یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER 2005

اختصاصی از یارا فایل پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER 2005 دانلود با لینک مستقیم و پرسرعت .

پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER 2005


پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER 2005

 مطالب این پست : پایان نامه بررسی ومطالعه ی کامل داده کاوی و داده کاوی با  SQL SERVER2005

پیاده سازی آن روی بانک اطلاعاتی

   با فرمت ورد  word  ( دانلود متن کامل پایان نامه  )

 

 

 

چکیده

بررسی ومطالعه ی کامل داده کاوی و داده کاوی با SQL SERVER2005

پیاده سازی آن روی بانک اطلاعاتی دانشگاه آزاد قوچان

 

   امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد.

   داده کاوی یکی از مهمترین روش ها ی کشف دانش است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند.داده کاوی را تحلیل گران با اهداف گوناگونی از قبیل کلاس بندی, پیش بینی, خوشه بندی ,تخمین انجام می دهند. برای کلاس بندی, مدل هاو الگوریتم هایی مانند قاعده ی بیز, درخت تصمیم, شبکه ی عصبی, الگوریتم ژنتیک مطرح شده است.برای پیش بینی مدل رگرسیون خطی ومنطقی و برای خوشه بندی الگوریتم های سلسله مراتبی و تفکیکی, وبرای تخمین مدل های درخت تصمیم و شبکه ی عصبی مطرح می شود. در فصل دوم و سوم با الگوریتم ژنتیک که یکی از الگوریتم های داده کاوی و با شبکه ی عصبی که یکی از مدل های داده کاوی هستند آشنا می شویم .درفصل چهارم به محاسبات نرم و برخی از اجزای اصلی ان و نقش آنها در داده کاوی می پردازیم.

   در فصل پنجم با ابزارهای داده کاوی آشنا می شویم . برای داده کاوی ابزارهای متنوعی وجود دارد. می توان ابزارداده کاوی را با تطبیق آن ابزار با داده های مسئله و با توجه به محیط داده ای که می خواهید از آن استفاده کنید، و امکاناتی که آن ابزار دارد انتخاب کنید.وسپس به داده کاوی با SQLSERVER2005 می پردازیم .ودرفصل ششم به داده کاوی با SQL SERVER2005 روی بانک اطلاعاتی دانشگاه آزاد قوچان پرداختیم.

کلمات کلیدی ،کلاس بندی ، خوشه بندی ، پیش بینی ، تخمین

 

1-1مقدمه

   امروزه با گسترش سیستم های پایگاهی و حجم بالای داده ها ی ذخیره شده در این سیستم ها ، نیاز به ابزاری است تا بتوان داده های ذخیره شده را پردازش کرد و اطلاعات حاصل از این پردازش را در اختیار کاربران قرار داد .با استفاده از ابزارهای گوناگون گزارش گیری معمولی ، می توان اطلاعاتی را در اختیار کاربران قرار داد تا بتوانند به نتیجه گیری در مورد داده ها و روابط منطقی میان آنها بپردازند اما وقتی که حجم داده ها خیلی بالا باشد ، کاربران هر چند زبر دست و با تجربه باشند نمی توانند الگوهای مفید را در میان حجم انبوه داده ها تشخیص دهند و یا اگر قادر به این کار هم با شوند ، هزینه عملیات از نظر نیروی انسانی و مادی بسیار بالا است .از سوی دیگر کاربران معمولا فرضیه ای را مطرح می کنند و سپس بر اساس گزارشات مشاهده شده به اثبات یا رد فرضیه می پردازند ، در حالی که امروزه نیاز به روشهایی است که اصطلاحا به کشف دانش[2] بپردازند یعنی با کمترین دخالت کاربر و به صورت خودکار الگوها و رابطه های منطقی را بیان نمایند .

   داده کاوی[3] یکی از مهمترین این روش ها است که به وسیله آن الگوهای مفید در داده ها با حداقل دخالت کاربران شناخته می شوند و اطلاعاتی را در اختیار کاربران و تحلیل گران قرار می دهند تا براساس آنها تصمیمات مهم و حیاتی در سازمانها اتخاذ شوند .

 

 

 

1-2-عامل مسبب پیدایش داده کاوی

   اصلی ترین دلیلی که باعث شده داده کاوی کانون توجهات در صنعت اطلاعات قرار بگیرد، مساله در دسترس بودن حجم وسیعی از داده ها و نیاز شدید به اینکه از این داده ها, اطلاعات و دانش سودمند استخراج کنیم. اطلاعات و دانش بدست آمده در کاربردهای وسیعی مورد استفاده قرار می گیرد.

   داده کاوی را می توان حاصل سیر تکاملی طبیعی تکنولوژی اطلاعات دانست، که این سیر تکاملی ناشی از یک سیر تکاملی در صنعت پایگاه داده می باشد، نظیر عملیات جمع آوری داده ها وایجاد پایگاه داده، مدیریت داده و تحلیل و فهم داده ها.

   تکامل تکنولوژی پایگاه داده و استفاده فراوان آن در کاربردهای مختلف سبب جمع آوری حجم فراوانی داده شده است. این داده های فراوان باعث ایجاد نیاز برای ابزارهای قدرتمند برای تحلیل داده ها گشته، زیرا در حال حاضر به لحاظ داده ثروتمند هستیم ولی دچار کمبود اطلاعات می باشیم.

   ابزارهای داده کاوی داده ها را آنالیز می کنند و الگوهای داده ها را کشف می کنند که می توان از آن در کاربردهایی نظیر تعیین استراتژی برای کسب و کار، پایگاه دانش[4] و تحقیقات علمی و پزشکی، استفاده کرد. شکاف موجود بین داده ها و اطلاعات سبب ایجاد نیاز برای ابزارهای داده کاوی شده است تا داده های بی ارزش را به دانشی ارزشمند تبدیل کنیم .

 

 

 

1

-3-داده کاوی و مفهوم اکتشاف دانش    (K.D.D)

   با حجم عظیم داده های ذخیره شده در فایلها، بانکهای اطلاعاتی و سایر بانک های داده ای، توسعه ی ابزارهایی برای تحلیل و شاید تفسیر چنین داده هایی و برای استخراج علوم شگفت انگیزی که می توانند در تصمیم گیری مفید باشند، امری بسیار مهم و ضروری است. داده کاوی با عنوان کشف دانش در پایگاه های داده (KDD) شناخته می‌شود. کشف علومی که قبلا ناشناخته بوده‌اند و اطلاعاتی که در بانکهای اطلاعاتی موجود بوده و ذاتا بالقوه و مفید هستند.

   با وجود آنکه داده کاوی و کشف دانش در پایگاه‌های داده مترادف همدیگر هستند، ولی در اصل، داده کاوی ذاتاً بخشی و تنها قسمتی جزئی از فرآیند کشف دانش است. فرآیند کشف دانش در بر گیرنده ی چندین مرحله می باشد که از اطلاعات خام، گونه هایی از علوم جدید را بدست می دهد. مراحل کشف دانش به قرار زیر است:

1- پاکسازی داده ها : در این فاز داده های اضافی و نامربوط از مجموعه داده ها حذف می شوند.(داده های ناکامل) [2]

2-یکپارچه سازی داده ها[5] : چندین منبع داده ترکیب می شوند،

   3-انتخاب داده ها : انبار داده ها شامل انواع مختلف و گوناگونی از داده ها است که همه آنها در داده کاوی مورد نیاز نیستند . برای فرایند داده کاوی باید داده ها ی مورد نیاز انتخاب شوند . به عنوان مثال در یک پایگاه داده های مربوط به سیستم فروشگاهی ، اطلاعاتی در مورد خرید مشتریان ، خصوصیات آماری آنها ، تامین کنندگان ، خرید ، حسابداری و … وجود دارند . برای تعیین نحوه چیدن قفسه ها تنها به داده ها یی در مورد خرید مشتریان و خصوصیات آماری آنها نیاز است . حتی در مواردی نیاز به کاوش در تمام محتویات پایگاه نیست بلکه ممکن است به منظور کاهش هزینه عملیات ، نمونه هایی از عناصر انتخاب و کاوش شوند .

   4-تبدیل داده ها : هنگامی که داده های مورد نیاز انتخاب شدند و داده های مورد کاوش مشخص گردیدند، معمولا به تبدیلات خاصی روی داده ها نیاز است. نوع تبدیل به عملیات و تکنیک داده کاوی مورد استفاده بستگی دارد، تبدیلاتی ساده همچون تبدیل نوع داده ای به نوع دیگر تا تبدیلات پیچیده تر همچون تعریف صفات جدید با انجام عملیاتهای ریاضی و منطقی روی صفات موجود.

5-داده کاوی : بخش اصلی فرایند ، که در آن با استفاده از روش ها و تکنیک های خاص ، استخراج الگو های مفید ، دانش استخراج می شود.

6-زیابی الگو[6] : مشخص کردن الگوهای صحیح و مورد نظر به وسیله معیارهای اندازه گیری.

7-زنمایی دانش : در این بخش به منظور ارائه دانش استخراج شده به کاربر ، از یک سری ابزارهای بصری سازی استفاده می گردد.

[1] Data Mining

[2] Knowledge Discovery

[3] Data Mining

 

[5] Data integration

 

[6] Pattern evaluation

 

متن کامل را می توانید دانلود کنید چون فقط تکه هایی از متن این پایان نامه در این صفحه درج شده است (به طور نمونه)

ولی در فایل دانلودی متن کامل پایان نامه

همراه با تمام ضمائم با فرمت ورد word که قابل ویرایش و کپی کردن می باشند

موجود است


دانلود با لینک مستقیم

نظرات 0 + ارسال نظر
امکان ثبت نظر جدید برای این مطلب وجود ندارد.