یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود پایان نامه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD)

اختصاصی از یارا فایل دانلود پایان نامه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD) دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD)


دانلود پایان نامه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD)

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:124

چکیده:

هدف این پایان‌نامه تحقیق در مورد راهکارهای حل نیمه دقیق از یک طرف و شبیه سازی عددی در مورد رفتار جریان سیال بر روی سرریز اوجی سد انحرافی گرمسار می‌باشد.

همچنین مقایسة نتایج بدست آمده بر روی سرریز اوجی بر اساس CFD یکی دیگر از اهداف این پایان‌نامه می‌باشد تا درمطالعات و طرحهای آتی با اطمینان خاطر بیشتر از مدلهای (CFD) استفاده گردد.

ضرورت تحقیق این پایان‌نامه گسترش استفاده از مدلهای (CFD) در داخل کشور می‌باشد بطوریکه مدلهای CFD در چند سال اخیر نقش بسزایی را در مسائل صنعتی و آکادمیک ایفا کرده است. در دو دهة قبل مسائل (CFD) به صورت آکادمیک مطرح بوده ولی در دهة اخیر در کشورهای پیشرفته رواج گستره‌ای در صنعت پیدا کرده است.

برای انتخاب بهترین طرح برای بسیاری از سدها باید با صرفه ترین و دقیق‌ترین روش را برای بررسی چگونی رفتار جریان بر روی  سرریز در صورت وقوع سیل را در نظر گرفت. تا مدتی قبل استفاده از مدل فیزیکی تنها روش بررسی بوده ولی هم اکنون استفاده از روش (CFD) رواج گسترده‌ای پیدا کرده است که هزینه و زمان بررسی کردن را پایین آورده است.

در این پایان‌نامه نحوة رفتار جریان بر روی سرریز اوجی سد انحرافی گرمسار با استفاده از برنامه Fluent و تحت سطوح بالا برندة مورد بررسی قرار گرفته است.

برای شبکه‌بندی مدل تاج سرریز سدانحرافی گرمسار از نوع شبکه‌بندی چند بلوکی استفاده شده است مدل تاج سرریز نیز به چهار ناحیه تقسیم‌بندی شده است و در حل این پروژه از مدل Vof استفاده شده است. طبق نتایج حاصل از تحقیقات به عمل آمد بر روی سرریز اوجی سد انحرافی گرمسار برای ۵/۰=Hd/H بر روی تاج سرریز فشار منفی تشکیل نمی‌گردد و برای ۱=Hd/H و ۳۳/۱=Hd/H بر روی تاج سرریز سد انحرافی گرمسار فشا منفی تشکیل می‌گردد.

مقدمه:

درمسائل مهندسی امروزی شناخت رفتار یا عکس العمل یک پدیده نقش بسزائی دربررسی نتایج بدست آمده و طراحی دقیق مسائل مهندسی دارد، بطوریکه یک پژوهشگر یا محقق با شناخت چگونگی رفتار یک پدیده دربرخورد با مسائل مختلف می تواند وضعیت فیزیکی پدیده را درقبال مسائل مختلف مهندسی بهبود بخشد.

به عنوان مثال درطراحی بدنه خودرو اگر یک محقق عکس العمل یا رفتار هوا نسبت به خودرو را درسرعت های بالا درنظر نگیرد باعث مشکلات عدیده ای خواهد شد بطوریکه دراین حالت ضریب بازدارندگی افزایش و درنتیجه نیروی بازدارندگی نیز افزایش می یابد و اتومبیل برای رسیدن به یک سرعت مناسب بایستی نیروی بیشتری راتولید کند که در نتیجه باعث افزایش مصرف سوخت و سایر مشکلات خواهدشد. اما امروزه کارشناسان با شناخت رفتار و عکس العمل هوا نسبت به بدنه خودرو به این نتیجه رسیده اند که بایستی بدنه خودروها حالت آیرودینامیکی داشته باشد تا با مشکلات ذکر شده مواجه نشوند.

لذا شناخت پدیده و عکس العمل آن نسبت به مسائل مختلف در امور مهندسی امروزی مانند هوا و فضا، هیدرولیک، سیالات و … از اهمیت قابل توجهی برخودار است. دربرخورد مهندسان با مسائل و موضوعات هیدرولیکی مشخص بودن چگونگی رفتار سیال کمک بسیار زیادی را در طراحی هرچه دقیق تر پروژه ها می‌نماید. حل برخی از مسائل هیدرولیکی با روشهای حل تحلیلی امکان پذیر می باشد اما ممکن است دربرخی از موضوعات، حل تحلیلی کمک قابل توجهی را به یک محقق ننماید لذا بایستی ازحل عددی برای بررسی چگونگی رفتار سیال استفاده کرد. یکی از مسائل مهمی که کارشناسان هیدرولیک بایستی با آن آشنا باشند نحوه رفتار جریان برروی سرریزهای سازه های آبی می باشد. یکی از راه های شناخت رفتار جریان برروی سرریز استفاده از مدلهای فیزیکی می باشد.

نتایج مدلهای فیزیکی درصورتیکه شرایط مدل به خوبی ایجاد گردد قابل قبول می‌باشد. اما یکی از مشکلات مدلهای فیزیکی درپروژه های مهندسی مدت زمانی است که طول می کشد تا نتایج مورد بررسی و تجزیه و تحلیل قرار گیرد به طوریکه ممکن است ماهها و یا دربرخی از موضوعات هیدرولیکی مانند بررسی میزان کاوتیاسیون سالها طول بکشد ویا اینکه یک محقق برای بررسی مدل فیزیکی گزینه های مختلف با محدودیت زمانی مواجه باشد. ساخت مدل فیزیکی و تجزیه و تحلیل نتایج آن هزینه قابل توجهی را درپی دارد لذا دربحث هزینه وزمان ممکن است که یک محقق امکان استفاده از مدلهای مختلف فیزیکی را برای بررسی دقیق تر نتایج نداشته باشد. دربرخی از پدیده ها و موضوعات مهندسی امکان استفاده از مدل فیزیکی نمی باشد به عنوان مثال مدلسازی محیطی با درجه حرارت 4000 درجه به بالا ممکن است بسیار سخت و یا امکان پذیر نباشد. لذا استفاده از حل عددی مسائل کمک شایانی را به یک محقق می نماید تا به بررسی موضوع بپردازد. به طوریکه می توان با کمترین هزینه ودرکمترین زمان گزینه های مختلفی را بررسی کرد.

همانطور که اشاره شد شناخت نحوه رفتار جریان برروی سرریزسازه های آبی از اهمیت ویژه ای برخوردار است. معمولاً درطراحی سدهای انحرافی ازسرریز نوع اوجی استفاده می شود.

بررسی رفتار جریان برروی تاج سرریز برای دبی های بیشتر از دبی طراحی از اهمیت بسزایی درطراحی تاج سرریز برخودار است به طوریکه اگر فشار ایجاد شده برروی تاج سرریزهای اوجی کمتر از فشار اتمسفر گردد، فشار منفی برروی سرریز که برای دبی های بیشتر از دبی طراحی اتفاق می افتد باعث پدیده کاوتیاسیون می گردد بطوریکه این پدیده خسارات جبران ناپذیری را برای بسیاری از سازه های آبی به بار آورده است. ازجمله سازه های آبی که با این پدیده روبرو هستند می توان به سرریز سد شهید عباسپور اشاره کرد که برای دبی های بیشتر از دبی طراحی، مشکلاتی برای سرریز این سد ایجاد شده است. همچنین می توان به سد انحرافی گرمسار اشاره کرد که تاج سرریز آن دچار خوردگی و کاویتاسیون گردیده است. لذا در این پایان نامه نحوه رفتار جریان برروی تاج سرریز اوجی سد انحرافی گرمسار با استفاده از نرم افزار fluent مورد بررسی قرارگرفته است. از آنجائیکه برای مهار آبهای سطحی و سیلاب ها از سدهای انحرافی با سرریز اوجی استفاده می گرد لذا ضروریت انجام این تحقیق آن است علل فرسایش و کاویتاسیون برروی سرریز اوجی سد انحرافی گرمسار مشخص گردد و هدف این تحقیق آن است با توجه به دقت نتایج بدست آمده براساس مدل عددی CFD)) برروی سرریز اوجی و با استفاده از نرم افزار Fluent بتوان با اطمینان خاطر بیشتری ازمدلهای (CFD) استفاده کرد.

روش انجام کار بدین گونه می باشد که ابتدا بایستی مدل تاج سرریز توسط یک نرم افزار پیش پردازنده مدلسازی گردد نرم افزاری پیش پردازنده Fluent نرم افزار gambit می باشد که از قابلیت های خوبی برای شبکه بندی و معرفی شرایط مرزی مدل برخوردار است.

تشریح فصول مختلف پایان نامه :

درفصل دوم این پایان نامه تاریخچه استفاده از برنامه های CFD ارائه شده است و درفصل سوم مفاهیم اساسی پایان نامه ازجمله، هیدرولیک جریان برروی سرریز اوجی وروشها و معیارهای طراحی سرریز اوجی شرح داده شده است.

درفصل چهارم این پایان نامه توضیحاتی درمورد نرم افزار fluent و روشهای حل عددی به کارگرفته شده دراین نرم افزار شرح داد شده است و نقشه ها و اطلاعات کلی مربوط به سد انحرافی گرمسار ارائه شده است.

درفصل پنجم نتایج بدست آمده از نرم افزار fluent برروی مدل سرریز اوجی سد انحرافی گرمسار ارائه شده است که دراین فصل به بررسی اشکال بدست آمده پرداخته شده است و درفصل ششم نتیجه گیری و پیشنهادات مربوط به این تحقیق ارائه شده است.

فهرست مطالب:

چکیده: ۱

فصل اول/کلیات… ۲

مقدمه. ۳

CFD چیست؟. ۶

نقش CFD در دنیای فناوری مدرن امروزی.. ۷

اهمیت انتقال حرارت و جریان سیال. ۱۰

متدهای پیشگویی.. ۱۰

امتیازات یک محاسبه تئوری.. ۱۱

هزینه کم. ۱۱

اطلاعات کامل.. ۱۲

توانایی شبیه سازی شرایط واقعی.. ۱۲

توانایی شبیه‌سازی شرایط ایده‌آل. ۱۲

نارساییهای محاسبه تئوری.. ۱۳

انتخاب متد پیشگوی.. ۱۳

یک برنامه CFD چگونه کار می‌کند؟. ۱۴

توضیح سازگاری و پایداری.. ۱۵

فصل دوم/تاریخچه. ۱۷

تاریخچه. ۱۸

فصل سوم/مفاهیم اساسی پایان‌نامه. ۲۴

۳-۱- مقدمه. ۲۵

۳-۲- انتخاب دبی طرح برای سرریز. ۲۵

۳-۳- شکل‌گیری سرریز از نوع پیوند (Ogee) 26

3-4- سرریز WES.. 28

3-4-1- طراحی هیدرولیکی سرریز WES.. 29

3-4-1- اثر ارتفاع سرریز و ارتفاع آب در سراب بر ضریب C.. 29

3-4-2- اثر شیب بدنه در سراب بر ضریب C.. 29

3-4-3- اثر ارتفاع آب و رقوم کف در پایاب بر ضریب C.. 30

3-4-4- اثر پایه‌های پل و دماغه سواحل بر ضریب دبی جریان. ۳۲

۳-۴-۵- طراحی بدنه سرریز WES.. 33

3-4-6- طراحی بدنه سرریز کوتاه بدون دریچه WES در تنداب‌ها ۳۵

۳-۵- کنترل‌کاویتاسیون در سرریزهای بلند. ۳۶

فصل چهارم/آشنایی با برنامه Fluent Error! Bookmark not defined.

(روشهای حل عددی استفاده شده در مدل Fluent) Error! Bookmark not defined.

4-1 قابلیتها و محدودیتهای نرم‌افزار فلوئنت… Error! Bookmark not defined.

4-1-1- توانائیهای نرم‌افزار فلوئنت… Error! Bookmark not defined.

قابلییتهای مدلسازی فیزیکی.. Error! Bookmark not defined.

الف- آشفتگی.. Error! Bookmark not defined.

ب-احتراق/واکنشهای شیمیایی.. Error! Bookmark not defined.

ج- تابش… Error! Bookmark not defined.

د- جریانهای چند فازی.. Error! Bookmark not defined.

ه- جریانهای فاز گسسته. Error! Bookmark not defined.

و- گزینه‌های شرائط مرزی.. Error! Bookmark not defined.

ز- توابع تعریف شونده توسط کاربر. Error! Bookmark not defined.

ح- سایر توانمندیها Error! Bookmark not defined.

توانا ئیهای جدید نسخه‌های سری ۶ نرم‌افزار فلوئنت… Error! Bookmark not defined.

4-1-2- محدودیتهای نرم‌افزار فلوئنت… Error! Bookmark not defined.

4-2- نگاهی گذرا به چگونگی استفاده از نرم‌افزار فلوئنت… ۴۳

۴-۲-۱- چگونگی شبیه‌سازی جریان به روش CFD.. 44

4-2-2- راه‌ اندازی نرم‌افزار فلوئنت… ۴۶

راه‌اندازی نرم‌افزار فلوئنت در سیستم عامل UNIX.. 47

راه‌اندازی نرم‌افزار فلوئنت در سیستم عامل WINDOWS.. 47

4-3- روشهای حل معادلات… ۵۰

۴-۳-۱ گسسته‌سازی معادلات… Error! Bookmark not defined.

4-3-1-1 روش تفاضل پیشرو مرتبه اول. Error! Bookmark not defined.

4-3-1-2- روش Power Law.. Error! Bookmark not defined.

4-3-1-3- روش پیشرو مرتبه دوم. Error! Bookmark not defined.

4-3-1-4- روش QUICK.. Error! Bookmark not defined.

4-3-1-5- شکل خطی شده معادله گسسته. Error! Bookmark not defined.

4-3-1-6- پارامتر Under-Relaxation. Error! Bookmark not defined.

4-3-2- روش حل Segregated. Error! Bookmark not defined.

4-3-2-1- گسسته‌سازی معادله ممنتم. Error! Bookmark not defined.

روشهای میانیابی فشار. Error! Bookmark not defined.

4-3-2-2- گسسته‌سازی معادله پیوستگی.. Error! Bookmark not defined.

4-3-2-3- گوپلینگ سرعت-فشار. Error! Bookmark not defined.

الگوریتم SIMPLE.. Error! Bookmark not defined.

روش SIMPLEC.. Error! Bookmark not defined.

روش PISO.. Error! Bookmark not defined.

تصحیح همسایه. Error! Bookmark not defined.

تصحیح تابیدگی.. Error! Bookmark not defined.

رفتار ویژه نیروهای وزنی قوی در جریانهای چند فازی.. Error! Bookmark not defined.

4-3-3- روش حل Coupled. Error! Bookmark not defined.

4-3-3-1- فرم برداری معادلات حاکم. Error! Bookmark not defined.

پیش شرط.. Error! Bookmark not defined.

تجزیه تفاضل شار. Error! Bookmark not defined.

4-3-3-2- گام زمانی برای جریانهای پایا Error! Bookmark not defined.

روش صریح.. Error! Bookmark not defined.

4-3-3-3- گسسته‌سازی موقتی برای جریانهای ناپایا Error! Bookmark not defined.

گام زمانی صریح.. Error! Bookmark not defined.

قدم زنی دوگانه. Error! Bookmark not defined.

4-4 روش چند شبکه. Error! Bookmark not defined.

4-4-1 تقریب… Error! Bookmark not defined.

اصول روش چند شبکه‌ای.. Error! Bookmark not defined.

انتقال اطلاعات… Error! Bookmark not defined.

چند شبکه‌ای بی‌سازمان. Error! Bookmark not defined.

4-3-3-4- چرخه‌های چند شبکه. Error! Bookmark not defined.

4-3-3-5- روش چند شبکه‌ای جبری (AMG) Error! Bookmark not defined.

4-4- مدلهای تابشی و حرارتی.. Error! Bookmark not defined.

4-4-1- کاربردهای انتقال حرارت تشعشعی.. Error! Bookmark not defined.

4-4-2- تشعشع خارجی.. Error! Bookmark not defined.

4-4-3-  انتخاب یک مدل تشعشع. Error! Bookmark not defined.

4-4-4- مدل تابشی DTRM… Error! Bookmark not defined.

– تئوری و معادلات حاکم مدل DTRM… Error! Bookmark not defined.

مسیریابی پرتو. Error! Bookmark not defined.

دسته‌بندی.. Error! Bookmark not defined.

شرط مرزی مدل DTRM در دیواره‌ها Error! Bookmark not defined.

شرط مرزی مدل DTRM در ورودیها و خروجیهای جریان. Error! Bookmark not defined.

4-4-5- مدل تابشی P–1. Error! Bookmark not defined.

تئوری و معادلات مدل P-1. Error! Bookmark not defined.

– پراکندگی غیر همگن.. Error! Bookmark not defined.

– اثرات ذره در مدل P-1. Error! Bookmark not defined.

– شرط مرزی مدلP-1 در دیواره‌ها Error! Bookmark not defined.

شرط مرزی مدل P-1 در ورودیها و خروجیهای جریان. Error! Bookmark not defined.

4-4-6- مدل تابشی راسلند. Error! Bookmark not defined.

– تئوری و معادلات مدل راسلند. Error! Bookmark not defined.

شرط مرزی راسلند در ورودیها و خروجیهای جریان. Error! Bookmark not defined.

4-4-7- مدل تابشی D O.. Error! Bookmark not defined.

– تئوری و معادلات مدل DO.. Error! Bookmark not defined.

4-5- جریانهای چندفازی.. ۵۵

۴-۵-۱- مدل حجم سیال(VOF) 56

4-5-1-1- تئوری مدل VOF.. 57

میانیابی در مرز تقابل بین فازها ۵۸

– روش تجدید ساختار هندسی.. ۵۹

– روش Donor-Acceptor. 60

– روش صریح اولر. ۶۰

– روش ضمنی.. ۶۱

– کشش سطح.. ۶۲

– چسبندگی دیواره ۶۳

۴-۵-۲- چگونگی استفاده از مدل VOF.. 64

– فعال سازی مدل VOF.. 65

– تعریف فازها ۶۶

– فعال سازی کشش سطحی و چسبندگی دیواره ۶۶

– انتخاب فرمولاسیون VOF.. 66

– چند مثال نمونه. ۶۸

تنظیم پارامترهای شبیه‌سازی جریان ناپایا برای مدل VOF.. 68

وارد کردن نیروی وزن در محاسبات VOF.. 69

تعیین شرائط مرزی.. ۷۰

– تعیین شرائط اولیه کسرهای حجمی.. ۷۱

– استراتژیهای حل.. ۷۱

پس پردازش مدل VOF.. 73

4-5-2- مدل کاویتاسیون. ۷۳

۴-۵-۲-۱- تئوری مدل کاویتاسیون. ۷۴

– معادله کسر حجمی.. ۷۴

– محاسبه انتقال جرم بین فازها ۷۵

۴-۵-۲-۲- چگونگی استفاده از مدل کاویتاسیون. ۷۶

– فعال‌ کردن مدل کاویتاسیون. ۷۶

– تعریف فازها ۷۷

– تنظیم پارامترهای مدلسازی کاویتاسیون. ۷۷

– تأثیر نیروی وزن در محاسبات کاویتاسیون. ۷۸

– تعیین شرائط مرزی.. ۷۸

– استراتژی حل.. ۷۸

۴-۵-۳- مدل اختلاط خطای جبری (ASM) 78

4-5-3-1- تئوری مدل اختلاط خطای جبری (ASM) 79

– معادله کسر حجمی فاز ثانویه. ۸۱

۴-۵-۳-۲- چگونگی استفاده از مدل ASM… 82

– فعال‌ کردن مدل ASM… 82

– تنظیم پارامترهای مدل ASM… 83

– تعیین شرائط مرزی.. ۸۳

– تعیین شرائط اولیه کسرهای حجمی.. ۸۴

– استراتژی حل.. ۸۴

فصل پنجم/سد انحرافی گرمسار. Error! Bookmark not defined.

5-1- سد انحرافی گرمسار: ۸۵

مقدمه: ۸۵

۵-۲- مشخصات جغرافیای و عمومی سد انحراف گرمسار. ۸۶

فصل ششم/نتایج آنالیز جریان بر روی سرریز سد انحرافی گرمسار. ۹۲

۶-۳ مراحل آنالیز جریان بر روی سرریز اوجی سد انحرافی گرمسار با استفاده از برنامه Fluent 93

6-3-1- تعریف کردن هدفهای شبیه‌سازی.. ۹۳

۶-۳-۲- انتخاب مدل محاسباتی.. ۹۳

۶-۳-۳- انتخاب مدل فیزیکی.. ۹۳

۶-۳-۴- مراحل انجام پروژه تحقیقات: ۹۴

۶-۳-۴-۱ تولید شکل : ۹۴

۶-۳-۴-۲- شبکه بندی در نرم‌افزارهای پیش‌پردازنده: ۹۴

۶-۳-۴-۳- انواع شبکه‌ بندی.. ۹۶

۶-۳-۴-۴- شبکه‌بندی سرریز اوجی سد انحرافی گرمسار: ۹۷

۶-۳-۴-۵- بررسی شبکه‌بندی مدل سرریز اوجی انحرافی گرمسار. ۹۸

۶-۳-۵- تعیین شرایط مرزی برای شبکه‌بندی مدل سرریز اوجی سد انحرافی گرمسار. ۱۰۲

۶-۳-۶- انتخاب شیوه محاسباتی و فرمول بندی حل مدل سرریز اوجی سد گرمسار در برنامه Fluent 104

6-3-7- تعیین خواص سیال. ۱۰۴

فصل هفتم/بحث و نتیجه‌گیری.. ۱۱۰

 نتیجه‌گیری و پیشنهادات : ۱۱۱

پیشنهادات: ۱۱۲

مراجع و منابع. ۱۱۳


دانلود با لینک مستقیم

دانلود پایان نامه آنالیز کلیه ادوات پست فوق توزیع

اختصاصی از یارا فایل دانلود پایان نامه آنالیز کلیه ادوات پست فوق توزیع دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه آنالیز کلیه ادوات پست فوق توزیع


 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:137

فهرست مطالب:

چکیده

فصل ۱-   مقدمه

۱-۱-    تاریخچه صنعت برق

۱-۲-    انواع پست برق از نظر وظیفه

۱-۲-۱-     پست های نیروگاهی (بالابرنده ولتاژ)

۱-۲-۲-     پستهای توزیع

۱-۲-۳-     پستهای کلیدی

فصل ۲-   آشنایی کلی با پست و تجهیزات آن

۲-۱-    انواع پستهای باز

۲-۱-۱-     پستهای معمولی

۲-۱-۲-     پستهای GIS

۲-۱-۳-     پستهای هوایی

۲-۲-    پستهای بسته(داخلی)

۲-۲-۱-     پستهای GIS

۲-۲-۲-     پستهای معمولی بسته

۲-۳-    اجزاء تشکیل دهنده یک پست فشار قوی

۲-۳-۱-     تعریف سوئیچگیر

۲-۳-۲-     ترانسفور ماتورهای قدرت

۲-۳-۳-     ترانسفورماتورهای زمین و تغذیه داخلی

۲-۳-۴-     سیستم های جبران کننده بار راکتیو

۲-۳-۵-     سیستمهای کنترل و حفاظت

۲-۳-۶-      سیستم زمین

۲-۳-۷-     سیستم حفاظت از رعدو برق

۲-۳-۸-     سیستم تغذیه داخلی

۲-۳-۹-     سیستم روشنایی محوطه

۲-۳-۱۰-   سیستم مخابراتی

۲-۳-۱۱-   سیستم کابل

۲-۳-۱۲-   سیستم اطفاء حریق

۲-۳-۱۳-   تاسیسات ساختمانی

۲-۳-۱۴-   فونداسیونها

۲-۳-۱۵-   جاده های دسترسی

۲-۳-۱۶-    ساختمان نگهبانی

۲-۳-۱۷-   ساختمان دیزل ژنراتور

فصل ۳-   فواصل الکتریکی از نظر تعمیراتی ، بهره برداری و ایمنی

۳-۱-    فواصل هوایی فاز ـ زمین

۳-۱-۱-     فاصله هوایی میان هادیها و گنتری ها

۳-۱-۲-     فاصله هوایی میان هادی و زمین

۳-۱-۳-     فاصله هوایی بخشهای برق دار تجهیزات و گنتریها

۳-۲-    فواصل هوایی فاز ـ فاز

۳-۳-    فواصل ایمنی SF

۳-۳-۱-     محاسبه مقدار پایه

۳-۳-۲-     محاسبه فاصله ایمنی

۳-۳-۳-     حرکت پرسنل

۳-۳-۴-     حرکت وسایل نقلیه

۳-۳-۵-     کار روی تجهیزات

۳-۴-    فواصل از نظر زیست محیطی

۳-۴-۱-     محل پست

۳-۴-۲-     معماری پست

۳-۴-۳-     جانمایی تجهیزات

۳-۴-۴-     آلودگی محیط

۳-۴-۵-     میدانهای الکتریکی و مغناطیسی

۳-۴-۶-       خطوط ورودی و خروجی

۳-۵-     آرایش فیزیکی تجهیزات (Switchyard Layout)

۳-۵-۱-     ترتیب قرار گرفتن فازها روی باس بار

۳-۵-۲-     فواصل الکتریکی

۳-۵-۳-     ترتیب قرار گرفتن تجهیزات پست

۳-۵-۴-     محاسبه فواصل هوایی ایزو لاسیون

۳-۵-۵-     انتخاب فواصل هوایی وایمنی حد اقل فاصله فاز به زمین

۳-۶-    دیاگرام تک خطی

۳-۶-۱-      اصول کلی در تهیه دیاگرام تک خطی

فصل ۴-    ترانسفورماتور

۴-۱-    تعریف ترانسفورماتور

۴-۲-    قسمتهای اصلی و ملحقات ترانسفورماتور

۴-۲-۱-     هسته

۴-۲-۲-     سیم پیچها

۴-۲-۳-     تانک

۴-۲-۴-     منبع انبساط روغن(کنسرواتور)

۴-۲-۵-     سیم پیچ سوم

۴-۳-    اطلاعات مورد نیاز جهت طراحی

۴-۳-۱-     مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور در آن نصب می گردد

۴-۳-۲-     مشخصات محیطی و شرایط اقلیمی محل بهره برداری که ترانسفورماتور

۴-۴-    شاخص ها و پارامترهای مشخص کننده طراحی

۴-۴-۱-     انواع ترانسفورماتورهای قدرت

۴-۴-۲-     فرکانس کارترانسفورماتور

۴-۴-۳-     سیستم خنک کنندگی و ظرفیت ترانسفورماتور در هر حالت

۴-۴-۴-     توان نامی سیم پیچهای ترانسفورماتور

۴-۴-۵-     ولتاژ نامی سیم پیچ

۴-۵-    نحوه اتصالات سیم پیچها و گروه برداری

۴-۵-۱-     نحوه اتصالات سیم پیچها

۴-۵-۲-     گروه برداری

۴-۶-    تنظیم ولتاژ و مشخصات تپ چنجر

۴-۶-۱-      موقعیت تپ چنجر

۴-۶-۲-      هدف از کاربرد تپ چنجر در ترانسفورماتورها

۴-۶-۳-      میزان کل تنظیم ولتاژ و درصد هر مرحله

۴-۶-۴-      جریان نامی تیپ چنجر

۴-۶-۵-      سطوح عایقی

۴-۷-    حد اکثر ولتاژ هر یک از سیم پیچها

۴-۸-    تاثیر زمین نمودن نوترال در عایق بندی

۴-۹-    تعیین سطوح عایقی داخلی و خارجی و نوترال

۴-۱۰-  میزان افزایش مجاز درجه حرارت روغن و سیم پیچ

۴-۱۰-۱-   انواع عایقهای ترانسفورماتور

۴-۱۱-  روش خنک کنندگی

۴-۱۲-  تلفات بارداری و بی باری

۴-۱۳-  میزان مجاز صدا

۴-۱۴-  مقادیر اتصال کوتاه سیستم

۴-۱۵-  مقاومت تانک ترانسفورماتور در مقابل خلاء و اضافه فشار

۴-۱۶-  نوع ترانسفورماتور از نظر ساختمانی

۴-۱۷-  اضافه بار در ترانسفورماتور

۴-۱۸-  شرایط مربوط به موازی نمودن ترانسفورماتورها

۴-۱۹-  استفاده از محفظه کابل در طرف فشار ضعیف

۴-۲۰-  فاصله خزشی بوشینگها

۴-۲۱-  نصب ترانسفورماتور

فصل ۵-   کلید قدرت

۵-۱-    نقش کلیدهای قدرت در شبکه

۵-۲-    اجزاء تشکیل دهنده کلید

۵-۳-    نیازهای کلی

۵-۴-    اطلاعات مورد نیاز جهت طراحی

۵-۵-    شاخص هاو پارامترهای مشخص کننده طراحی

۵-۵-۱-     نوع کلید

۵-۵-۲-     نوع مکانیزم عملکرد کلید قدرت

۵-۵-۳-     تعداد پل ها

۵-۵-۴-     کلاس کلید

۵-۵-۵-     ولتاژ نامی کلید قدرت

۵-۵-۶-      سطوح عایقی نامی

۵-۵-۷-     جریان نامی

۵-۵-۸-     جریان نامی قطع شارژ خط

۵-۵-۹-     جریان نامی قطع شارژ کابل

۵-۵-۱۰-   جریان نامی قطع شارژ یک واحد بانک خازنی

۵-۵-۱۱-   جریان نامی قطع شارژ بانک خازنی پشت به پشت

۵-۵-۱۲-   جریان نامی هجومی وصل بانک خازنی

۵-۵-۱۳-   جریان نامی قطع بار اندوکتیو کم

۵-۵-۱۴-   جریان نامی قطع اتصال کوتاه

۵-۵-۱۵-   ضریب افزایش ولتاژ فاز سالم

۵-۵-۱۶-    مشخصه های نامی مربوط به اتصالی های عیب با فاصله کم از کلید

۵-۵-۱۷-   جریان نامی اتصال کوتاه وصل

۵-۵-۱۸-   توالی عملکرد نامی

۵-۵-۱۹-   مدت زمان اتصال کوتاه

۵-۵-۲۰-   جریان نامی قطع غیر هم فاز

۵-۵-۲۱-   زمان قطع نامی

۵-۵-۲۲-   مشخصات مکانیزم عملکرد کلید شامل

۵-۶-    محاسبات اتصال کوتاه

۵-۶-۱-      مقدمه

۵-۶-۲-      محاسبات اتصال کوتاه

۵-۷-    معیارهای طراحی و مهندسی انتخاب کلیدهای قدرت

فصل ۶-   سکسیونر و تیغه های زمین

۶-۱-    کلیات

۶-۲-    اطلاعات مورد نیاز جهت طراحی

۶-۲-۱-      مشخصات و ویژگیهای شبکه و سیستمی که سکسیونر یا تیغه های زمین در آن نصب و بهره برداری خواهد شد

۶-۲-۲-      مشخصات محیطی و شرایط اقلیمی محلی که سکسیونر یا تیغه های زمین در آن شرایط مورد استفاده خواهند گرفت

۶-۳-    شاخص ها و پارامترهای مشخص کننده طراحی

۶-۳-۱-      نوع سکسیونر یا تیغه های زمین

۶-۳-۲-      نوع مکانیزم عملکرد

۶-۳-۳-      تعداد پلها

۶-۳-۴-      کلاس داخلی یا بیرونی

۶-۳-۵-      ولتاژ نامی

۶-۳-۶-      سطوح عایقی نامی

۶-۳-۷-      فرکانس نامی

۶-۳-۸-      جریان نامی ( فقط برای سکسیونر و نه برای تیغه های زمین )

۶-۳-۹-      جریان نامی پیک قابل تحمل

۶-۳-۱۰-    جریان نامی وصل اتصال کوتاه ( فقط برای تیغه های زمین )

۶-۳-۱۱-    مدت زمان جریان اتصال

۶-۳-۱۲-    نیروی مکانیکی نامی ترمینالها

۶-۳-۱۳-    مشخصات مکانیسم عملکرد سکسیونر و تیغه های زمین

۶-۴-    روش قدم به قدم طراحی

۶-۴-۱-      مشخصات و ویژگیهای سیستم

۶-۴-۲-      شرایط محیطی محل نصب

۶-۴-۳-      پارامترها و مشخصه های طراحی سکسیونر و تیغه های زمین

فصل ۷-   ترانسفورماتور زمین – کمکی

۷-۱-    خصوصیات

۷-۲-    تجهیزات جانبی ترانسفورماتور زمین – کمکی

۷-۳-    اطلاعات مورد نیاز جهت طراحی

۷-۳-۱-     ویزگیهای شبکه و سیستمی که ترانسفورماتور زمین –کمکی درآن نصب می گردد

۷-۳-۲-     مشخصات محیطی که ترانسفورماتور زمین  – کمکی در آن مورد بهره قرار میگیرد

۷-۴-    شاخص ها و پارامترهای مشخص کننده طراحی

۷-۴-۱-     نوع ترانسفورماتور

۷-۴-۲-     فرکا نس کار

۷-۴-۳-     سیستم خنک کننده

۷-۴-۴-     ظرفیت نامی

۷-۴-۵-     مقدار نامی ولتاژ سیم پیچها

۷-۴-۶-      حداکثر ولتاژ سیم پیچ ها

۷-۴-۷-     جریان نامی

۷-۴-۸-     امپدانس ولتاژ

۷-۴-۹-     راکتانس

۷-۴-۱۰-   بهره برداری در ولتاژ بالاتر از ولتاژ نامی

۷-۴-۱۱-   افزایش دما پس از بارگذاری جریان کوتاه مدت

۷-۴-۱۲-   فاصله خزشی بوشینگها

۷-۴-۱۳-   گروه برداری

۷-۴-۱۴-   تپ چنجر

۷-۴-۱۵-   سطح صدا

۷-۴-۱۶-     استقامت سیم پیچ ها در برابر اتصال کوتاه

فصل ۸-    ترانسفورماتور ولتاژ

۸-۱-    مقدمه

۸-۲-    اطلاعات مورد نیاز جهت طراحی ترانسفورماتور ولتاژ

۸-۲-۱-       مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور ولتاژ خازنی در آن نصب میشود

۸-۲-۲-     مشخصات محیطی و شرایط اقلیمی منطقه و محل نصب ترانسفورماتورهای ولتاژ خازنی

۸-۳-    پارامترهای طراحی ترانسفورماتور ولتاژ

۸-۳-۱-     نوع ترانسفورماتور ولتاژ از لحاظ عایق بندی

۸-۳-۲-     نوع ترانسفورماتور از لحاظ ساختاری

۸-۴-    ولتاژ نامی اولیه

۸-۴-۱-     ولتاژ نامی ثانویه

۸-۵-    حداکثر ولتاژ سیستم Um

۸-۶-     فرکانس نامی

۸-۷-    ظرفیت خروجی ثانویه

۸-۸-    کلاس دقت

۸-۹-    سطوح عایقی

۸-۱۰-  فاصله خزشی مقره

۸-۱۱-  ضریب ولتاژ نامی

۸-۱۲-  مشخصات خازن ترانسفورماتور خازنی

۸-۱۲-۱-   مقدار ظرفیت خازنی نامی

۸-۱۲-۲-   مقاومت سری معادل

۸-۱۲-۳-   ضریب دما

۸-۱۲-۴-   محدوده تغییرات مجاز

۸-۱۳-  محدوده افزایش درجه حرارت

۸-۱۴-  روش انتخاب ترانسفورماتورولتاژ برای یک مکان خاص

۸-۱۴-۱-   مشخصات و ویژگیهای سیستم

۸-۱۴-۲-     شرایط محیطی و اقلیمی محل نصب

۸-۱۴-۳-     پارامترهای مربوط به انتخاب ترانسفورماتور ولتاژ

فصل ۹-   ترانسفورماتور جریان

۹-۱-    اندازه گیری جریان به منظور اندازه گیری توان عبوری از یک نقطه

۹-۲-    فاراده از ترانسفورماتور جریان برای تبدیل جریان در شرایط غیر عادی شبکه

۹-۳-    اطلاعات مورد نیاز جهت انتخاب ترانسفورماتورهای جریان

۹-۳-۱-     مشخصات و ویژگیهای شبکه و سیستمی که ترانسفورماتور جریان در آن نصب و بهره برداری می شود

۹-۳-۲-     مشخصات محیطی و شرایط اقلیمی منطقه و محلی که ترانسفورماتورهای جریان در آن مورد استفاده قرار می گیرد

۹-۴-    مشخصه های فنی ، پارامترها و شاخص های مورد نیاز جهت انتخاب ترانسفورماتور جریان

۹-۴-۱-     نوع ترانسفورماتور جریان

۹-۴-۲-     ولتاژ حداکثر

۹-۴-۳-     سطوح عایقی نامی

۹-۴-۴-     فاصله خزشی

۹-۴-۵-     فرکانس نامی

۹-۴-۶-      جریان نامی اولیه

۹-۴-۷-     جریان نامی ثانویه

۹-۴-۸-     نسبت تبدیل نامی

۹-۴-۹-     جریان اتصال کوتاه مدت نامی

۹-۴-۱۰-   جریان دائمی حرارت نامی

۹-۴-۱۱-   محدودیت افزایش درجه حرارت

۹-۴-۱۲-   ظرفیت نامی خروجی

۹-۴-۱۳-   کلاس دقت

۹-۴-۱۴-   انشعاب (TAP) در سیم پیچ ثانویه

فصل ۱۰- برقگیر   ( LIGHTNING ARRESTER )

۱۰-۱-  انواع برقگیرها

۱۰-۱-۱-   برقگیر بافاصله هوائی (Gap Type Arrester)

۱۰-۱-۲-   برقگیر میله ای یا آرماتور

۱۰-۱-۳-     ‌برقگیر از نوع مقاومت غیر خطی یا برقگیر بافنتیل(Non  Linear resistor type arrester)

۱۰-۱-۴-   برقگیر از نوع اکسید روی  (Gapless Zn oxide arrester (zno) )

۱۰-۲-  انتخاب و محل نصب برقگیرها

۱۰-۳-  پارامترهای اساسی در انتخاب برقگیر

۱۰-۳-۱-   سطح حفاظت مورد نیاز برقگیر: (PROTECTION LEVEL)

۱۰-۳-۲-   حداکثر ولتاژ کار مداوم برقگیر

۱۰-۳-۳-   جریان تخلیه موجی برقگیر:Id

۱۰-۳-۴-   ولتاژ سیکلیک برقگیر

۱۰-۳-۵-   فاصله سطحی یا خزشی برقگیر

۱۰-۴-  ولتاژ اسمی برقگیر

۱۰-۵-  حفاظت در مقابل صاعقه

۱۰-۵-۱-   موج گیر

۱۰-۶-  ساختمان موج گیر

۱۰-۷-  حفاظت موج گیر

۱۰-۸-  مشخصات الکتریکی موج گیر

۱۰-۹-  حالات نصب موج گیر

۱۰-۱۰-  محل نصب موج گیر

فصل ۱۱- باسبار یا شین (Bus Bar)

۱۱-۱-  تعریف شین

۱۱-۲-  شینه بندی (Busbar Arrangment)

۱۱-۲-۱-   پارامترهای مؤثر در انتخاب نوع شینه بندی

۱۱-۳-  انواع شینه بندی

۱۱-۳-۱-   شینه بندی ساده ( Single Busbar )

۱۱-۳-۲-   شینه بندی ساده جدا شده ( Bus Section )

۱۱-۳-۳-   شینه بندی ساده U شکل ( Single Busbar U )

۱۱-۳-۴-   شینه بندی اصلی و انتقالی ( Main And Transfer Bus)

۱۱-۳-۵-   شینه بندی دوبل باسبار ( Doubge Busbar )

۱۱-۳-۶-    شینه بندی ۵/۱ کلیدی ( Breaker and Half Busbar )

۱۱-۳-۷-   شینه بندی دو کلیدی ( Dodble Breaker Busbar )

۱۱-۳-۸-     شینه بندی ترکیبی ( Combine Busbar )

۱۱-۳-۹-     شینه بندی رینگی یا حلقوی ( Ring Busbar )

منابع و مراجع

چکیده:
امروزه می توان گفت که تمام وسایل صنعتی و خانگی و تجاری بطور مستقیم یا غیر مستقیم با انرژی الکتریکی سروکار دارند که نحوه تولید و توزیع این صنعت عظیم متضمن هزینه ها، نیروها و تخصص های مختلف است. یکی از مهمترین بخشهای صنعت برق همانا طراحی و احداث پست های فشار قوی می باشد که به علل گوناگون ضروری می نماید که از جملة این علتها :
1- مصارف صنعتی، خانگی و تجاری در تمام ساعات روز یکنواخت نمی باشند . بدین معنی‌که مصارف خانگی بیشتر در شبها مورد استفاده قرار می گیرند و مصارف تجاری بیشتر در ساعت روز و مصارف صنعتی به نسبه مصارف یکنواختی در طول شبانه روز دارند. این ناهمگونی مصارف در طول ساعات شبانه روز سبب می گردد که اگر بفرض شهری یا منطقه أی صنعتی باشد در تمام روز یکنواختش انرژی الکتریکی تولید می گردد. در حالیکه برای شهرها یا بخش هایی که عمدتاً مصارف روشنائی و خانگی دارند در ساعات شب، پیک تولید داشته باشند و در ساعات روز کمتر انرژی تولید گردد .
2- مراکز تولید برق (نیروگاهها) متضمن هزینه های ثابت و مخارج جاری که شامل هزینه های پرسنلی و استهلاک دستگاهها و سوخت مصرفی می باشد .
3- از آنجا که تولید انرژی الکتریکی بعواملی چون انرژی اولیه یعنی نیروی ( آب، سوخت، زغال، گازوئیل و غیره ) نیاز دارد بنابراین نیروگاهها برحسب میزان دسترسی به سوخت و انرژی های مختلف احداث می گردند. برای مثال نیروگاه آبی در جائیکه امکان ایجاد سد وجود دارد و نیروگاه بخار در نقاطی که نزدیک مراکز سوخت است ایجاد می‌گردد .
4- چون مراکز مصرف با توجه به آنچه که در مورد بند 3 توضیح داده شده عموماً در جوار مراکز تولید نیستند لذا لازم است برق بواصل دور منتقل شود. ولتاژ انتقالی با فاصله و قدرت مصرفی بستگی دارد. بطور کلی هر چقدر طول مسیر یا قدرت انتقالی بیشتر باشد ولتاژ بیشتر مورد نیاز است .
5- برای اینکه بتوان از انرژی الکتریکی که مورد نیاز مثلا"درنقطه a نمی باشد درمحل دیگری مانندb استفاده کرد لازم است که شبکه ارتباط دهنده ما مرکز تولید و مصرف مانند شبکه سراسری برق ایران وجود داشته باشد .
6- چون لازم است که از یک طرف در نقاط مختلف ( تولید، انتقال و توزیع ) ولتاژهای متفاوت داشته باشیم و از طرف دیگر شبکه ارتباطی وجود داشته باشد بنابراین مراکزی که این اعمال ( وصل کردن و تبدیل سطح ولتاژ هر نقطه با نقاط مختلف دیگر ) را بتوانند انجام دهند ضرورت پیدا می‌‌کند که این مراکز به پست های فشار قوی موسوم است .


دانلود با لینک مستقیم

دانلود پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

اختصاصی از یارا فایل دانلود پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی


دانلود پایان نامه مدلسازی و آنالیز خواص مکانیکی نانولوله های کربنی

 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:240

فهرست مطالب:

عنوان                                                                                                           صفحه

 

فهرست علائم. ر

فهرست جداول. ز

فهرست اشکال. س

 

چکیده 1

 

فصل اول..

مقدمه نانو. 3

1-1 مقدمه. 4

1-1-1 فناوری نانو. 4

1-2 معرفی نانولوله‌های کربنی.. 5

1-2-1 ساختار نانو لوله‌های کربنی.. 5

1-2-2 کشف نانولوله. 7

1-3 تاریخچه. 10

 

فصل دوم.

خواص و کاربردهای نانو لوله های کربنی.. 14

2-1 مقدمه. 15

2-2 انواع نانولوله‌های کربنی.. 16

2-2-1 نانولوله‌ی کربنی تک دیواره (SWCNT). 16

2-2-2 نانولوله‌ی کربنی چند دیواره (MWNT). 19

2-3 مشخصات ساختاری نانو لوله های کربنی.. 21

2-3-1 ساختار یک نانو لوله تک دیواره 21

2-3-2 طول پیوند و قطر نانو لوله کربنی تک دیواره 24

2-4 خواص نانو لوله های کربنی.. 25

2-4-1 خواص مکانیکی و رفتار نانو لوله های کربن.. 29

2-4-1-1 مدول الاستیسیته. 29

2-4-1-2 تغییر شکل نانو لوله ها تحت فشار هیدرواستاتیک… 33

2-4-1-3 تغییر شکل پلاستیک و تسلیم نانو لوله ها 36

2-5 کاربردهای نانو فناوری.. 39

2-5-1 کاربردهای نانولوله‌های کربنی.. 40

2-5-1-1 کاربرد در ساختار مواد. 41

2-5-1-2 کاربردهای الکتریکی و مغناطیسی.. 43

2-5-1-3 کاربردهای شیمیایی.. 46

2-5-1-4 کاربردهای مکانیکی.. 47

 

فصل سوم.

روش های سنتز نانو لوله های کربنی 55

3-1 فرایندهای تولید نانولوله های کربنی.. 56

3-1-1 تخلیه از قوس الکتریکی.. 56

3-1-2 تبخیر/ سایش لیزری.. 58

3-1-3 رسوب دهی شیمیایی بخار به کمک حرارت(CVD). 59

3-1-4 رسوب دهی شیمیایی بخار به کمک پلاسما (PECVD ) 61

3-1-5 رشد فاز بخار. 62

3-1-6 الکترولیز. 62

3-1-7 سنتز شعله. 63

3-1-8 خالص سازی نانولوله های کربنی.. 63

3-2 تجهیزات.. 64

3-2-1 میکروسکوپ های الکترونی.. 66

3-2-2 میکروسکوپ الکترونی عبوری (TEM). 67

3-2-3 میکروسکوپ الکترونی پیمایشی یا پویشی (SEM). 68

3-2-4 میکروسکوپ های پروب پیمایشگر (SPM). 70

3-2-4-1 میکروسکوپ های نیروی اتمی (AFM). 70

3-2-4-2 میکروسکوپ های تونل زنی پیمایشگر (STM). 71

 

فصل چهارم.

شبیه سازی خواص و رفتار نانو لوله های کربنی بوسیله روش های پیوسته. 73

4-1 مقدمه. 74

4-2 مواد در مقیاس نانو. 75

4-2-1 مواد محاسباتی.. 75

4-2-2 مواد نانوساختار. 76

4-3 مبانی تئوری تحلیل مواد در مقیاس نانو. 77

4-3-1 چارچوب های تئوری در تحلیل مواد. 77

4-3-1-1 چارچوب محیط پیوسته در تحلیل مواد. 77

4-4 روش های شبیه سازی.. 79

4-4-1 روش دینامیک مولکولی.. 79

4-4-2 روش مونت کارلو. 80

4-4-3 روش محیط پیوسته. 80

4-4-4 مکانیک میکرو. 81

4-4-5 روش المان محدود (FEM). 81

4-4-6 محیط پیوسته مؤثر. 81

4-5 روش های مدلسازی نانو لوله های کربنی.. 83

4-5-1 مدلهای مولکولی.. 83

4-5-1-1 مدل مکانیک مولکولی ( دینامیک مولکولی) 83

4-5-1-2 روش اب انیشو. 86

4-5-1-3 روش تایت باندینگ… 86

4-5-1-4 محدودیت های مدل های مولکولی.. 87

4-5-2 مدل محیط پیوسته در مدلسازی نانولوله ها 87

4-5-2-1 مدل یاکوبسون. 88

4-5-2-2 مدل کوشی بورن. 89

4-5-2-3 مدل خرپایی.. 89

4-5-2-4 مدل قاب فضایی.. 92

4-6 محدوده کاربرد مدل محیط پیوسته. 95

4-6-1 کاربرد مدل پوسته پیوسته. 97

4-6-2 اثرات سازه نانولوله بر روی تغییر شکل.. 97

4-6-3 اثرات ضخامت تخمینی بر کمانش نانولوله. 98

4-6-4 اثرات ضخامت تخمینی بر کمانش نانولوله. 99

4-6-5 محدودیتهای مدل پوسته پیوسته. 99

4-6-5-1 محدودیت تعاریف در پوسته پیوسته. 99

4-6-5-2 محدودیت های تئوری کلاسیک محیط پیوسته. 99

4-6-6 کاربرد مدل تیر پیوسته 100

 

فصل پنجم.

مدل های تدوین شده برای شبیه سازی رفتار نانو لوله های کربنی 102

5-1 مقدمه. 103

5-2 نیرو در دینامیک مولکولی.. 104

5-2-1 نیروهای بین اتمی.. 104

5-2-1-1 پتانسیلهای جفتی.. 105

5-2-1-2 پتانسیلهای چندتایی.. 109

5-2-2 میدانهای خارجی نیرو. 111

5-3 بررسی مدل های محیط پیوسته گذشته. 111

5-4 ارائه مدل های تدوین شده برای شبیه سازی نانولوله های کربنی.. 113

5-4-1 مدل انرژی- معادل. 114

5-4-1-1 خصوصیات محوری نانولوله های کربنی تک دیواره 115

5-4-1-2 خصوصیات محیطی نانولوله های کربنی تک دیواره 124

5-4-2 مدل اجزاء محدود بوسیله نرم افزار ANSYS. 131

5-4-2-1 تکنیک عددی بر اساس المان محدود. 131

5-4-2-2 ارائه 3 مدل تدوین شده اجزاء محدود توسط نرم افزار ANSYS. 141

5-4-3 مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB.. 155

5-4-3-1 مقدمه. 155

5-4-3-2 ماتریس الاستیسیته. 157

5-4-3-3 آنالیز خطی و روش اجزاء محدود برپایه جابجائی.. 158

5-4-3-4 تعیین و نگاشت المان. 158

5-4-3-5 ماتریس کرنش-جابجائی.. 161

5-4-3-6 ماتریس سختی برای یک المان ذوزنقه ای.. 162

5-4-3-7 ماتریس سختی برای یک حلقه کربن.. 163

5-4-3-8 ماتریس سختی برای یک ورق گرافیتی تک لایه. 167

5-4-3-9 مدل پیوسته به منظور تعیین خواص مکانیکی ورق گرافیتی تک لایه. 168

 

فصل ششم.

نتایج   171

6-1 نتایج حاصل از مدل انرژی-معادل. 172

6-1-1 خصوصیات محوری نانولوله کربنی تک دیواره 173

6-1-2 خصوصیات محیطی نانولوله کربنی تک دیواره 176

6-2 نتایج حاصل از مدل اجزاء محدود بوسیله نرم افزار ANSYS. 181

6-2-1 نحوه مش بندی المان محدود نانولوله های کربنی تک دیواره در نرم افزار ANSYS و ایجاد ساختار قاب فضایی و مدل سیمی به کمک نرم افزار ]54MATLAB [. 182

6-2-2 اثر ضخامت بر روی مدول الاستیک نانولوله های کربنی تک دیواره 192

6-3 نتایج حاصل از مدل اجزاء محدود بوسیله کد تدوین شده توسط نرم افزار MATLAB.. 196

 

فصل هفتم.

نتیجه گیری و پیشنهادات 203

7-1 نتیجه گیری.. 204

7-2 پیشنهادات.. 206

 

فهرست مراجع 207

 

فهرست علائم

تعریف                                                                                               علائم اختصاری    

 

SWCNTs : Single-Walled Carbon Nanotubes

MWCNTs : Multi-Walled Carbon Nanotubes

CNTs : Carbon Nano Tubes

MWNTs : Multi-Walled Nano Tubes

FED : Field Emission Devices

TEM : Transmission Electron Microscope

SEM : Scanning Electron Microscopy

CVD : Chemical Vapor Deposition

PECVD : Plasma Enhanced Chemical Vapor Deposition

SPM : Scanning Probe Microscopy

NEMs : Nano Electro Mechanical System

AFM : Atomic Force Microscopy

STM : Scanning Tunnelling Microscopy

FEM : Finite Element Modeling

ASME : American Society of Mechanical Engineers

RVE : Representative Volume Element

SLGS: Single-Layered Grephene Sheet

فهرست جداول

عنوان                                                                                                           صفحه

جدول 4-1: اتفاقات مهم در توسعه مواد در 350 سال گذشته ……………………………………………………………..76

جدول 5-1: خصوصیات هندسی و الاستیک المان تیر………………………………………………………………………135

جدول5-2 : پارامترهای اندرکنش واندر والس ……………………………………………………………………………….150

جدول6-1: اطلاعات مربوط به مش بندی المان محدود مدل قاب فضایی در نرم افزار ANSYS ……………184

جدول6-2 : مشخصات هندسی نانولوله های کربنی تک دیواره در هر سه مدل …………………………………….185

جدول6-3 : داده ها برای مدول یانگ در هر سه مدل توسط نرم افزار ANSYS …………………………………186

جدول6-4 : داده ها برای مدول برشی در هر سه مدل توسط نرم افزار ANSYS …………………………………187

جدول6-5 : مقایسه نتایج مدول یانگ برای مقادیر مختلف ضخامت گزارش شده …………………………………194

جدول 6-6 : مشخصات صفحات گرافیتی مدل شده با آرایش صندلی راحتی ………………………………………196

جدول 6-7 : مشخصات صفحات گرافیتی مدل شده با آرایش زیگزاگ ……………………………………………..197

جدول 6-8 : مقایسه مقادیر E، G و به دست آمده از مدل های تدوین شده در این تحقیق با نتایج موجود در منابع ……………………………………………………………………………………………………………………………………….202

 

فهرست اشکال

عنوان                                                                                                               صفحه

شکل 1-1 : میکروگراف TEMکه لایه های نانو لوله کربنی چند دیواره را نشان می دهد ………………………….4

شکل 1-2 : اشکال متفاوت مواد با پایه کربن ……………………………………………………………………………………..6

شکل 1-3 : تصویر گرفته شده TEM که فلورن هایی کپسول شده به صورت نانولوله های کربنی تک دیواره را نشان می دهد ……………………………………………………………………………………………………………………………….7

شکل 1-4 : تصویر TEM از نانولوله کربنی دو دیواره که فاصله دو دیواره در عکس TEM nm 36/0 می باشد …………………………………………………………………………………………………………………………………………..8

شکل 1-5 : تصویر TEM گرفته شده از نانوپیپاد ……………………………………………………………………………..8

شکل 2-1 : تصویر نانو لوله های تک دیواره و چند دیواره کشف شده توسط ایجیما در سال 1991…………….15

شکل 2-2 : انواع نانولوله: (الف) ورق گرافیتی (ب) نانولوله زیگزاگ (0، 12) (ج) نانولوله زیگزاگ (6، 6) (د) نانولوله کایرال (2، 10) …………………………………………………………………………………………………………..17

شکل 2-3 : شبکه شش گوشه ای اتم های کربن ………………………………………………………………………………18

شکل2-4 : تصویر شماتیک شبکه شش گوشه ای ورق گرافیتی، شامل تعریف پارامترهای ساختاری پایه و توصیف اشکال نانولوله های کربنی تک دیواره ………………………………………………………………………………..19

شکل 2-5 : شکل شماتیک یک نانولوله کربنی چند دیواره MWCNTs ……………………………………………20

شکل 2-6 : نانو پیپاد ……………………………………………………………………………………………………………………21

شکل 2-7 : شکل شماتیک یک نانو لوله که از حلقه ها شش ضلعی کربنی تشکیل شده است …………………22

شکل2-8 : تصویر شماتیک یک حلقه شش ضلعی کربنی و پیوندهای مربوطه………………………………………..22

شکل 2-9 : تصویر شماتیک شبکه کربن در سلول های شش ضلعی …………………………………………………….23

شکل 2-10: توضیح بردار لوله کردن نانو لوله، بصورت ترکیب خطی از بردارهای پایه b , a …………………23

شکل2-11: نمونه های نانولوله های صندلی راحتی، زیگزاگ و کایرال و انتها بسته آنها که مرتبط است با تنوع فلورن ها ……………………………………………………………………………………………………………………………………24

شکل 2-12: تصویر سطح مقطع یک نانو لوله …………………………………………………………………………………..25

شکل 2-13: مراحل آزاد سازی نانو لوله کربن ………………………………………………………………………………..33

شکل 2-14 : مراحل کمانش و تبدیل پیوندها در یک نانو لوله تحت بار فشاری ……………………………………..36

شکل 2-15: نحوه ایجاد و رشد نقایص تحت بار کششی الف: جریان پلاستیک، ب: شکست ترد (در اثر ایجاد نقایص پنج و هفت ضلعی) ج: گردنی شدن نانو لوله در اثر اعمال بار کششی ………………………………………….38

شکل 2-16: تصویر میکروسکوپ الکترونی پیمایشی SEM اعمال بار کششی بر یک نانو لوله …………………39

شکل 2-17: شکل شماتیک یک نانولوله کربنی به عنوان نوک AFM. ……………………………………………….47

شکل2-18 : نانودنده ها ……………………………………………………………………………………………………………….50

شکل 3- 1: آزمایش تخلیه قوس ……………………………………………………………………………………………………56

شکل 3-2 : دستگاه تبخیر/سایش لیزری ………………………………………………………………………………………….58

شکل 3-3 : شماتیک ابزار CVD …………………………………………………………………………………………………60

شکل 3-4 : میکروگرافی که صاف و مستقیم بودن MWCNTs را که به روش PECVD رشد یافته نشان می دهد …………………………………………………………………………………………………………………………………….62

شکل 3-5 : میکروگراف که کنترل بر روی نانو لوله ها را نشان می دهد: (الف)  40–50 nmو (ب). 200–300 nm …………………………………………………………………………………………………………………………………62

شکل 3-6 : نانولوله کربنی MWCNT به عنوان تیرک AFM …………………………………………………………71

شکل 4-1 : تصویر شماتیک ارتباط بین زمان و مقیاس طول روشهای شبیه سازی چند مقیاسی …………………..75

شکل 4-2 : مدل سازی موقعیت ذرات در محیط پیوسته ……………………………………………………………………..77

شکل 4-3 : محدوده طول و مقیاس زمان مربوط به روشهای شبیه سازی متداول ……………………………………..82

شکل 4-4 : تصویر تلاقی ابزار اندازه گیری و روش های شبیه سازی …………………………………………………….82

شکل 4-5 : تصویر شماتیک وابستگی درونی روش ها و اصل اعتبار روش …………………………………………….83

شکل 4-6 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه ……………………………………………85

شکل 4-7 : موقعیت نسبی اتمها در شبکه کربنی برای بدست آوردن طول پیوندها در نانولوله ……………………85

شکل 4- 8 : المان حجم معرف در نانو لوله کربنی …………………………………………………………………………….90

شکل 4- 9 : مدلسازی محیط پیوسته معادل ………………………………………………………………………………………90

شکل 4- 10 : المان حجم معرف برای مدلهای شیمیایی، خرپایی و محیط پیوسته …………………………………….92

شکل4-11 : تصویر شماتیک تغییر شکل المان حجم معرف ……………………………………………………………….92

شکل4-12 : شبیه سازی نانو لوله بصورت یک قاب فضایی ………………………………………………………………..93

شکل4- 13 : اندرکنشهای بین اتمی در مکانیک مولکولی ………………………………………………………………….93

شکل4-14: شکل شماتیک یک صفحه شبکه ای کربن شامل اتم های کربن در چیدمان های شش گوشه ای.96

شکل 4-15: شکل شماتیک گروهای مختلف نانولوله کربنی ……………………………………………………………….97

شکل 4-16: وابستگی کرنش بحرانی نانولوله به شعاع با ضخامت های تخمینی متفاوت ……………………………98

شکل 5-1: نمایش نیرو وپتانسیل لنارد-جونز برحسب فاصله بین اتمی r ………………………………………………107

شکل 5-2 : نمایش نیرو وپتانسیل مورس برحسب فاصله بین اتمی r ……………………………………………………108

شکل 5-3 : تصویر شماتیک اتمهای i،j وk و پیوندها و زاویه پیوند مربوطه …………………………………………109

شکل5-4 : فعل و انفعالات بین اتمی در مکانیک مولکولی ……………………………………………………………….115

شکل5-5 : شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ……………………..116

شکل5-6 : شکل شماتیک یک نانولوله صندلی راحتی (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ……………………………………………………………………………………………………………………………117

شکل5-7 : شکل شماتیک یک نانولوله زیگزاگ (الف) واحد شش گوشه ای (ب) نیرو های توزیع شده روی پیوند b ……………………………………………………………………………………………………………………………………120

شکل5– 8 : تصویر شماتیک توزیع نیروها برای یک نانولوله کربنی تک دیواره …………………………………..122

شکل 5-9 : تصویر شماتیک توزیع نیرو در یک نانولوله کربنی زیگزاگ …………………………………………….124

شکل5- 10: تصویر شماتیک (الف) نانولوله کربنی Armchair، (ب) مدل تحلیلی برای تراکم در جهت محیطی (ج) روابط هندسی ………………………………………………………………………………………………………….125

شکل 5-11: تصویر شماتیک (الف) نانولوله کربنیZigzag(ب)مدل تحلیلی برای فشار در جهت محیطی…129

شکل 5-12: تعادل مکانیک مولکولی و مکانیک ساختاری برای تعاملات کووالانس و غیر کووالانس بین اتم های کربن (الف) مدل مکانیک مولکولی (ب) مدل مکانیک ساختاری ……………………………………………….132

شکل 5-13: منحنی پتانسیل لنارد-جونز و نیروی واندروالس نسبت به فاصله اتمی …………………………………133

شکل5-14 : رابطه نیرو (بین پیوند کربن-کربن) و کرنش بر اساس پتانسیل بهبود یافته مورس ………………….137

شکل 5-15 :استفاده از المان میله خرپایی برای شبیه سازی نیروهای واندروالس …………………………………..138

شکل5-16 : منحنی نیرو-جابجائی غیر خطی میله خرپایی …………………………………………………………………139

شکل 5-17: تغییرات سختی فنر نسبت به جابجائی بین اتمی ………………………………………………………………140

شکل 5-18: مدل های المان محدود ایجاد شده برای اشکال مختلف نانولوله (الف) :صندلی راحتی (7،7) (ب):زیگزاگ(7،0) (ج): نانولوله دودیواره (5،5) و (10،10) …………………………………………………………….140

شکل5-19 : المان های نماینده برای مدل های شیمیایی ، خرپایی و محیط پیوسته ………………………………….142

شکل 5-20 : شبیه سازی نانولوله های کربنی تک دیواره به عنوان ساختار قاب فضایی ………………………….144

شکل5-21 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی تک دیواره: (الف) زیگزاگ (7،0) ، (ب) صندلی راحتی (7،7) ، (ج) زیگزاگ (0،10) ، (د) صندلی راحتی (7،7) ……………………………145

شکل5-22 : شرایط مرزی و بارگذاری بر روی مدل المان محدود نانو لوله کربنی چند دیواره: (الف) مجموعه 4 دیواره نانولوله زیگزاگ (5،0) (14،0) (23،0) (32،0) تحت کشش خالص ، (ب) مجموعه 4 دیواره نانولوله صندلی راحتی (5،5) (10،10) (15،15) (20،20) تحت پیچش خالص …………………………………………………145

شکل5-23 : نانولوله تحت کشش ………………………………………………………………………………………………..147

شکل5-24 : یک نانولوله کربنی تک دیواره شبیه سازی شده به عنوان ساختار قاب فضایی ……………………..148

شکل5-25 : شکل شماتیک اتمهای کربن و پیوند های کربن متصل کننده آنها در ورق گرافیت ……………..148

شکل 5-26 : نمودار Eωa بر حسب فاصله بین اتمی ρa ………………………………………………………………….150

شکل 5-27 : شکل شماتیک شش گوشه ای کربن و اتم های کربن و پیوندهای کواالانس و واندروالس …..151

شکل5-28 : شکل شماتیک شش گوشه ای کربن که تنها پیوندهای کووالانس را نشان می دهد ……………..151

شکل5-29 : سه حالت بارگذاری برای معادل سازی انرژی کرنشی مدل ها ………………………………………….152

شکل5-30 : شکل شماتیک از شش گوشه ای کربن و نیرو های غیر پیوندی ……………………………………….154

شکل5-31 : شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن …154

شکل5-32: یک مدل جزئی از ساختار شبکه ای رول نشده که نانولوله کربنی را شکل می دهد. شش ضلعی های متساوی الاضلاع نماینده حلقه های شش ضلعی پیوند های کووالانس کربن می باشد، که هر رأس آن محل قرار گیری اتم کربن می باشد ……………………………………………………………………………………………………..156

شکل5-33 : شکل یک حلقه کربن به صورت یک شش ضلعی متساوی الاضلاع و هر اتم کربن به عنوان گره با نامگذاری قراردادی ……………………………………………………………………………………………………………………159

شکل 5-34 : شکل یک ذوزنقه متساوی الساقین از حلقه شش گوشه ای کربن (الف) در فضای x و y (ب) شکل نگاشت یافته در فضای r و s ………………………………………………………………………………………………..159

شکل 5-35 : المان ذوزنقه ای هم اندازه و مشابه المان اصلی ABCF که در صفحه به اندازه زاویه θ چرخیده است ……………………………………………………………………………………………………………………………………….163

شکل 5-36 : شش حالت ممکن ذوزنقه شکل گرفته در شش گوشه ای کربن ABCDEF. هر ذوزنقه یک شکل دوران یافته از دیگری است ………………………………………………………………………………………………..166

شکل 5-37 : حلقه شش گوشه ای کربن ABCDEF که تشکیل شده از دو ذوزنقه ABCD و DEFC، دراین شکل نشان داده شده که در این حالت تنها CF ایجاد شده است ……………………………………………….167

شکل 5-38 : شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی ……………………168

شکل 5-39 : پارامترهای هندسی ورق گرافیتی ………………………………………………………………………………..169

شکل 5-40 : مدل ورق گرافیتی زیگزاگ.ورق گرافیتی تک لایه a)تحت کشش b)تحت بار های مماسی..170

شکل6-1: شکل شماتیک (الف) یک نانولوله صندلی راحتی (ب) یک نانولوله زیگزاگ ………………………172

شکل 6-2 : تغییرات مدول یانگ در جهت محوری E……………………………………………………………………..173

شکل 6-3 : تغییرات مدول برشی G ……………………………………………………………………………………………..174

شکل 6-4 : تغییرات مدول یانگ در جهت محوری E نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t …………………………………………………………………………………………………………………………………..174

شکل 6-5 : تغییرات مدول برشی نانولوله های کربنی با قطر یکسان نسبت به ضخامت دیواره t…………………175

شکل 6-6 : تغییرات نسبت پواسون ……………………………………………………………………………………………175

شکل 6-7 : تغییرات مدول یانگ در جهت محیطی( Eθ) ………………………………………………………………..176

شکل 6-8 : تغییرات مدول یانگ در جهت محیطی( Eθ) نانولوله های کربنی با قطر یکسان، نسبت به ضخامت دیواره t……………………………………………………………………………………………………………………………………177

شکل 6-9 : تغییرات نسبت پواسون(νθz) ……………………………………………………………………………………..177

شکل 6-10: مقایسه تغییرات مدول یانگ در جهت محوری E نسبت به قطر…………………………………………178

شکل 6-11: مقایسه تغییرات مدول یانگ در جهت محیطی ( Eθ) نسبت به قطر……………………………………179

شکل 6-12: مقایسه تغییرات مدول برشی نسبت به قطر…………………………………………………………………….179

شکل 6-13: مقایسه تغییرات نسبت پواسون(νθz) نانولوله های کربنی نسبت به قطر………………………………180

شکل6-14: نمودار تنش-کرنش برای نانولوله کربنی صندلی راحتی……………………………………………………181

شکل6-15: شکل شماتیک شش گوشه ای کربن همرا با تنها 6 پیوند کووالانس……………………………………181

شکل6-16: شکل شماتیک شش گوشه ای کربن و اتم های کربن و6 پیوند کواالانس و6پیوند واندروالس..182

شکل6-17: شکل شماتیک شش گوشه ای کربن با در نظر گرفتن 9 پیوند واندروالس بین اتم های کربن…..182

شکل6-18: مش بندی المان محدود نانولوله های کربنی تک دیواره صندلی راحتی و زیگزاگ ………………183

شکل6-19: نانولوله های کربنی تک دیواره صندلی راحتی(12،12) و زیگزاگ(14،0) تحت تست کشش…184

شکل6-20 :کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست کشش….185

شکل6-21 : نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش …………………………186

شکل6-22 : کانتور تغییر شکل نانولوله های کربنی تک دیواره صندلی راحتی(12،12) تحت تست پیچش ..187

شکل 6-23 : مقایسه تغییرات مدول یانگ نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود ……………………………………………………………………………………………………………………………188

شکل 6-24 : مقایسه تغییرات مدول یانگ نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود ……………………………………………………………………………………………………………………………………188

شکل 6-25 : مقایسه تغییرات مدول برشی نانولوله تک دیواره صندلی راحتی نسبت به قطر برای هر سه مدل اجزاء محدود ……………………………………………………………………………………………………………………………189

شکل 6-26 : مقایسه تغییرات مدول برشی نانولوله تک دیواره زیگزاگ نسبت به قطر برای هر سه مدل اجزاء محدود ……………………………………………………………………………………………………………………………………190

شکل 6-27:مقایسه تغییرات نسبت پواسون نانولوله تک دیواره نسبت به قطر برای هر سه مدل اجزاء محدود.190

شکل 6-28 : مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست کشش ………………………………..191

شکل 6-29 : مدل اجزاء محدود نانولوله تک دیواره (12و12) بعد از تست پیچش ………………………………..192

شکل6-30 : شماتیک سه شکل نانولوله: مدل مولکولی، مدل ساختاری، و مدل معادل پیوسته ………………….193

شکل6-31 : فاصله بین لایه های ورق گرافیتی ……………………………………………………………………………….193

شکل 6-32 : مقایسه مدول یانگ برای نانولوله کربنی (8،8) در ضخامت های مختلف با نتایج موجود در مراجع ………………………………………………………………………………………………………………………………………………195

شکل 6-33 : پارامترهای هندسی ورق گرافیتی ………………………………………………………………………………..196

شکل 6-34 : شکل شماتیک حلقه کربن شش گوشه ای به عنوان المان پایه صفحه گرافیتی…………………….197

شکل 6-35 : مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t…………… 198

شکل 6-36 : مقایسه تغییرات مدول یانگ صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t……………………198

شکل 6-37 : مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره صندلی راحتی نسبت n, t …………..199

شکل 6-38 : مقایسه تغییرات مدول برشی صفحه گرافیتی تک دیواره زیگزاگ نسبت n, t ………………….199

شکل 6-39 : مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره صندلی راحتی نسبت n……………..200

شکل 6-40 : مقایسه تغییرات نسبت پواسون صفحه گرافیتی تک دیواره زیگزاگ نسبت n …………………..200

 

چکیده:

از آنجائیکه شرکت های بزرگ در رشته نانو فناوری مشغول فعالیت هستند و رقابت بر سر عرصه محصولات جدید شدید است و در بازار رقابت، قیمت تمام شده محصول، یک عامل عمده در موفقیت آن به شمار می رود، لذا ارائه یک مدل مناسب که رفتار نانولوله های کربن را با دقت قابل قبولی نشان دهد و همچنین استفاده از آن توجیه اقتصادی داشته باشد نیز یک عامل بسیار مهم است. به طور کلی دو دیدگاه برای بررسی رفتار نانولوله های کربنی وجود دارد، دیدگاه دینامیک مولکولی و محیط پیوسته. دینامیک مولکولی با وجود دقت بالا، هزینه های بالای محاسباتی داشته و محدود به مدل های کوچک می باشد. لذا مدل های دیگری که حجم محاسباتی کمتر و توانایی شبیه سازی سیستمهای بزرگتر را با دقت مناسب داشته باشند بیشتر توسعه یافته اند.

پیش از این بر اساس تحلیل های دینامیک مولکولی و اندرکنش های بین اتم ها، مدلهای محیط پیوسته، نظیر مدلهای خرپایی، مدلهای فنری، قاب فضایی، بمنظور مدلسازی نانولوله ها، معرفی شده اند. این مدلها، بدلیل فرضیاتی که برای ساده سازی در استفاده از آنها لحاظ شده اند، قادر نیستند رفتار شبکه کربنی در نانولوله های کربنی را بطور کامل پوشش دهند.

در این پایان نامه از ثوابت میدان نیرویی بین اتمها و انرژی کرنشی و پتانسیل های موجود برای شبیه سازی رفتار نیرو های بین اتمی استفاده شده و به بررسی و آنالیز رفتار نانولوله های کربنی از چند دیدگاه مختلف می پردازیم، و مدل های تدوین شده را به شرح زیر ارائه می نمائیم:

  1. مدل انرژی- معادل
  2. مدل اجزاء محدود بوسیله نرم افزار ANSYS
  3. مدل اجزاء محدود بوسیله کد عددی تدوین شده توسط نرم افزار MATLAB

مدل های تدوین شده به منظور بررسی خصوصیات مکانیکی نانولوله کربنی تک دیواره بکار گرفته شده است. در روش انرژی- معادل، انرژی پتانسیل کل مجموعه و همچنین انرژی کرنشی نانو لوله کربنی تک دیواره بکار گرفته می شود. خصوصیات صفحه ای الاستیک برای نانو لوله های کربنی تک دیواره برای هر دو حالت صندلی راحتی و زیگزاگ در جهت های محوری و محیطی بدست آمده است.

در مدل اجزاء محدود بوسیله نرم افزار ANSYS ، به منظور انجام محاسبات عددی، نانو لوله کربنی با یک مدل ساختاری معادل جایگزین می شود.

در مدل اجزاء محدود سوم، کد عددی توسط نرم افزار MATLAB تدوین شده که از روش اجزاء محدود برای محاسبه ماتریس سختی برای یک حلقه شش ضلعی کربن، و تعمیم و روی هم گذاری آن برای محاسبه ماتریس سختی کل صفحه گرافیتی، استفاده شده است.

اثرات قطر و ضخامت دیواره بر روی رفتار مکانیکی هر دو نوع نانو لوله های کربنی تک دیواره و صفحه گرافیتی تک لایه مورد بررسی قرار گرفته است. مشاهده می شود که مدول الاستیک برای هر دو نوع نانو لوله های کربنی تک دیواره با افزایش قطر لوله بطور یکنواخت افزایش و با افزایش ضخامت نانولوله، کاهش می یابد. اما نسبت پواسون با افزایش قطر ،کاهش می یابد. همچنین منحنی تنش-کرنش برای نانولوله تک دیواره صندلی راحتی پیش بینی و تغییرات رفتار آنها مقایسه شده است. نشان داده شده که خصوصیات صفحه ای در جهت محیطی و محوری برای هر دو نوع نانو لوله کربنی و همچنین اثرات قطر و ضخامت دیواره نانو لوله کربنی بر روی آنها یکسان می باشد. نتایج به دست آمده در مدل های مختلف یکدیگر را تایید می کنند، و نشان می دهند که هر چه قطر نانو لوله افزایش یابد، خواص مکانیکی نانولوله های کربنی به سمت خواص ورقه گرافیتی میل می کند.

نتایج این تحقیق تطابق خوبی را با نتایج گزارش شده نشان می دهد.


دانلود با لینک مستقیم

پایان نامه رشته عمران پیرامون آنالیز و طراحی اعضای خمشی پیش تنیده

اختصاصی از یارا فایل پایان نامه رشته عمران پیرامون آنالیز و طراحی اعضای خمشی پیش تنیده دانلود با لینک مستقیم و پرسرعت .

پایان نامه رشته عمران پیرامون آنالیز و طراحی اعضای خمشی پیش تنیده


پایان نامه رشته عمران پیرامون آنالیز و طراحی اعضای خمشی پیش تنیده

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:71

فهرست مطالب:
 
۱- مقدمه ۱
پیش تنیدگی چیست؟ ۴
۴٫ شیوه‌های مختلف پیش تنیدگی ۱۵
۵- سطح مقطع تبدیل یافته ۲۰
تغییرات کرنش در بتن ۲۵
۶-۱ کلیات ۲۵
۶-۳ کرنش‌های دراز مدت در بتن ۲۷
۶-۳-۱ خزش در بتن ۲۸
عوامل موثر بر خزش عبارتند از: ۲۹
عوارض ناشی از خزش عبارتند از: ۳۰
۶-۳-۲ جمع شدگی بتن ۳۱
عوامل موثر بر جمع شدگی عبارتند از: ۳۱
عوامل ناشی از جمع شدگی عبارتند از: ۳۲
۷- تغییرات تنش در فولادهای پیش تنیدگی ۳۳
۷-۱ کلیات ۳۳
۷-۲-۳ محاسبه اتلاف‌های ناشی از خزش در بتن ۴۸
۷-۲-۴ محاسبه اتلاف‌های ناشی از وادادگی فولادهای پیش تنیدگی ۴۸
الف- برای اعضای پیش کشیده: ۴۸
ب) برای اعضای پس کشیده: ۴۸
۸ـ آنالیز و طراحی اعضای خمشی پیش تنیده ۵۵
(۱) تنش های مجاز فولاد: ۶۳
(۲) تنش های مجاز بتن: ۶۴
(۳) مدول گسیختگی بتن: ۶۴
۳٫۳٫۸ طراحی تیرهای معین پیش تنیده ۶۵
 
مقدمه:
قبل از پیدایش تکنیک پیش تنیدگی، پل های بتن آرمه تنها برای پوشش دادن به دهانه های نسبتاً کوتاهی بکار برده می شدند. محدودیت طول دهانه در این پل ها دارای دو عامل اساسی بوده است. زیرا اولا برای دهانه های بلندتر حجم مصالح مصرفی(بتن و فولاد) بسرعت افزوده می گردد. بطوریکه بار مرده سازه خود یک عامل بحرانی در طراحی مقطع محسوب خواهد شد، ثانیاً هزینه های مربوط به قالب بندی و شمعک گذاری چنین عرشه هائی مقادیر بسیار بزرگی را بخود اختصاص خواهد داد. با توجه به دو عامل یاد شده، معمولا راه حل دیگر یعنی استفاده از شاهتریهای فولادی ترجیح داده می شد.
با ابداع شیوه پیش تنیدگی و بکارگیری آن در صنعت پلسازی، تا حدود زیادی مشکل مربوط به اقتصاد مصالح مصرفی برطرف گردید. استفاده از این تکنیک منجر به پیدایش مقاطع ظریف تری شد و با کاهش بار مرد‌ه عرشه امکان پوشش دادن به دهانه های بلندتری فراهم گردید. اما متاسفانه مشکل دوم یعنی هزینه های بسیار بالای مربوط به قالب بندی و چوب بست های مورد نیاز در اجرای چنین پل هائی بقوت خود باقی ماند، بطوریکه در دهانه های بلند قسمت بزرگی از هزینه ها به فاکتورهای یاد شده اختصاص داشته است. استفاده از شاهتیرهای پیش ساخته پیش تنیده هم نتوانست این مشکل را برطرف نماید زیرا محدودیت های مربوط به طول قطعات در هنگام حمل، امکان استفاده از چنین قطعاتی را در دهانه های بلند منتفی می نمود. از طرف دیگر حمل و نقل و نصب چنین شاهتیرهائی نیاز به استفاده از ابزارهای ویژه و گران قیمتی را بوجود می آورد.
امروزه پل های صندوقه ای قطعه ای پس کشیده در سرتاسر جهان مورد استقبال واقع شده اند و با بکارگیری این شیوه دهانه هائی با طور بیش از ۲۵۰ متر پوشش داده شده اند. این پل ها ضمن بکارگیری مزایای بتن پیش تنیده، راه حل سریع و کم هزینه ای برای پوشش دادن به دهانه های بلند می باشند.
برخی از مزایای این قبلی پل ها عبارتند از:
۱- کاهش ابعاد مقطع و در نتیجه کاهش بار مرده عرشه بواسطه بکارگیری پیش تنیدگی؛
۲- افزایش راندمان مقطع بواسطه ترک نخوردن آن و قابلیت آن در تحمل لنگرهای خشمی با علامات مثبت یا منفی؛
۳- سختی نسبتا زیاد مقاطع صندوقه ای در مقابل پیچش؛
۴- سرعت زیاد و هزینه نسبی کم برای پوشش دادن به دهانه های بلند؛
۵- عدم نیاز به چوب بست ها در هنگام عبور از موانع طبیعی نظیر درها یا رودخانه ها، و یا موانوع مصنوعی نظیر شاهراه های پرتردد؛
۶- امکان بکارگیری تکنیک پیش ساختگی در پروژه های بزرگ و یا تکراری
با توجه به مطالب فوق، بررسی ضوابط طراحی و اصول اجرایی پل های پس تنیده همواره مورد توجه آیین نامه های معتبر کشورهای صنعتی قرار گرفته است و هر کدام به تناسب شرایط اقلیمی و ارکانی استانداردهای خاصی را تدوین کرده و در بخش جداگانه ای ارائه کرده اند. آیین نامه آشتوآمریکا که در پل سازی دارای پیشینه ای دور و دراز می باشد در فصل نهم به بتن پیش تنیده در پل سازی پرداخته است که در ادامه خواهد آمد. همچنین آیین نامه های کهن و معروف دیگر از جمله آیین نامه انگلستان با نام BSI، آیین نامه اروپا با نام EUROCODE و آیین نامه آلمان (DIN) و … نیز فصول معینی که این مهم آورده اند که از این بین ما دو آیین نامه پرکاربرد و قدیمی آشتو و BSI انگلستان را برای مقایسه و بررسی فنی انتخاب نموده ایم، که در فصول دهم و یازدهم متون ترجمه شده این دو آیین نامه با سیستم MKS در این مجمل آورده شده است که امید می رود مورد استفاده دانشجویان و اساتید گرانقدر قرار گیرد.
 
پیش تنیدگی چیست؟
امرزه با بکارگیری مصالح پرمقاومت و همچنین استفاده از شیوه های نوین طراحی، سازه های اقتصادی تری طراحی و اجرا شده است. استفاده از مصالح پرمقاومت موجب کاهش مقطع عرضی اعضا و متعاقب آن کاهش کلی بار مرده سازه های شده است. این پیشرفت خصوصاً در مورد سازه های بتن مسلح چشمگیرتر بوده است، زیرا در طراحی این گونه اعضا بار مرده قسمت عمده ای از بارهای طراحی را تشکیل می دهد. در برخی سازه های خاص اهمیت کاهش ابعاد مقطع بمراتب بیشتر می باشد، برای مثال در پل های دهانه بلند این مطلب حائز اهمیت زیادی است، در چنین پل هائی بار مرده عرشه لنگرهای بزرگتری را در مقایسه با بارهای طراحی ایجاد می نماید؛ همچنین قسمت عمده بار وارد بر پایه ها و فونداسیون ها ناشی از وزن روسازه می باشد. استفاده از بتن های با مقاومت فشاری بالا و همچنین فولادهای پرمقاومت موجب طراحی اعضای بتن آرمه ظریف تری شده است، با این وجود محدودیتهائی در استفاده از این پیشرفتهای جدید موجود می باشد که قسمت عمده آن ناشی از مسئله ارتباط متقابل بین ایجاد ترک در اعضاء بتن آرمه و خیز آنها در مرحله بهره برداری می باشد. با توجه به رفتار اعضای بتن آرمه، راندمان استفاده از فولادهای پرمقاومت محدود می باشد زیرا تنش در این فولاد متناسب با توزیع کرنش کلی موجود در مقطع بوده و افزایش کرنش ها در مقطع با افزایش دامنه و عرض ترک ها همراه خواهد بود. این ترک ها از دو جنبه مطلوب نمی باشند، اول آنکه در محیط هائی که بتن در مجاورت عوامل فرسایش دنهده شیمیائی است وجود ترک ها موجب خوردگی شدید آرماتورها خواهد گردید. از جنبه دیگر گسترش ترک ها کاهش سختی خمش عضو را بدنبال داشته و خیز عضو را خواهد افزود. چنین اعضائی از نظر سرویس دهی، مطلوب نخواهند بود.
این ویژگیهای نامطلوب در اعضای بتن آرمه معمولی، با ابداع شیوه پیش تنیدگی اصلاح شده است. یک عضو پیش تنیده بتن آرمه عضوی است که تنش هائی از قبل در آن قرار داده شده باشد، این تنش ها در تمامی طول عمر عضو با آن همراه است. فلسفه این تنش های از پیش قرار داده شده، مقابله یا مخالفت با تنش های ناشی از بارهای بهره برداری و حتی المقدور خنثی کردن اثر آنها می باشد. بتن ماهیاتاً عضوی فشاری است و می توان مقاومت کششی آن را ناچیز دانسته و از آن صرفنظر نمود، پیش تنیدگی در واقع عضو را تحت نوعی فشار اولیه قرار می دهد، بصورتیکه نتیجه آن کاهش تنش های کششی در مقطع به حد مجاز و یا اساساً حذف آنها خواهد بود. بدین صورت ترک خوردگی تحت بارهای بهره برداری منتفی خواهد گردید. برای روشن تر شدن مفهوم پیش تنیدگی، عضو خمشی موجود در شکل (۲-۱ الف) را مورد توجه قرار می دهیم. در کنار این عضو مقطع آن ترسیم شده و مرکز سطح در حالت ترک نخورده با C.G.C نمایش داده شده است. Wt در این شکل مشخص کننده مجموع بارهای اعمالی به عضو بوده و شامل اجزای زیر است:
Wg= بار مرده خالص تیر
Wd= بار مرده اضافی (بعنوان مثال در عرشه های بتن آرمه وزن روسازی، جداول و پیاده روها جزء Wd محسوب می شوند)
Wl= بارهای زنده
(۲-۱) Wt=Wg+Wd+Wl
با اعمال Wt عضو تغییر شکل داده و در تارهای پائین مقاطع آن تنش کششی ایجاد خواهد گردید. با توجه به ضعف بتن در مقابل کشش و بمنظور جلوگیری از گسترش ترک های خمشی، در اعضای بتن آرمه معمولی در ترازی نزدیک به تارهای پائینی مقطع فولادهائی قرار داده می شود. تنش موجود در این فولادها متناسب با کرنش موجود در مقطع می باشد، نیروی کششی موجود در فولادها با نیروی فشاری تحمل شده توسط بتن در هر مقطع برابر می باشد. این دو نیرو لنگر مقاوم داخلی را تولید می نمایند. که در برابر لنگر ناشی از بارهای خارجی مقاومت خواهد نمود. لنگر ناشی از بارهای خارجی Wt در شکل (۲-۱ ب) ترسیم شده است. هر اندازه طول دهانه بزرگتر باشد لنگر حاصل از بارهای خارجی نیز بزرگتر خواهد خواهد بود که برای جبران آن باید اساس مقطع و همچنین مقدار فولادهای کششی را افزود، اما برای دهانه های بسیار بزرگ و مقادیر زیاد Wt این شیوه دیگر جبران کننده نخواهد بود، زیرا اولا با افزایش اساس مقطع، Wg نیز افزوده خواهد شد و بنابراین Wt نیز مقدار بزرگتری را بدست خواهد آورد، ثانیاً همانگونه که ذکر شد تنش های موجود در فولادها متناسب با کرنش بتن هم تراز آنها می باشد، بنابراین برای وصول نیروی کششی بیشتر در فولادها ترک ها باید در عضو گسترش یابند که این امر خود موجب افزایش خیز عضو خواهد گردید.
بجای استفاده از این سیستم می توان از ایده دیگری کمک گرفت. در شکل (۲-۱ پ) همان عضو تحت اثر دو نیروی فشاری با مقادیری برابر P قرار گرفته است. این دو نیرو در ترازی بفاصله e از مرکز سطح مقطع عضو به آن وارد می شوند. در شکل (۲-۱ ت) دیاگرام لنگر حاصل از این نیروها ترسیم شده است، که مقدار آن در تمامی نقاط ثابت و برابر –P.e می باشد. بنابراین هر گاه عضو تحت اثر مشترک بارگذاری های موجود در شکل های (۲-۱ الف) و (۲-۱ پ) قرار داشته باشد دیاگرام لنگر خمشی حاصل مطابق شکل (۲-۱ ث) خواهد بود. در این حالت همانگونه که مشاهده می گردد اثر بار اعمالی Wt توسط بارگذاری دیگر تخفیف داده شده است. در چنین حالتی دیگر مقطع وسط دهانه لزوما از نظر طراحی بحرانی نخواهد بود.
 
برای درک بهتر اثرات بارگذاری موجود در شکل (۲-۱ پ)، مقطعی از عضو را بفاصله X از تکیه گاه آن مطابق شکل (۲-۲ الف) در نظر می گیریم، در این شکل توزیع تنش کلی موجود در مقطع ترسیم شده است که می توان آن را مجموع توزیع های ناشی از نیروهای خارج از مرکز P و بارهای اعمالی Wt دانست. توزیع های ناشی از این دو بارگذاری بترتیب در شکل های (۲-۲ ب) و (۲-۲ پ) آمده است.
توزیع تنش کلی در مقطع مورد بررسی به محل مقطع، مقدار P و خروج از مرکزیت e بستگی دارد و می توان دو کمیت آخر را چنان تنظیم نمود که در هیچ مقطع از عضو تنش های کششی ایجاد نگردد. بارگذاری موجود در شکل (۲-۱ پ) در واقع بیان ساده ای از یک عضو پیش تنیده بانیروی پیش تنیدگی P و خروج از مرکزیت ثابت e می باشد. با توجه به موارد فوق چنین می توان نتیجه گرفت که پیش تنیدگی در حقیقت قرار دادن تنش های داخلی در عضو بوده بنحوی که این تنش ها اثر بارهای خارجی را تخفیف دهند. شیوه های مختلف پیش تنیدگی، انتخاب مسیر مناسب برای آن و نیروی مورد نیاز مسائلی هستند که در بخشهای آینده روشن تر خواهند گردید.
چنین بنظر می رسد که نخستین پیشنهادها برای پیش تنیدگی در بین سالهای ۱۸۸۶ تا ۱۹۰۸ توسط P.H.Jackson و G.R.Steiner آمریکائی، J.Koenen آلمانی، صورت پذیرفته باشد. استفاده از فولادهای با مقاومت بالا نخستین بار در سال ۱۹۲۳ توسط F. von Emperger اطریشی پیشنهاد گردید و تقریباً در همان زمان R.H.Dill آمریکائی پیش تنیدگی کامل را بمنظور حذف ترک ها ارائه نمود. این پیشنهادها غالباً تنها بر روی کاغذ باقی ماندند، اولین اقدامات عملی برای ایجاد یک سازه بتنی پیش تنیده عمدتاً توسط E.Freyssinet و Y.Guyon فرانسوی، E.Hoyer آلمانی و G.Magnel بلژیکی صورت پذیرفتند. اولین پل پیش تنیده بتنی در سال ۱۹۴۱ در فرانسه بر روی رودخانه مارن اجرا گردید. این پل با دهانه ۵۴ متر از کارهای Freyssinet بوده و نام او را در این صنعت جاودان ساخته است.
۳- فولاد و بتن مورد مصرف در صنعت پیش تنیدگی
تاندون های  پیش تنیدگی می توانند متشکل از سیم ها ، کابل ها   و یا میلگردها  باشند. در صنعت پیش تنیدگی کابل های ۷- سیمه متداول تر بوده و مشخصات آنها مطابق با استانداردهای ASTM A416  می باشد. در گذشته کابل های تنش زدائی شده (Stress-Relieved)، در مقیاس وسیعی بکار برده می شدند؛ اما امروزه کابل های با وادادگی اندک(Low-Relaxation)، شیوع فراوان تری یافته اند. مزیت استفاده از کابل های نوع اخیر پایین تر بودن اتلاف های ناشی از وادادگی  می باشد، برای(روشن شدن این مفهوم به بخش (۷-۲) مراجعه شود).
میلگردها و سیم های پیش تنیدگی کمتر بعنوان فولادهای اصلی در اعضای پیش تنیده بکار برده می شوند و مشخصات آنها را می توان در استانداردهای ASTM A421 و ASTM A722 جستجو نمود. در جداول (۳-۱) تا (۳-۶) مشخصات فولادهای پیش تنیدگی آمده است.

دانلود با لینک مستقیم

پایان نامه آنالیز کمی آب

اختصاصی از یارا فایل پایان نامه آنالیز کمی آب دانلود با لینک مستقیم و پرسرعت .

پایان نامه آنالیز کمی آب


پایان نامه آنالیز کمی آب

 

 

 

 

 

 

 

 

 



فرمت:word(قابل ویرایش)

تعداد صفحات:102

 

مقدمه:
آب نشانه حیات است.این مایع حیات بخش که نمی توان آن را با هیچ ماده دیگری جایگزین نمود از منابع محدودی برخوردار بوده وکمبود آن به همراه رشد روز افزون جمعیت، زندگی بشری را در آستانه یک بحران حدی قرار داده است. این مسئله مهم باعث گردیده تا تلاشهای گسترده ای برای استفاده بهینه از منابع موجود آب صورت گیرد. یکی از این اقدامات، جلوگیری از تلفات آب در شبکه های توزیع آب شهری است تلفات آب در شبکه های توزیع آب شهری از دو دیدگاه مختلف حیاتی و اقتصادی قابل بررسی می باشد.

تامین، تصفیه، انتقال و توزیع آب آشامیدنی در شبکه های توزیع آب شهری، مستلزم صرف هزینه های مختلفی است که باعث می گردد آب در شبکه های توزیع آب شهری نه تنها به عنوان یک ماده حیاتی بلکه به عنوان یک کالای اقتصادی در نظر گرفته شود. به همین دلیل در چند دهه اخیر، مفهوم آب به حساب نیاممده که رد برگیرنده مفاهیم مربوط به تلفات آب از دو دیدگاه اقتصادی و حیاتی می باشد مورد توجه کارشناسان قرار گرفته است تا کنون تعاریف مختلفی برای آب به حساب نیامده ارائه گردیده است یکی از کاملترین تعریفها در این زمینه به صورت زیر می باشد:

فهرست مطالب:
1-2هدف از انجام این تحقیق 5
1-3مروری بر مطالب فصلهای بعدی 6
فصل دوم 8
مروری بر ادبیات فنی 8
2-1مقدمه 8
2-2- آنالیز آب به حساب نیامده در شبکه های توزیع آب شهری 8
2-3 آب به حساب نیامده در شبکه های توزیع آب شهری (U.F.W) 9
الف) تلفات فیزیکی 10
1-تلفات زمینه (Background Losses) 11
2-شکستگی ها (Bursts) 11
ب- تلفات غیر فیزیکی 12
2-4 تاریخچه فعالیتهای انجام شده جهت آنالیز آب به حساب نیامده 13
2-5 روشهای آنالیز آب به حساب نیامده 15
2-6- حداقل جریان شبانه (NFM) 19
2-6-2 مولفه های حداقل جریان شبانه 20
26-3 عوامل موثر بر حداقل جریان شبانه 21
2- شکستگی ها (Bursts) 21
3- مصارف شبانه 21
2-6-3-1 تغییرات حداقل جریان شبانه با ابعاد ایزوله 22
2-6-3-2 تاثیر فرکانس اندازه گیری حداقل جریان شبانه 22
2-6-3-3 تاثیر تدوام اندازه گیری حداقل جریان شبانه 22
2-6-3-4 تاثیر فشار بر حداقل جریان شبانه 23
2-7 استفاده از مفهوم BABE در آنالیز آب به حاسب نیامده 23
2-8 فشار در شبکه های توزیع آب شهری 25
2-8-1 بررسی وضعیت کلی فشار در شبکه 25
2-8-1-1- خطوط همفشار 26
2-8-1-2 فشار متوسط شبانه منطقه ای (AZNP) 26
1-روش نقطه اندازه گیری شاخص (جایگزین) 27
2-روش منحنی تراز وزنی شده 27
3-روش مشترکین 28
2-8-2-2 رابطه توانی بین فشار (AZNP) و حداقل جریان شبانه (NFM) 30
2-8-2-3- رابطه فشار- شاخص نشت 32
2-8-2-4 رابطه فشار- نشت با استفاده از مفهوم (FAVAD) 33
2-9 خلاصه و نتیجه گیری 37
متدولوژی 38
آنالیز آب به حساب نیامده 38
3-1 مقدمه 38
3-2 آنالیز تلفات فیزیکی در شبکه های توزیع آب شهری 40
3-2-1 آنالیز تلفات زمینه 41
3-2-1-1 چار چوب عملکرد در آنالیز تلفات زمینه 41
-گام اول 41
گام دوم 41
گام سوم 42
گام چهارم: 42
3-2-1-2 اندازه گیری حداقل جریان شبانه 44
3-2-1-2-1 شناسایی و پیمایش محدوده ایزوله 44
3-2-1-2-2 اندازه گیری و تصحیح حداقل جریان شبانه 45
ب- تصحیح میزان جریان 46
1-فاکتور تصحیح فشار (PCF) 46
1- فاکتور تصحیح تداوم اندازه گیری (SDCF) 49
3-2-1- 3-برآورد آب تحویل شده شبانه 50
3-2-1-3-1 انحراف معیار استاندارد آب تحویل شده شبانه 51
3-2-1-4 ارزیابی و محاسبه تلفات زمینه شبانه و روزانه ایزوله 53
3-2-1-4-1 گام اول: تخمین اولیه تلفات زمینه روزانه 53
3-2-1-4-2گام دوم: فاکتور ساعت- روز و محاسبه تلفات زمینه شبانه اولیه 57
الف- استفاده از رابطه جذر فشار 58
ج- استفاده از ضریب توصیه شده در Report 26 59
3-2-1-4-3- گام سوم: محاسبه حجم اضافی (Excess Volume) (EV) 60
3-2-1-4-4گام چهارم: مکان یابی و ارزیابی شکستگیهای گزارش نشده (URB) 61
1-تعیین نقاط و مسیرهای فشار سنجی با استفاده از شبیه سازی هیدرولیکی 62
4-افزایش حساسیت گره های فشار سنجی نسبت به وقوع شکستگی 64
5- تعیین محل دقیق وقوع شکستگی با استفاده از دستگاههای نشت یاب 65
3-2-1-4-5گام پنجم: تعیین مقدار دقیق تلفات زمینه شبانه 66
3-2-1-4-6 گام ششم: اصلاح فاکتور تصحیح فشار و فاکتور ساعت – روز 68
5-تعیین فاکتور تصحیح فشار و فاکتور ساعت- روز 70
3-2-1-4-7 گام هفتم: محاسبه تلفات زمینه روزانه اصلاح شده 70
3-2-1-5 جدول محاسباتی (Spreadsheet) آنالیز تلفات زمینه 72
3-2-2 ارزیابی تلفات ناشی از شکستگی ها 79
1-دبی شکستگی (Burst Flow Rate) 79
2-تداوم شکستگی (Duration) 80
3-فرکانس شکستگی (Frequency) 81
3-2-2-1 محاسبه کل تلفات سالانه ناشی از شکستگیهای در ایزوله 82
3-2-2 حجم کل تلفات فیزیکی در ایزوله 82
3-3 آنالیز تلفات غیر فیزیکی در شبکه های توزیع آب شهری 83
3-3-1 تلفات غیر فیزیکی ناشی از خطای بهره برداری (Eo) 84
3-3-2- تلفات غیر فیزیکی ناشی از خطای مدیریتی (EM) 85
3-3-3 تلفات غیر فیزیکی ناشی از خطای انسانی (EP) 86
3-3-4 تلفات غیر فیزیکی ناشی از خطای ابزار اندازه گیری (EE) 87
3-3-4-1 منحنی دقت کنتور 87
3-3-4-2 خطا در اندازه گیری دبی استارت (شروع به حرکت کنتور) 89
3-3-4-3 تلفات غیر فیزیکی ناشی از خطا در اندازه گیری از دبی حداقل تا دبی حداکثر 90
3-3-4-4 تلفات غیر فیزیکی ناشی از خرابی کنتورها 93
3-3-4-5 حجم کل تلفات غیر فیزیکی از خطای ابزار اندازه گیری 94
3-3-5تلفات غیر فیزیکی ناشی از انشعابات غیر مجاز (Eu) 94
3-3-6 تلفات غیر فیزیکی ناشی از اشتراک غیر مجاز (Eu’) 94
3-3-7 تلفات غیر فیزیکی ناشی از مصارف مجاز اندازه گیری نشده (Ea) 94
3-3-8 حجم کل تلفات غیر فیزیکی سالانه 95
3-4 تعیین درصد سالانه تلفات فیزیکی و تلفات غیر فیزیکی و مولفه های آنها 95
3-5 خلاصه و نتیجه گیری 96
خلاصه و نتیجه گیری
آنالیز و یا تجزیه و تحلیل هر پدیده ای، نخستین گام در شناسایی آن پدیده و مهمترین معیار جهت تصمیم گیری در مورد آن می باشد.
آنالیز آب به حساب نیامده نیز با هدف شناسایی مولفه های تشکیل دهنده آن و ارزیابی کمی این مولفه ها انجام می گیرد تا با استفاده از نتایج به دست آمده، راهکاری جهت کاهش و کنترل آن در نظر گرفته شود.
آنالیز آب به حساب نیامده بر اثر عوامل مختلفی از قبیل مدفون بودن اجزاء شبکه در درون زمین، تعدد عوامل موثر بر میزان و نوع مولفه های تلفات ونیز متفاوت بودن شرایط در شبکه های مختلف، با پیچیدگی و مقادیر مجهور متعددی مواجه است. لذا اکثر روشهای ارائه شده جهت آنالیز آب به حساب نیامده با مشکلاتی از قبیل عدم دقت مناسب و یا دامنه کاربرد محدود مواجه بوده و تمامی انتظارات از یک آنالیز را برآورده نمی نمایند. روش ارائه شده در این تحقیق به گونه ایی طراحی گردیده است که قادر باشد علیرغم محدودیت اطلاعات و آگاههیا از وضعیت شبکه، تجزیه و تحلیل نسبتا دقیقی از آب به حساب نیامده در شبکه ارائه نماید. در این روش، آنالیز آب به حساب نیامده و دو بخش کلی تلفات فیزیکی و غیر فیزیکی انجام گردیده و نتایج به دست آمده از آنها در تعیین درصد کل آب به حساب در شبکه مورد استفاده قرار گرفته است.
آنالیز تلفات فیزیکی در یک ساختار مبتنی بر روش BABENFMانجام شده است که در آن برآورد اولیه از تلفات زمینه با استفاده از یک مدل ریاضی انجام می گردد و برای نخستین بار شبیه سازی هیدرولیکی در مکان یابی شکتگیهای گزارش نشده مورد استفاده قرار گرفته است. همچنین در روند این آنالیز، روش مناسبی جهت تشخیص فاکتور تصحیح فشار و فاکتور ساعت- روز با استفاده از مفهوم FAVD-BABE ارائه گردیده است.
آنالیز تلفات غیر فیزیکی در تعدادی از کشورها به علت وجود سیستمهای اندازه گیری مصرف مشترکین، مورد توجه قرار نگرفته است ولی با توجه به این در ایران، مصرف اکثر مشترکین به وسیله کنتور اندازه گیری می گردد آنالیز تلفات غیر فیزیکی نقش عمده ایی در تشخیص علل عدم تطبیق درآمدها و هزینه های شرکت آب ایفا می کند. به همین علت در روش ارائه شده این تحقیق، تلفات غیر فیزیکی، مولفه های تشکیل دهنده آن و نحوه ارزیابی و تجزیه و تحلیل آنها به عنوان بخشی از آب به حساب نیامده در شبکه های توزیع آب شهری در نظر گرفته شده است.
در این فصل، ابتدا نحوه آنالیز تلفات فیزیکی در که شامل ارزیابی تلفات، برآورد زمینه تلفات ناشی از شکتسگیها و محاسبه کل تلفات فیزیکی ایزوله می باشد، ارائه گردیده است. سپس آنالیز تلفات غیر فیزیکی، شامل آنالیز جداگانه مولفه های تشکل دهنده آن و محاسبه حجم کل تلفات غیر فیزیکی به طور مفصل مورد بررسی قرار گرفته است. در بخش پایانی این فصل، روش محاسبه درصد سالانه تلفات فیزیکی، و تلفات غیر فیزیکی و مولفه های تشکیل دهنده آنها ارائه گردیده است.
در فصل بعد، روش ارائه شده جهت آنالیز آب به حساب نیامده در این فصل، در یک پایلوت نمونه مورد ارزیابی قرار گرفته ونتایج آن با نتایج به دست آمده از روشهای دیگر مقایسه شده است.


دانلود با لینک مستقیم