خوردگی قطعات فولادی در سازههای مجاور آب و نیز خوردگی میلگردهای فولادی در سازههای بتن آرمه ای که در معرض محیطهای خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی میشود. در محیطهای دریایی و مرطوب وقتی که یک سازة بتنآرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمکها، اسیدها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار میآورد که به خرد شدن و ریختن آن منتهی میشود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمهای که به دلیل خوردگی میلگردها آسیب دیده است، میلیونها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژهای جهت جلوگیری از خوردگی اجزاء فولادی و میلگردهای فولادی در بتن اتخاذ گردد که از جمله میتوان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است. از آنجا که کامپوزیتهای FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیطهای قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گستردهای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بودهاند. چنین جایگزینی بخصوص در محیطهای خورنده نظیر محیطهای دریایی و ساحلی بسیار مناسب به نظر میرسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازههای مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.
خلاصه
3-1- الیاف شیشه
3-2- الیاف کربن
3-3- الیاف آرامید
6-1- مقاومت در مقابل خوردگی
6-2- مقاومت
6-3- مدول الاستیسیته
6-4- وزن مخصوص
6-5- عایق بودن
6-6- خستگی
6-7- خزش
6-8 – چسبندگی با بتن
6-9- خم شدن
6-10- انبساط حرارتی
7-1- پیر شدگی فیزیکی ماتریس پلیمر
7-2- تأثیر رطوبت
الف- تأثیر رطوبت بر ماتریس پلیمری
ب - تأثیر رطوبت بر فایبرها
ج- رفتار عمومی کامپوزیتهای اشباع شده با آب
7-3- تأثیرات حرارتی – رطوبتی
7-4- محیط قلیایی
7-5- تأثیر دمای پائین
7-6- تأثیرات سیکلهای حرارتی در دمای پایین (یخزدن- ذوب شدن)
7-7- تأثیر تشعشع امواج ماوراء بنفش (UV)
شامل 38 صفحه فایل word
معرفی پروژه
معرفی کلی
این ساختمان با کارفرمای شخصی و کاربری مسکونی در زمینی به مساحت سند برابر 200 مترمربع و مساحت پس از اصلاحی 187 مترمربع در سه طبقه و همراه با زیرزمین و پیلوت بنا شده است. اسکلت سازه به صورت بتنی است.
سه طبقه بصورت پلان معماری تیپ و هر یک به مساحت 9/106 مترمربع بنا شده است. در زیرزمین چهار انباری همراه با تاسیسات حرارتی جمعاً به مساحت 2/125 مترمربع قرار دارد.
در طبقه همکف (پیلوت) سه واحد پارکینگ در نظر گرفته شده است. زمین به صورت مستطیل کامل بوده و طول و عرض ان به ترتیب 70/18 و 10 متر است.
این ملک در زمین جنوبی واقع است و از طرف چپ و راست و کوچه پشتی توسط همسایه محصور گردیده است.
مشخصات فنی
کلیه این مشخصات براساس نقشه های اجرایی سازه بیان شده است.
بتن
-بتن مصرفی در شالوده ها و کلیه عناصر سازه ای از قبیل تیرها و ستونها و سقف از نوع B 300 است.
-مقاومت فشاری بتن 28 روزه ، 300 کیلوگرم بر سانتی مترمربع است روی نمونههای مکعبی به ابعاد cm10* cm20* cm20.
-مقاومت 28 روزه حداقل روی نمونه های سیلندری 250 کیلوگرم بر سانتیمترمربع بروی نمونه سیلندری به ابعاد: قطر 6 اینچ و ارتفاع 2 اینچ.
-عیار سیمان در بتن حداقل 350 کیلوگرم سیمان در هر مترمکعب بتن.
-بتن مگر مصرفی در زیر پی ها می بایستی دارای حداقل دارای 150 کیلوگرم سیمان در هر مترمکعب بتن باشد.
-سیمان مصرفی از نوع سیمان مصرفی تیپ I است. مگر اینکه آزمایشگاه معتبر سیمان نوع دیگری را پیشنهاد کند.
-آب مورد استفاده در بتن باید مطابق مشخصات منتشر شده از سوی موسسه استاندارد و تحقیقات صنعتی ایران باشد.
-آب، مصالح سنگی و طرح اختلاط (Mix Design) باید مورد تأیید آزمایشگاه معتبر باشد.
-سطوحی که به علت قطع بتن ریزی بوجود می آید باید :
-الف) محل آن دقیقاً با نظر مهندس ناظر انتخاب شود.
-ب) قبل از بتن ریزی مجدد مسطوح تماس کاملاً پاک و مرطوب شده و با دوغاب سیمان پرمایه آغشته گردد.
-استفاده از هرگونه مواد اضافی در بتن (Admixtures) فقط با موافقت کتبی مهندس ناظر مجاز است.
-از بتنهای ساخته شده برای اجرا باید روزانه حداقل 2 نمومنه مکعبی و یا سیلندری با نظر مهندس ناظر تهیه و توسط آزمایشگاه معتبر مورد آزمایش قرار گرفته و نتیجه به دستگاه نظارت ارائه شود.
-حداقل پوشش روی میلگردها به قرار زیر است:
الف) برای پیها و سایر اعضای اصلی سازه که در تماس مستقیم با زمین هستند 5
/7 سانتی متر.
ب) اگر پس از قالب برداری سطوح بتن در مصرفی هوا هستند. 5 سانتی متر
ج) برای دال ها و دیوارها که مستقیماً در معرفی زمین و هوا نیستند. 3 سانتی متر
مقدمه 4
فصل اول
معرفی پروژه 5
معرفی کلی 5
مشخصات فنی 6
مصرفی سیستم سازه ای 8
فصل دوم
آرماتورگذاری 9
حمل و تخلیه و انبار کردن میلگردها 9
برش میلگردها 10
خم کردن میلگردها 11
وصله کردن میلگردها 11
تمیز کردن میلگردها 12
حمل، نصب و استقرار میلگردها 12
آرماتور بندی ستونها 12
آرماتورگذاری پله 13
آرماتوربندی تیرها 14
عنوان صفحه
فصل سوم
قالبندی 15
کلیات قالبندی 15
انواع مصالح قالب 21
اقتصاد قالب بندی 23
قالبندی ستون 24
پایه های اطمینان 25
قالبندی تیرهای اصلی 26
قالبندی سقف 28
باز کردن قالب 29
چند نکته برای نگهداری ازبتن بعد از باز کردن قالبها 30
فصل چهارم
بتن ریزی 31
بتن ریزی در کارگاه 31
ویبره بتن 32
فصل پنجم
اجرای سقف تیرچه بلوک 34
فصل ششم
پیشنهادات 40
عنوان صفحه
ترکهای ناشی از زنگ زدن و فساد میلگردها 40
ترکهای ناشی از پوسیدگی آرماتور به دلیل کربناسیون بتن 43
ترکهای ناشی از پوسیدگی آرماتور به دلیل رطوبت و اتمسفر 44
فصل هفتم
ضمایم پروژه 46
نقشه ها 46
عکس ها 46
شامل 46 صفحه فایل word
بررسی رفتار تیرهای بتن آرمه تقویت شده با صفحات کامپوزیتی
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:36
خلاصه ۵
۱ – مقدمه ۷
۲ – راه حل مساله ۹
۳ – ساختار مصالح FRP 10
3-1- الیاف شیشه ۱۱
فایبرهای شیشه در چهار دسته طبقهبندی میشوند ۱۱
۳-۲- الیاف کربن ۱۱
الیاف کربن در دو دسته طبقهبندی میشوند ۱۱
۳-۳- الیاف آرامید ۱۲
۴- انواع محصولات FRP 12
5– میلههای کامپوزیتی FRP 14
6 – مشخصات اساسی محصولات کامپوزیتی FRP 15
6-1- مقاومت در مقابل خوردگی ۱۵
۶-۲- مقاومت ۱۶
۶-۳- مدول الاستیسیته ۱۶
۶-۴- وزن مخصوص ۱۶
۶-۵- عایق بودن ۱۷
۶-۶- خستگی ۱۷
۶-۷- خزش ۱۷
۶-۸ – چسبندگی با بتن ۱۸
۶-۹- خم شدن ۱۸
۶-۱۰- انبساط حرارتی ۱۸
۷- دوام کامپوزیتهای FRP 19
مکانیزمهایی که دوام کامپوزیتها را کنترل میکنند عبارتند از : ۱۹
۱) تغییرات شیمیایی یا فیزیکی ماتریس پلیمر ۱۹
۲) از دست رفتن چسبندگی بین فایبر و ماتریس ۱۹
۳) کاهش در مقاومت و سختی فایبر ۱۹
۷-۱- پیر شدگی فیزیکی ماتریس پلیمر ۲۰
۷-۲- تأثیر رطوبت ۲۱
الف- تأثیر رطوبت بر ماتریس پلیمری ۲۱
ب – تأثیر رطوبت بر فایبرها ۲۳
ج- رفتار عمومی کامپوزیتهای اشباع شده با آب ۲۳
۷-۳- تأثیرات حرارتی – رطوبتی ۲۴
۷-۴- محیط قلیایی ۲۵
۷-۵- تأثیر دمای پائین ۲۵
۷-۶- تأثیرات سیکلهای حرارتی در دمای پایین (یخزدن- ذوب شدن) ۲۷
۷-۷- تأثیر تشعشع امواج ماوراء بنفش (UV) 28
8- استفاده از مواد FRP به عنوان مسلح کنندة خارجی در سازهها ۲۹
مقاوم سازی سازههای بتن آرمه با مواد FRP 29
مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان.. ۳۰
۹ – خلاصه و نتیجه گیری ۳۴
۱۰- مراجع ۳۶
خلاصه
خوردگی قطعات فولادی در سازههای مجاور آب و نیز خوردگی میلگردهای فولادی در سازههای بتن آرمه ای که در معرض محیطهای خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی میشود. در محیطهای دریایی و مرطوب وقتی که یک سازة بتنآرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمکها، اسیدها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار میآورد که به خرد شدن و ریختن آن منتهی میشود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمهای که به دلیل خوردگی میلگردها آسیب دیده است، میلیونها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژهای جهت جلوگیری از خوردگی اجزاء فولادی و میلگردهای فولادی در بتن اتخاذ گردد که از جمله میتوان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است. از آنجا که کامپوزیتهای FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیطهای قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گستردهای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بودهاند. چنین جایگزینی بخصوص در محیطهای خورنده نظیر محیطهای دریایی و ساحلی بسیار مناسب به نظر میرسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازههای مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.
افزایش ظرفیت خمشی تیر بتن آرمه با استفاده از الیاف کامپوزیت
شیشه
چکیده:
اتصال پلیمرهای مسلح شده با الیاف FRP توسط چسب اپوکسی به عنوان یک تکنولوژی مقاوم سازی پیشرفته برای تعمیر و
تقویت سازه های بتن آرمه پدید آمده است. اگرچه اتصال ورق های FRP توسط لایه چسب دارای مزایای بسیاری است بیشتر حالات
گسیختگی تیرهای تقویت شده با این روش به صورت ترد و با کمی یا بدون نشانه رخ می دهد که به این پدیده گسیختگی زودرس می
گویند. شایع ترین حالت این گسیختگی های زودرس DEBONDING شکافته شدن پوشش بتن و جداشدگی سطح مشترک بتن وصفحه تقویتی گزارش شده اند. در این تحقیق تیرهای بتنی به روش معمول با الیاف GFRP تقویت و تحت آزمایش خمش چهار نقطه ای قرار گرفت که نتایج حاکی از ایجاد پدیده شکست زودرس بود. پیرو آن و پس از بررسی تئوریک روش جدیدتری ارائه شد که در این روش تقویت کاور تحت خمش چهار نقطه ای ادامه پیدا کرد که منجر به تعویق این پدیده در تیرهای مورد آزمایش شد.
کلید واژه:
تقویت تیر، ظرفیت خمشی ، الیاف GFRP