فرمت فایل : word(قابل ویرایش)
تعداد صفحات:314
فهرست مطالب:
مقدمه: ۷
فصل اول: ۹
انواع خوردگی ۹
۲-۱- خوردگی گالوانیکی یا دو فلزی: ۱۱
شکل ۲-۱- مقطع یک باطری خشک ۱۲
جدول ۲-۱ نیروی الکتروموتوری استاندارد فلزات ۱۳
۲-۲-۱ اثرات محیط ۱۸
۳-۲-۱- اثر فاصله دو الکترود: ۱۹
۴-۲-۱- اثر سطح ۲۰
شکل ۴-۱ جزئیات تانک فولادی که در یک قسمت آن روکش فولاد زنگ نزن بکار رفته است ۲۳
۳-۱ خوردگی شیاری ۲۵
شکل ۷-۱ خوردگی شیاری یک کویل حرارتی نقره ای ۲۶
شکل ۹-۱ خوردگی شیاری – مراحل اولیه ۳۰
شکل ۱۰-۱ خوردگی شیاری- مراحل بعدی ۳۰
۳-۳-۱ مبارزه باخوردگی شیاری ۳۳
۴-۳-۱ خوردگی فیلامنتی ۳۴
شکل ۱۱-۱ شکل شما تیکی یک فیلامنت خوردگی که در حال پیشروی سطح فولاداست ۳۶
مکانیزم ۳۸
شکل ۱۳-۱ مقطع یک فیلامنت خوردگی روی سطح فولاد ۳۹
شکل ۱۶-۱ حفره دار شدن یک لوله کندانسور از جنس فولاد زنگ نزن ۴۴
شکل ۱۹-۱ فرآیندهای اتوکاتالیتیک در داخل یک حفره ۴۶
شکل ۲۰-۱- مکانیزم رشد لوله خوردگی ۴۹
شکل ۲۱-۱ تأثیر سرعت بر حفره دارشدن فولاد رنگ نزن ۵۲
شکل ۲۳-۱ عمق حفره به عنوان تابعی از سطح نمونه که در معرض محیط خورنده قرار دارد. ۵۵
شکل ۲۴-۱ نمایش شماتیکی مرزدانه ها در فولاد زنگ نزن نوع ۳۰۴ که حساس شده است. ۶۰
شکل ۲۷-۱ خوردگی بین دانه ای در منطقه پوسیدگی جوش ۶۲
۳-۵-۱- کنترل فولادهای زنگ نزن آستینتی ۶۵
شکل ۳۱-۱ شیب کربن قطعات ریختگی از جنس ۳-CF. ۶۹
۴-۵-۱ خوردگی شیار چاقو ۷۱
۶-۱- جدایش انتخابی ۷۵
۱-۶-۱- زدایش روی، ویژگی ها ۷۶
شکل ۳۵-۱ زدایش یکنواخت روی در یک لوله برنجی ۷۷
شکل ۳۶-۱ زدایش روی از نوع موضعی ۷۷
شکل ۳۷-۱ مقطع یکی از نقاط نشان داده شده در شکل ۳۵-۱ ۷۸
۴-۶-۱- گرافیت شدن ۸۱
۵-۶-۱- سیستم های آلیاژی دیگر ۸۳
۱-۷-۱- پوسته های سطحی ۸۷
شکل ۴۴-۱ خوردگی سایش فولاد زنگ نزن ۳۴۷ بوسیله اسیدنیتریک دودکننده سفید درF°۱۰۸ ۹۵
۳-۷-۱- تلاطم یا توروبولانس ۹۵
شکل ۴۵-۱ خوردگی زانو در خط کاندانس بخار ۹۷
۵-۷-۱- اثرات گالوانیک ۹۸
شکل ۴۸-۱ اثر تماس با سرب در خوردگی سایشی آلیاژ ۱۰۰
۸-۷-۱- خسارت حبابی: ۱۰۶
شکل ۴۹-۱ نمایش شماتیکی مراحل خوردگی حبابی ۱۰۹
شکل ۵۰-۱ مثالی از محلهائی که خوردگی فرسایشی اتفاق می افتد. ۱۱۱
شکل ۵۱-۱ تئوری اکسیداسیون- سایش بطور شماتیکی ۱۱۳
جدول ۱۱-۱ مقاومت مواد مختلف از نظر خوردگی فرسایشی ۱۱۴
شکل ۵۳-۱ مقطع ترکهای scc در فولاد زنگ نزن (×۵۰۰) ۱۱۷
شکل ۵۷-۱ scc بین دانه ای برنج ۱۲۲
شکل ۶۱-۱ سرعت پیشروی ترک نسبت به عمق ترک تحت بارکششی ۱۲۵
جدول ۱۲-۱ محیطهایی که ممکن است باعث scc فلزات و آلیاژها گردند ۱۲۹
شکل ۶۶-۱ scc اتوکلاو از جنس فولاد زنگ نزن۳۰۴ ۱۳۱
شکل ۶۷-۱ scc خارجی فولاد زنگ نزن۳۰۴ ۱۳۲
شکل ۶۹-۱ scc سیمهائی از جنس آهن- نیکل- کرم در محلول ۴۲% کلرورمنیزیم جوشان ۱۳۴
۶-۸-۱- مکانیزم ۱۳۶
شکل ۷۲-۱ دیاگرام شماتیکی نشان دهنده محدودههای پتانسیل ۱۴۳
جدول ۱۶-۱ ۱۴۶
جدول ۱۹-۱ ترک خوردن در اثر خوردگی توام با تنش در محیطهای مختلف- سیستمهای آلیاژی ۱۴۷
ادامه جدول ۱۹-۱ ۱۴۸
۳-۸-۸-۱ مکانیزهای هیدروژن ۱۵۲
۹-۸-۱ روشهای جلوگیری ۱۵۳
شکل ۷۳-۱ نمایش شماتیکی شکستهای ناشی از خستگی و خوردگی- خستگی ۱۵۶
۲-۱۱-۸-۱ فاکتورهای محیطی ۱۶۳
شکل ۷۶-۱نمایش شماتیکی مکانیزم تاول زدن در اثر هیدروژن ۱۶۴
شکل ۷۸-۱ منحنی های خستگی استاتیکی در غلظتهای مختلف هیدروژن که با پختن فولاد ۴۳۴۰ در ۳۰۰ درجه فارنهایت در زمانهای مختلف حاصل شده است. ۱۶۷
۱-۹-۱- انتخاب مواد ۱۷۳
خالص کردن فلز ۱۷۶
مواد حذف کننده عوامل مضر: ۱۸۲
جدول ۲۰-۱ لیست مراجع ممانعت کننده های خوردگی ۱۸۵
۲-۹-۱- طراحی ۱۹۱
شکل ۸۰-۱ حفاظت کاتدی یک تانک زیرزمینی با استفاده از روش اعمال جریان خارجی ۱۹۸
شکل ۸۲-۱ حفاظت یک لوله زیرزمینی با یک آند منیزیمی ۱۹۹
شکل ۸۳-۱ الکترود مقایسه مس- سولفات مس ۲۰۱
شکل ۸۴-۱ اندازه گیری پتانسیل لوله زمینی بوسیله الکترود مرجع ۲۰۱
شکل ۸۵-۱ جریان های سرگردان ناشی از حفاظت کاتدی ۲۰۴
شکل ۸۶-۱ جلوگیری از خوردگی ناشی از جریانهای سرگردان با طراحی صحیح ۲۰۵
مقایسه حفاظت آندی و کاتدی ۲۰۸
جدول ۲۵-۱ مقایسه حفاظت آندی و کاتدی ۲۰۹
آبکاری الکتریکی: ۲۱۲
پاشیدن مشعلی: ۲۱۳
ایجاد تغییرات در سطح فلز: ۲۱۸
لایه رویی: ۲۲۲
تجهیزات تازه ونو: ۲۲۷
تعمیر ونگهداری : ۲۲۷
جدول۲۸-۱ تخمین هزینه های آماده سازی سطح و کاربرد پوشش ها برای حالات مختلف ۲۲۹
استانداردهای کنترل خوردگی ۲۲۹
ج- پوشش میانی ۲۳۰
فصل دوم ۲۳۳
آلیاژهای مورداستفاده درلوله های انتقال نفت وگازAPT-5L ۲۳۳
۴-۲ خواص مکانیکی : ۲۳۶
تست مجدد: ۲۳۹
فصل سوم ۲۴۲
خوردگیهای خطوط انتقال نفت و گاز ۲۴۲
آب نمکدار: ۲۴۳
۲-۳ خوردگی از خارج: ۲۴۸
۴-۲-۳ فولاد لوله قدیمی و جدید: ۲۵۰
جدول۱-۳ خواص فیزیولوژیکی جانوران میکروسکوپی ۲۵۶
موجودات ماکروسکوپی ۲۵۷
شکل ۱-۳ جریان های سرگردان ناشی از حفاظت کاتدی ۲۶۳
شکل ۲-۳ جلوگیری از خوردگی ناشی از جریان های سرگردان با طراحی صحیح ۲۶۴
مقاومت در برابر دیس باندینگ: ۲۶۸
انواع پوشش ها: ۲۶۹
پوشش های اپوکسی پیوند خورده با ذوب: ۲۷۲
مدارهای الکتریکی اصلی همسایه: ۲۸۱
تکنیکهای ساخت: ۲۸۳
کابل های لوله ای سیستم الکتریکی: ۲۸۹
سلول های پلاریزاسیون: ۲۹۰
فصل چهارم ۲۹۲
بررسی علل شکست خط لوله انتقال نفت خام ۲۹۲
شمایی از قسمت سالم لوله ۱۶ اینچ (۱) ۲۹۵
شمایی از سطح شکست در منشأ شروع ترک (۴) ۲۹۶
جدول شماره ۱-۴ نتایج آنالیز شیمیایی آلیاژ لوله در مقایسه با استاندارد. ۳۰۰
* نتایج آنالیز ترکیبات داخل لوله: ۳۰۰
جدول شماره ۲-۴ نتایج آزمایش کشش لوله ۳۰۲
بحث و نتیجه گیری: ۳۰۴
نتیجه گیری: ۳۱۲
توصیه ها برای جلوگیری: ۳۱۳
منابع و مراجع: ۳۱۴
چکیده :
نیاز بررسی و تحقیق در زمینه خوردگی در خطوط لوله حمل نفت خام ما را بر این داشت تا به بررسی کوتاه در این زمینه بپردازیم ابتدا با مقدمه ای مختصر در مورد خطوط لوله و نقش آنها در چرخه تأمین سوخت مورد نیاز .و حمل و نقل نفت و گاز و حجم عملیات انجام گرفته و توجیه اقتصادی بررسی های خوردگی و تحقیقات انجام گرفته در این زمینه پرداختیم و سپس انواع خوردگی را مورد بررسی قرار دادیم در یک فصل مجزا به بررسی انواع خوردگی در خطوط لوله پرداختیم.
در ادامه با بررسی انواع جنس های مورد استفاده در ساخت لوله های انتقال نفت خام و ترجمه قسمتی از استانداردها در این زمینه این پخش را تکمیل نمودیم. در پایان مورد عملی را که در طی پروژه انجام داده شده بود. و یک مورد انهدام لوله نفت خام بود را آوردیم که مثال خوبی از یک مورد تحقیقی بود و روش و فرایند این نوع تحقیقات را بیان می کرد و تجربیات و اطلاعات خوبی در زمینه این نوع پروژه ها را در بر دارد و می توان در موارد مشابه از این تجربیات استفاده کرد.
این مورد یک حالت از خوردگی میکروبی را نشان داد و ما با انجام مطالعات در این زمینه روش های را برای پیشگیری ارائه نمودیم.
مقدمه:
خوردگی را تخریب یا فاسد شدن یک ماده در اثر واکنش با محیطی که در آن قرار دارد تعریف می کنند.
خطوط لوله در سراسر جهان به عنوان حمل کننده های گازها و مایعات در ساخت های طولانی از منبع تا محل مصرف نهایی نقش بسیار مهمی را بازی می کنند.
به طور عمومی اطلاعات در مورد شما و خطوط لوله که به طور پیوسته در سرویس هستند. به عنوان بخش عمده ای از سیستم حمل و نقل بدین صورت است:
خطوط لوله در سرویس مدفون زیر خاک به دور از دید هستند به استثناء شهرها، ایستگاه های پمپاژ یا فشار و ترمینال ها.
در حال حاضر حدود Km 460000 خطوط لوله حمل معمولی در حدود ۴۶% تمام نفت خام و محصولات پالایش را حمل و نقل می کنند در ایالت متحده در ۱۹۸۴ بیش از Km 6 10 × ۱۰۶ خطوط لوله گاز طبیعی در سرویس وجود داشت. حدود ۲۵% کل سوریس های بین ایالتی در حدود Km 280000 بودند که حمل می کردند مایعات را.
سوریس های بین ایالتی در ایالاتی متحده گسترش پیدا کرد برای ایجاد مایل های بیشتری از خطوط لوله در ۱۹۸۶ و Km 9800 از خطوط گاز طبیعی ساخته شده و Km 5740 برای خط لوله نفت خام و Km 2660 از خط لوله برای محصولات پالایش نیز ساخته شد.
با این شبکه پهناور بدون تغییر خط لوله به کار رفته برای استفاده در حمل منابع طبیعی و محصولات نهایی به مکان هایی که آنها مورد استفاده قرار می گیرند. آشکار می گردد که نگهداری آنها در سرویس بوسیله جلوگیری از خوردگی تکنیکی است و بطور اقتصادی با فایده می باشد.
کنترل خوردگی خطوط لوله در سراسر جهان انجام می شود به دلایل زیاد به وسیله استفاده از حفاظت کاتدی همراه با یک پوشش دی الکتریک مناسب. سیستم حفاظت کاتدی با استفاده از جریان محافظ در سطح بیرونی لوله محلی که در معرض خاک مجاور در ناپیوستگی های سیستم پوشش قرار دارد از لوله محافظت می کند. سیستم پوشش به کار می رود برای کاهش مقدار مجموعه زیاد جریان محافظ مورد نیاز در طول عمر عملیاتی لوله.
مبحث کنترل خوردگی در فاز طراحی خط لوله باید شروع شود و ادامه یابد همراه با راه اندازی و تمام عمر اقتصادی لوله.
این نوشته به طور خلاصه انواع خوردگی ها و روش های جلوگیری را به طور عمومی ابتدا بررسی می کند و سپس به طور اختصاصی خوردگی خط لوله حمل نفت و گاز را بررسی و در نهایت یک مورد عملی از پروژه های خوردگی لوله های نفت خام مورد بررسی قرار خواهد گرفت.
فصل اول:
انواع خوردگی
۱-۱- خوردگی یکنواخت:
معمول ترین متداول ترین نوع خوردگی است. معمولاً بوسیله یک واکنش شیمیایی یا الکترو شیمیایی به طور یکنواخت در سرتاسر سطحی که در تماس با محلول خورنده قرار دارد، مشخص می شود. فلز نازک و نازکتر شده و نهایتاً از بین می رود یا تجهیزات مورد نظر منهدم می شوند. مثلاً یک قطعه فولاد یا روی در داخل یک محلول رقیق اسید سولفوریک معمولاً با سرعت یکسانی در تمام نقاط قطعه خورده خواهد شد.
خوردگی یکنواخت یا سرتاسری ، از نظر نتاژ مقدار فلز خورده شده بالاترین رقم را دارد، لکن این نوع خوردگی از نقطه نظر فنی اهمیت چندانی ندارد، زیرا عمر تجهیزاتی که تحت این نوع خنوردگی قرار می گیرد را دقیقاًمی توان با آزمایشات ساده ای تخمین زد. برای این منظور، تنها قرار دادن نمونه های آزمایش در داخل محلول مورد نظر غالباً کافی است. خوردگی یکنواخت را بطرق زیر میتوان متوقف نمود یا کم کرد:
(۱) انتخاب مواد پوشش صحیح، (۲) بوسیله ممانعت کننده، و یا (۳) با استفاده از حفاظت کاتدی. روش های مبارزه با این نوع خوردگی را که می توان بتنهایی با یکدیگر بکار برد.
۲-۱- خوردگی گالوانیکی یا دو فلزی:
موقعی که دو فلز غیر همجنس که در تماس الکتریکی با یکدیگر هستد، در معرض یک محلول خورنده یا هادی قرار بگیرند، اختلاف پتانسیل بین ان دو باعث برقراری جریان الکترون بین انها می شود.
نسبت به موقعی که این دو فلز در تماس الکتریکی با یکدیگر نباشند، خوردگی فلزی که مقاومت خوردگی کمتری دارد، افزایش یافته و بر عکس، خوردگی فلز مقاومتر، تقلیل می یابد. فلزی که مقاومت خوردگی کمتری دارد اندی شده و فلز مقاومتر (از نظر خوردگی) کاتدی می شود. معمولاً کاتد یا فلز کاتد در این نوع خوردگی یا اصلاً خورده نمی شود و یا اگر خورده شود، مقدار خوردگی آن خیلی کم خواهد بود. بعلت وجود جریان های الکتریکی بین فلزات غیر هم جنس این نوع خوردگی، خوردگی گالوانیکی نامیده می شود. این دو نوع خوردگی، خوردگی الکتروشیمیایی بوده، لکن برای سهولت تشخیص، اصطلاح گالوانیکی یا دو فلزی را در این مورد بکار می بریم.
نیروی محرکه برای برقراری جریان و در نتیجه خوردگی، پتانسیلی است که بین این دو فلز وجود دارد. باطری خشک که بطور شماتیکی در شکل ۲-۱ نشان داده شده است مثلاً خوبی در این مورد است. الکترود کربنی بعنوان یک فلز مقاوم خوردگی – کاتد- عمل نموده و جداره آن که از فلز روی ساخته شده بعنوان آند عمل می کند و خورده می شود. خمیر بین الکترودها هادی الکتریسیته است (و خورنده) و جریان الکتریکی را در داخل باطری هدایت می کند. از منیزیم نیز می توان بعنوان فلز آند یا جداره باطری استفاده نمود.
شکل ۲-۱- مقطع یک باطری خشک
۱-۲-۱- نیروی الکتروموتوری (EME) و سری گالوانیکی
بطور خلاص، پتانسیل بین فلز در تماس با محلول حاوی تقریباً یک اتم گرم یون فلز مربوطه (اکتیویته واحد)، در یک درجه حرارت قابت بدقت اندازه گیری می شود. جدول ۱-۱ که غالباً جدول نیرو الکتروموتوری یا جدول emf نامیده می شود، طرز قرار گرفتن فلزات مختلف را نسبت به یکدیگر نشان می دهد. برای سادگی کلیه پتانسیل ها را نسبت به یک الکترود مرجع (H2/H+) که بطور دلخواه صفر فرض شده می سنجند. پتانسیل بین فلزات مختلف را با گرفتن پتانسیل بین الکترودهای رورسیبل مس و نقره ۴۶۲% ولت است. اختلاف بین مس و روی ۱/۱ ولت است. برای آلیاژهایی که از دو یا چند جزء فعالی تشکیل شده اند، بدست آوردن پتانسیل رورسیبل عملی نیست، لذا در جدول ۲-۱ فقط فلزات خالص وجود دارند.
در مسائل عملی خوردگی، تماس گالوانیکی بین فلزات در حال تعادل با یون های خود بندرت اتفاق می افتد. همانطور که در بالا ملاحظه شد قسمت اعظم اثرات خوردگی گالوانیکی در اثر ارتباط الکتریکی با یکدیگر نیز در حال خورده شدن هستند. همچنین چون اکثر مواد مهندسی را آلیاژها تشکیل می دهند، بنابراین اتصال گالوانیکی معمولاً مشتمل بر یک (یا دو) آلیاژ فلزی می باشد. این شرایط جدول گالوانیکی، جدول ۲-۱ پیش بینی دقیق تری از روابط گالوانیکی می کند تا جدول emf، جدول ۲-۱ بر اساس اندازه گیری های پتانسیل و آزمایشات خوردگی گالوانیکی در آب دریای آلوده نشده می باشد که بوسیله شرکت بین المللی نیکل انجام شده است. بخاطر اختلاف بین آزمایشات مختلف، تنها موقعیت نسبی فلزات در این جدول مشخص شده است نه پتانسیل آنها. در حالت ایده آل، جداول مشابهی برای فلزات و آلیاژها در تمام محیط ها در درجه حرارت های مختلف مورد نیاز خواهد بود، لکن در این صورت تقریباً بی نهایت آزمایش بایستی انجام شود.
بطور کلی موقعیت فلزات و آلیاژها در جدول گالوانیکی به نحو مناسبی با موقعیت فلزات تشکیل دهنده
جدول ۲-۱ نیروی الکتروموتوری استاندارد فلزات
آنها در جدول emf تطابق دارد. غیر فعال شدن (روئین شدن) بر رفتار خوردگی گالوانیکی اثر می گذارد. توجه کنید در جدول ۲-۱ فولاد زنگ نزن در حالت غیر فعال در موقعیت نجیب تری قرار دارد مسبت به موقعی که این آلیاژها در حالت فعال قرار دارند. رفتار مشابهی بوسیله اینکونل که یک نیکل زنگ نزن است مشاهده می شود.
یک ویژگی جالب توجه دیگر جداول گالوانیکی کروشه هایی است که در جدول ۲-۱ نشان داده شده است. آلیاژهایی که در این کروشه ها جمع شده اند، تا اندازه ای از نظر ترکیب مشابه هستند، مثلاً، مس و آلیاژهای مس. کروشه ها نشان می دهند که در اثر کاربردهای عملی خطر کمی برای خوردگی گالوانیکی زوج های فلزات و آلیاژهایی که در یک کروشه خاص قرار دارند، وجود دارد. این بخاطر نزدیکی اینها بهم دیگر در جدول می باشد، و در نتیجه پتانسیل بوجود آمده بین آنها چندان قابل توجه نحواهد بود. در این جدول نیز هر چه دو فلز از یکدیگر دورتر باشند، اختلاف پتانسیل بین آنها بیشتر خواهد بود.
جدول ۲-۱ جدول گالوانیکی بعضی فلزات و آلیاژها در آب دریا
در صورت عدم وجود نتایج آزمایشات در یک محیط خاص، سری گالوانیکی راهنمای خوبی برای اثرات احتمالی گالوانیکی می باشد. به عنوان مثال جند مورد انهدام را با استفاده از جدول ۲-۱ بررسی می کنیم. یک بدنه قایق از جنس مونل یا میخ پرچ های فولادی در اثر خوردگی سریع میخ پرچ های فولادی سوراخ شد. لوله های آلومینیوم متصل به لوله های برگشتی برنجی بشدت خورده شدند. تانک های آب گرم منازل از حنس فولاد در محل اتصال لوله های مسی به تانک سوراخ می شوند. شفت پمپ ها یا تیغه های والواها از جنس فولاد یا موارد مقاومتر خوردگی، در اثر تماس با گرافیت خورده شدند.
خوردگی گالوانیکی گاهی اوقات در محل های غیر منتظره ای اتفاق می افتد. مثلا در یک مورد، خوردگی در لبه های جلوی مدخل ورودی محفظه موتورهای جت اتفاق افتاد. خوردگی در اثر پارچه ای که روی مدخل ورودی موتور قرار داشت، اتفاق افتاده بود. برای جلوگیری از رویش قارچ و جلبک روی این پارچه، آنرا با نمک های مس آمیخته کرده بودند. آمیختن پارچه با نمک های مس برای جلوگیری از رویش قارچ جلبک، ضد آتش کردن و دلایل دیگر خیلی متداول است. نمک مس باعث آب شدن مس روی فولاد آلیاژی شده و در نتیجه فولاد بطور گالوانیکی خورده شده بود. این مسئله با استفاده از یک نایلون یا پوشش وینیلی که حاوی هیچگونه فلزی نباشد، حل شد.
این مثال ها بر این واقعیت تاکید می کنند که مهندس طراح بایستی مخصوصاً از اثرات خوردگی گالوانیکی آگاه باشد. گاهی اوقات کاربرد فلزات همجنس در تماس با یکدیگر اقتصادی است. مثلاً دیگ بخار (بویلر) با لوله های مسی و صفحه لوله چدنی یا فولادی در تماس است. در صورت وقوع خوردگی گالوانیکی، صفحه لوله ها که ضخیم و حجیم است خورده خواهد شد (در مقایسه با لوله های نازک مسی)، و بخاطر ضخامت زیاد صفحه لوله ها، عمر آنها زیاد خواهد بود. در عین حال بجای صفحه لوله های برنزی گران قیمت از صفحات چدنی با فولادی که ارزانتر هستند، استفاده شده است. در شرایطی که از نظر خوردگی شدیدتر است، مثلاض در محلول های رقیق اسیدی یا در مواردی که کمترین سرعت خوردگی باعث آلودگی و در نتیجه خساراتی به سیستم خواهد بود، ممکن است صفحه لوله ها را از جنس برنز انتخاب کنند.
پتانسیل تولید شده بوسیله یک پیل گالوانیکی که از دو فلز غیر همجنس ساخته شده است. با زمان تغییر می کند. اختلاف پتانسیل باعث جریان شده و خوردگی در الکترود اندی اتفاق می افتد. با پیشرفت خوردگی، محصولات حاصل از خوردگی یا واکنش های دیگر ممکن است روی سطح آند یا کاتد یا هر دو مجتمع نمایند و بدین ترتیب سرعت خوردگی تقلیل یابد.
درخوردگی گالوانیکی، معمولاً پولاریزاسیون واکنش احیا (پولازریزاسیون کاتدی) کنترل کننده است. چون درجه پولاریزاسیون و موثر بودن آن بستگی به فلز و آلیاژ دارد، لذا قبل از آنکه بتوان میزان خوردگی گالوانیکی را برای یک کوپل پیش بینی نمود، لازم است اطلاعاتی درباره ویژگی پولاریزاسیون آنها بدست آورد. مثلاً تیتانیم در آب دریا خیلی نجیب میباشد (مقاومت علی نشان می دهد) معهذا خوردگی گالوانیکی یک فلز فعالتر از مقداریست که پیش بینی می شود. دلیل آن این است که تیتانیوم بسهولت در آب دریا بصورت کاتدی پولاریزه می شود.
بطور خلاصه جدول سری گالوانیکی ویژگی های خوردگی گالوانیکی را دقیق تر از جدول emf نشان می دهد. لکن همانطور که بعداً بحث خواهد شد بایستی توجه داشت که در مورد سری گالوانیکی نیز استثنایی وجود دارد، لذا هر جا که مسکن باشد بایستی آزمایشات خوردگی در شرایط مورد نظر انجام شود.
۲-۲-۱ اثرات محیط
ماهیت وخورندگی محیط به میزان زیادی بر شدت خوردگی گالوانیکی تاثیر می گذارد. معمولا فلزی که مقاومت کمتری نسبت به محیط مورد نظر دارد، آند می شود.
بعضی وقت ها پتانسیلیک زوج گالوانیکی در یک محیط دیگر عکس می شود. جدول ۳-۱ رفتار عمومی فولاد بر روی را در محیط های آبی نشان می دهد. معمولاً هم فولاد و هم روی هر کدام به تنهایی خورده می شوند، لکن موقعی که آنها را به هم متصل می کنیم روی خورده شده و فولاد حفاظت می شود. در موارد خاصی مثل دیگ های آب گرم خانگی در درجه حرارت های بالاتر از f 180 حالت فوق بر عکس شده و فولاد آندی می شود. ظارهراً در این حالت محصولات خوردگی روی باعث نجیب تر شدن این فلز نسبت به فولاد می شوند. Haney نشان داد که در حضور یون های ممانعت کننده نظیر نیترات ها، بی کربنات ها و یا کربنات ها در آب، روی به مقدار کمی نجیب تر می گردد و پتانسیل ها بر عکس خواهد شد.
جدول ۳-۱ تغییر وزن فولاد ورودی به تنهایی و در تماس با یکدیگر (گرم)
تانتال از نظر مقاومت در برابر خوردگی فلزی بسیار مقاوم است و نسبت به پلاتین و کربن آند است. لیکن پیل حاصل تنها در درجه حرارت های بالا فعال است. مثلاً در زوج تانتال – پلاتین جریان تا C110 بر قرار نمی شود و C 256 جریان حدود ma/tt 100 وجود دارد. تانتال نسبت به چدن پر سیلیسیم در اسید سولفوریک غلیظ کاتد است، لیکن جریان بین آند و به سرعت به صفر می رشد. در بالاتر از C145 قطبین پین عکس می شود تانتال را نبایستی در تماس با فلزات آندی قرار داد زیرا هیدروژن کاتدی را جذب نموده و ترد می شود.
خوردگی گالوانیکی در اتمسفر نیز واقع می شود. شدت آن بستگی به نوع و مقدار رطوبت موجود در اتمسفر دارد. مثلاً خوردگی نزدیک سواحل دریا بیشتر از اتمسفر خشک می باشد. کندانس بخار در نزدیک ساحل دریا حاوی نمک است و لذا هادیتر و خورنده تر است و در رطوبت و درجه حرارت یکسان نسبت به کندانس در یک ناحیه دور از دریا الکترولیت بهتری است. آزمایشات اتمسفری در نقاط مختلف نشان داده اند که روی (zn) در تمام موارد نسبت به فولاد آند است آلومینیم وظعیت مختلف و متغییری داشته و قلع و نیکل همواره کاتد بوده اند. موقعی که فلزات کاملاً خشک باشند خوردگی گالوانیکی اتفاق نخواهد افتاد، زیرا الکترولیتی برای حمل جریان بین سطوح الکترودها وجود دارد.
۳-۲-۱- اثر فاصله دو الکترود:
خوردگی گالوانیکی معمولاً نزدیک محل اتصال دو فلز شدید تر است و با دور شدن از این نقطه خوردگی نیز کم می شود. فاصله ای که تحت تأثیر خوردگی قرار می گیرد بستگی به مقاومت محصول دارد. با در نظر گرفتن مسیر جریان و مقاومت مدار این مسأله واضح است، در آبی با مقاومت بالا و یا کاملاً خوردگی ممکن است به صورت یک شیار باریک ظاهر گردد. خوردگی گالوانیکی از موضعی بوده آن در نزدیکی محل اتصال دو فلز به سهولت تشخیص است.
۴-۲-۱- اثر سطح
یک فاکتور مهم دیگر در خوردگی گالوانیکی اثر سطح، یا نسبت سطح کاتد به سطح آند می باشد. نسبت سطحی نا مناسب مشتمل بر کاتد بزرگ و آند کوچک است. برای یک مقدار معین جریان در پیل، دانسیته جریان برای الکترود کوچک به مراتب بزرگتر از تا دانسیته جریان برای الکترود بزرگتر، هر چه دانسیته جریان در یک منطقه آندی بزرگتر باشد، سرعت خوردگی بیشتر است خوردگی نواحی آندی ممکن است ۱۰۰ تا ۱۰۰۰ برابر بیشتر از حالتی باشد که سطح آند با کاتد برابرند. شکل ۳-۱ دو مثال خوب از اثر سطح را نشان می دهد. نمونه ها، صفحات پرچ شده مسی و فولادی هستند که هر دو در یک زمان به مدت ۱۵ ماه در آب دریا قرار گرفته اند. در سمت چپ صفحات فولادی با میخ پرچ های مسی، و در طرف راست صفحات مسی با میخ پرچ های فولادی قرار دارند. مس نسبت به فولاد در آب دریا، فلز نجیب تر یا مقاوم تر در برابر خوردگی است. صفحات فولادی در سمت چپ قدری خورنده شده اند، لیکن اتصال حاصل از میخ پرچ ها هنوز قوی است. نمونه سمت راست دارای نسبت سطحی نا مناسبی است میخ پرچ های فولادی که در تماس با سطح بزرگ کاتدی قرار دارد خیلی بیشتر است.