ساخت سیستم های اتوماتیک تبدیل حرف به صدا برای استفاده در سیستم های تبدیل متن به گفتار در زبان فارسی، به دلیل عدم استفاده از اعراب در نوشتار و در نتیجه مستوربودن بعضی از واژه ها مشکل می باشد و عموماً این سیستم ها برای زبان فارسی کارآیی پایینی دارند . در این مقاله ساختار یک سیستم تبدیل حرف به صدا با معماری سه لایه بررسی شده است. لایه اول این سیستم قانون گرا می باشد و لایه دوم از پنج شبکه عصبی پرسپترون چندلایه ای و یک بخش کنترلر برای تعیین دنباله واژه های متناظر با حروف تشکیل شده است. برای تعیین دنباله واژه های متناظر با حروف، از شبکه های عصبی استفاده می شود. بخش کنترلر نیز، خروجی شبکه ها را کنترل می کند تا دنباله واژه های نهایی متناظر با کلمات با ساختار هجابندی فارسی مطابقت داشته باشد.در لایه سوم نیز یک شبکه عصبی برای تعیین حروف مشدد، با استفاده از نتایج مراحل قبل وجود دارد. اجزاء مختلف این سیستم به گونه ای طراحی شده اند که در نهایت برای هر کلمه، یک دنباله واژه منطقی تولید گردد منظور از دنباله واژه منطقی، دنباله واژه می باشد که در آن اصول بدیهی واژه نگاری و ساختار هجابندی زبان فارسی رعایت شده باشد. میزان درستی به دست آمده برای حروف 88 % و برای کلمات %61 می باشد که برای تبدیل حرف به صدای زبان فارسی کارآی بسیارخوبی می باشد.
فهرست :
چکیده
مقدمه
واژگان مورد استفاده
لایه قانون گرا
لایه میانی
لایه سوم : شبکه تعیین حروف مشدد
ارزیابی سیستم
نتیجه گیری و پیشنهاد
منابع
بانک ایمیل فعال نیازمندی ها ایمیل سال 94
کامل ترین بانک ایمیل سایت های نیازمندی ها که کاملاً فعال هستند به صورت آنلاین پرداخت کنید و سپس لینک دانلود ایجاد شده را به صورت آنلاین دریافت و می توانید دانلود کنید
به روز ترین بانک ایمیل سایت های نیازمندی ها در سال 94
بانک ایمیل فعال نیازمندی ها ایمیل سال 94
کامل ترین بانک ایمیل سایت های نیازمندی ها که کاملاً فعال هستند به صورت آنلاین پرداخت کنید و سپس لینک دانلود ایجاد شده را به صورت آنلاین دریافت و می توانید دانلود کنید
به روز ترین بانک ایمیل سایت های نیازمندی ها در سال 94
بانک ایمیل فعال نیازمندی ها ایمیل سال 94
کامل ترین بانک ایمیل سایت های نیازمندی ها که کاملاً فعال هستند به صورت آنلاین پرداخت کنید و سپس لینک دانلود ایجاد شده را به صورت آنلاین دریافت و می توانید دانلود کنید
به روز ترین بانک ایمیل سایت های نیازمندی ها در سال 94
در دنیای امروز کاربردهای پردازش تصویر هر روزه در حال افزایش است. در زمینه های پزشکی، رباتیک، و هواشناسی تحقیقات و پژوهش های بسیاری در این زمینه شده است و از کاربرد های آن در این زمینه ها استفاده های بسیاری مشود. اما در مورد کاربرد پردازش تصویر در کشاورزی تحقیقات کمتری صورت گرفته و کاربرهای آن در این زمینه کمتر مورد توجه قرار گرفته است. ما در مقاله ی پیش رو سعی کردیم به منظور بیشتر شناساندن این رشته بیشتر روی کاربرد های پردازش تصویر در شناسایی و دفع آفات تحقیقات خود را انجام دهیم. در مطالب پیش رو سعی بر این بوده است تا در ابتدا موارد کلی و مفاهیم اصلی در رابطه با موضوع یعنی پردازش تصویر آورده شود، مفاهیمی از قبیل خوشه بندی، قطعه بندی، هیستوگرام، تشخیص لبه و دیگر مفاهیمی که برای پیاده سازی و ارائه ی مطالب مورد نیاز است. در قدم بعدی مطالب و مقاله هایی که پیش از این و توسط افراد دیگر در رابطه با موضوع مورد نظر گرد آوری شده است آورده شده، ما از این مقالات برای نتیجه گیری بهتر و ملموس تر کردن موارد جمع آوری شده برای کسانی که پیش از این آشنایی با پردازش تصویر نداشته اند استفاده خواهیم کرد. در قدم سوم نتایج مطالعات و تحقیقات انجام شده برای ارائه ی روشی به صرفه در شناسایی آفات با استفاده از الگوریتم های پردازش تصویر آورده میشود و است مراحل و روش پیاده سازی مطالب ارائه شده آورده خواهد شد.
فهرست :
مفاهیم اصلی در مبحث پردازش تصویر
مقدمه
پردازش تصویر چیست؟
کاربردهای علم پردازش تصویر
آشنایی با مفهوم پیکسل در یک تصویر
آشنایی با مفهوم عمق بیتی
آشنایی با مفهوم بعد یک تصویر
چگونگی تشکیل رنگ در چشم انسان
پردازش تصویر رنگی
آشنایی با انواع مدل های رنگ
مدل رنگ RGB
مدل رنگ CMY
مدل رنگ YIQ
مدل رنگی HIS
روش های پردازش تصویر
تفریق دو تصویر
جمع دو تصویر
مکمل کردن تصویر
آشنایی با مفهوم تشخیص لبه
میانگین گیری از تصویر
هیستوگرام تصویر
تعدیل هیستوگرام
فیلتر کردن تصویر
قطعه بندی و روش های آن
مقدمهای بر خوشه بندی
روشهای خوشه بندی
روشهای خوشه بندی سلسله مراتبی
خوشه بندی با روش SingleLink
روش خوشه بندی KMeans
مشکلات روش خوشه بندی KMeans
الگوریتم خوشه بندی LBG
روش خوشه بندی
روش تقسیم بندی Otsu’s
آشنایی با مفهوم موجک
شبکههای عصبی مصنوعی (Artificial Neural Network ANN)
تازه های پردازش تصویر در شناسایی آفات گیاهی
روش اول: تحلیل تصویر با استفاده از موجک
روش دوم: تشخیص آفات برنج با استفاده از از روش تقسیم بندی اوتسو
روش سوم: استفاده از تصاویر طیفی برای شناسایی درختان تحت تاثیر آفات
بخش دوم
دقت وسرعت در شناسایی و طبقه بندی افات گیاهی
روش چهارم: شناسایی آفات با استفاده از شبکه های عصبی مصنوعی
وارد کردن تصویر
توضیح فضای رنگ L*A*B
مرحله ی اول: وارد کردن تصویر
مرحله ی دوم: تبدیل تصویر از فضای رنگ RGB به فضای L*A*B
مرحله ی سوم: طبقه بندی رنگ های به دست آمده از فضای رنگ L*A*B
مرحله ی چهار: برچسب گذاری پیکسل ها با استفاده از نتایج به دست آمده از روش KMeans
مرحله ی پنج: به دست آوردن تصاویر خوشه بندی شده
مرحله ی شش به دست آوردن هسته ی اصلی
هدف های آینده
منابع