ویژگیهای تحلیلی نگاشت
عددهای موهومی پرواز شگفت انگیز روح خدایند.این اعداد هویت دو گانه ای بین بودن ونبودن دارند.
گاترفید ویلهلم فون لایب نیتس۱۷۰۲میلادی
نظریه ی تابع ها از یک متغییر مختلط شامل برخی از قوی ترین و مفید ترین وپر کاربرد ترین ابزارهای تحلیل ریاضی است.برای انکه دست کم تا هدودی اهمییت متغیر های مختلف را نمایش دهیم چند مبهث از کاربرد های انها را به اختصار بر می شمریم .
۱.در مورد بسیاری از زوج تابع هایu v ,همuوهم vدر معادله ی لاپلاس در دو بعد واقعی صدق میکنند .
برای مثال یا vیاu را میتوان برای توصیف پتانسیل الکتروستاتیکی دو بعدی به کار برد . آن گاه میتوان از تابع دیگری برای توصیف میدان الکتریکی Eبهره گرفت که یک دسته از منحنی های عمود بر منحنی های مربوط به تابع اولیه را ارائه می کند یک موقعیت مشابه برای هیدرودینامیک از یک شاره ایده ال با حرکت غیر چرخشی نیز وجود دارد تابع uباید پتانسیل سرعت را توصیف کند در حالی که تابع vتابع جریان خواهد بود.
درمواردبسیاریکه تابع های u,vمجهولند می توانیم به یاری نگاشت یا تبدیل در صفحه ی مختلط دستگاه مختصات مناسب با مسئله ی مورد نظر بسازیم .