فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:42
توزیع پواسن.. ۱
توزیع نرمال.. ۳
متغیر تصادفی نرمال.. ۳
- متغیر نرمال استاندارد. ۴
توزیع پوآسون.. ۵
توزیع نرمال.. ۷
توزیع نرمال به صورت تقریبی از توزیع دو جمله ای… ۱۳
منحنی نرمال.. ۱۶
سطح زیر منحنی نرمال.. ۱۸
توزیع پواسون.. ۱۹
تعریف و ویژگیهای توزیع پواسون.. ۲۰
تقریب پواسون برای توزیع دو جمله ای… ۲۲
توزیع پواسن به عنوان تقریبی از توزیع دو جمله ای… ۲۹
سطح ویژه زیر منحنی نرمال.. ۳۲
متغیرهای تصادفی دو جمله ای و فراهندسی ،موفقیت ها را در یک نمونه گیری تعیین می کند. ممکن است در پدیده هایی با روندی از موفقیت ها رو به رو شویم و آگاهی از تعداد موفقیت ها مورد نظر باشد. به مثالهای زیر توجه کنید.
در یک بازی بستکبال گلهایی را که تیم مورد علاقه به ثمر می رساند، روندی از موفقیت ها به دست می دهد.
تعداد دفعه هایی که قلاب ماهیگیری مورد حمله های ماهیان قرار می گیرد،روندی از موفقیت ها است.
تعداد تصادف ها در جاده ای مورد نظر، روندی از موفقیتها است.
ترسم خطوط اضافی در پارچه بوسیله یک ماشین پارچه بافی، روندی از موفقیت ها را به دست می دهد.
تعداد حبابهای موجود در شیشه های تولیدی یک کارخانه ساخت شیشه، روندی از موفقیت ها است.
مطالعه آماری تعداد موفقیت ها در بخشی از روند مورد نظر، اهمیت دارد. تعداد گلهایی که تیم مورد علاقه ما در نیمه اول به ثمر می رساند،تعداد دفعه هایی که به قلاب ماهیگیری در یک ساعت حمله می شود، تعداد تصادف های در طول تابستان،تعداد خطوط اضافی که در یک متر مربع ترسیم شده است و سرانجام، تعداد حبابهای موجود در ۵ متر مربع شیشه تعداد موفقیت ها در بخشی از روند مربوطه است. نمونه گیری در اینجا به معنی گزینش آن بخش مورد نظر و شمارش تعداد موفقیت ها است. در مثال تعداد حبابها، هر قطعه شیشه ۵ متر مربعی از تولید کارخانه یک نمونه به شمار می آید. در صورتی که X را تعداد موفقیت ها تعریف کنیم، مجموعه مقادیر X
X={و۲و۱و ۰ …}
پیشامد (X=i) بیانگر قطعاتی است که در هر یک از آنها تعداد i حباب است، P(X=i) درصد این قطعات را تعیین می کند. تعیین P(X=i) با روش نمونه گیری در عمل ناممکن است. از این رو چگونه می توان P(X=i) را تعیین کرد؟ (در قسمت ۵ به این پرسش پاسخ خواهیم داد) به هر حال تابع چگالی زیر P(X=I) را ارائه می دهد.
متغیر تصادفی پوآسن
یک متغیر تصادفی X با مجموعه مقادیر} …و۲و۱و۰ X={ و تابع چگالی
(۱-۳)
را متغیر تصادفی پواسن با پارامتر می نامند و در این صورت نمایش بکار برده می شود. در فرمول (۱-۳) ، e عدد نپر است و میانگین تعداد موفقیت ها است، . اگر توزیع پواسن بر روندی از موفقیت ها دلالت کند، آنگاه تعداد موفقیت ها در هر بخش از روند از توزیع پواسن پیروی می کند که پارامتر آن،، مساوی میانگین تعداد موفقیت ها در آن بخش است.
یک متغیر تصادفی X ،متغیر تصادفی نرمال است، اگر مجموعه مقادیر آن و تابع چگالی آن
مقادیر و ثابت است و به ترتیب امید ریاضی و واریانس X است، و در این صورت نمایش را برای X بکار می بریم.
هر متغیر تصادفی نرمال X با میانگین و واریانس خواص زیر را دارد.
۱-
۲- اگر به سرعت یک تابع نمایی.
خاصیت اول بیان می کند که پراکندگی در فاصله های یکسان است.
خاصیت دوم بیان می کند با دوری از میانگین درصد مشاهده ها نسبتاً سریع کاهش می یابد.
متغیر تصادفی نرمال، نخستین بار به وسیله کارل کاوس بیان شد. این متغیر تصادفی مدل احتمال خوبی برای بسیاری از پدیده های طبیعی است، به این دلیل، آن را نرمال (طبیعی) نامیده اند. به مثالهای زیر توجه کنید.
عموماً نمره های دانش آموزان یک کلاس، نزدیک به میانگین تجمع بیشتر دارد و هر چه از دو سو از میانگین فاصله گرفته شود، تجمع نمره ها کاهش می یابد (نسبتاً سریع).
میزان قد افراد جامعهی مورد نظر نیز پدیده ای طبیعی است. تجمع، نزدیک به میانگین به گونه ای نسبتاً متقارن، زیاد است. با دوری از میانگین از دو سوی، پراکندگی بسرعت (تقریباً به طور متقارن) کاهش می یابد.
درجه حرارت هوا را در نیمه شب بهمن ماه در منطقه ای در نظر بگیرید. دوباره انتظار می رود که تجمع نزدیک به میانگین زیاد باشد و با دور شدن از میانگین مقدار آن سریع کاهش یابد.
دقت کنید که هر متغیر تصادفی نرمال با آگاهی از دو مقدار کاملاً مشخص می شود. مقدار را انحراف معیار (انحراف استاندارد) گویند.