Sinx = Sin(x + 2 ) = Sin(x + 2n )
به ازای n = 1 دوره به دست آمده را دوره تناوب اصلی یا اساسی می گویند .
Sin mx دوره تناوب :
Sin 2Lx دوره تناوب :
X(- , ) t = ( - L , L)
Sin x Sin x dx
Sin x . Sin x dx =
c هر عدد حقیقی می تواند باشد ولی برای سادگی c را برابر صفر یا -L در نظر می گیریم .
جای تذکر این است که جواب مسئله نصف دوره تناوب است در این جا 2L است, نصف آن L است و در مواردی نیز یعنی در سینوس و کسینوس 2 بوده که نصف آن می باشد .
Cos x . Cos x dx =
Sin x . Cos x dx = 0
= v1 I + v2 j + v3 k = u1 I + u2 j + u3 k
. = Cos . = u1v1 + u2 v2 + u3 v3
. =
اگر بردار v بر بردار u عمود باشد مقدار صفر است یا تعبیر هندسی این که v بر u عمود است یا تصویر v بر بردار u یک نقطه است .
u v . = 0
u . u = 2 =
Sin nx , Cos mx Sin ix . Cos jx (x) = n
1 =
2 =
(x) . (x) dx = 0
این مجموعه توابع متعامد هستند
(x) dx = N نرم تابع
برای به دست آوردن بردار یکه توابع 1 , 2 داریم :
orthonomal مجموعه توابع یکه
به عنوان مثال مجموعه توابع یکه Sin x عبارتند از :
I و j و k را می توان پایه های یک مختصات سه بعدی هستند بردارهای یکه I و j و k مستقل از هم هستند یعنی نمی توان بر حسب همدیگر به دست آورد, به عبارتی یکی را نمی توان بر حسب دیگری محاسبه نمود و به دست آورد .
نسبت مقدار تابع (مقدار ثابت), پس استقلال خطی دارد یعنی نمی توان پایه های مختصات یک دستگاه در نظر گرفت .
f(x) = + (an Cos x + bn Sin x )
رابطه بالا سری فوریه تابع f(x) نامیده می شود .
ضرایب اولیه فوریه :
A0 = f(x) dx = f(x) dx
An = f(x) Cos x dx = f(x) Cos x dx
Bn = f(x) Sin x dx = f(x) Sin x dx
f(x) = + (an Cos x + bn Sin x )
f(x) = + a1 Cos x + a2 Cos x + …… + an Cos x + …… + b1 Sin x
+ b2 Sin x + b3 Sin x + …….. + bn x + ……
از طرفین انتگرال می گیریم .
الف : f(x) dx = dx + a1 Cos x dx + a2 Cos x dx
+ …… + an Cos xdx + ……+ b1 Sin x dx
+ ……. + b2 Sin x dx + ……. + bn Sin x dx
+ …….
f (x) dx = x = = . 2L = La0
a0 = f (x) dx
a0 دو برابر مقدار میانگین تابع f (x) از بازه -L تا L تابع می باشد .
F (x) = f (x) dx
طرفین رابطه را در x Cos ضرب می کنیم :
f(x) Cos x dx = Cos x dx + a1 Cos x Cos x dx
+ a2 Cos x Cos x dx + ……………….
+ an Cos x Cos xdx + ………………….
+ b1 Sin x Cos x dx
+ b2 Sin x Cos x dx + ……………….
+ bn Sin x Cos x dx + ………………..
an . L an f (x) Cos x dx
برای به دست آوردن رابطه شماره 4 طرفین را به x Sin ضرب می کنیم و انتگرال می گیریم .
f (x) Sin x dx = Sin x dx + a1 Cos x Sin x dx
+ a2 Cos x Sin x dx + ……………………
+ an Cos x Sin x dx + ……………………
+ b1 Sin x Sin x dx
+ b2 Sin x Sin x dx + …………………….
+ bn Sin x
f (x) =
دوره تناوب 2L = - (- ) = 2 L =
A0 = - dx + x dx = - = - (0 – (- ) ) +
a0 = -1 +
an = f (x) Cos x dx = -1 . ( Cos x ) dx + x Cos xdx
an = - Cos n x dx + x Cox nx dx
an = - Sin nx
= ( Cos n - 1 ) = =
an = n odd به ازای
bn = -1 Sin nx dx = x Sin nx dx
= Cos nx
= - Cos = +
f (x) =
نکته : بسط توابع زوج شامل جملات کسینوسی است .
Piecewise Continvovs fonction (p . c) تابع پیوسته قطعه ائی
تابع f(x) را در بازه باز یا بسته a و b پیوسته قطعه ائی گوئیم هرگاه بتوان بازه a و b را به زیر بازه های کوچکتری تقسیم یا افراز کرد به قسمی که :
الف : f(x) در هر کدام از زیر بازه ها پیوسته باشد .