یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود پایان نامه اصول طراحی آنتنهای حلقوی -مهندسی برق

اختصاصی از یارا فایل دانلود پایان نامه اصول طراحی آنتنهای حلقوی -مهندسی برق دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه اصول طراحی آنتنهای حلقوی -مهندسی برق


دانلود پایان نامه اصول طراحی آنتنهای حلقوی -مهندسی برق

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:95

توجه:پایان نامه فاقد اشکال میباشد.

فهرست مطالب:

1- آنتن حلقوی …………………………………………………………………………9

1-1- حلقۀ کوچک ………………………………………………………………….. 9

2-1- دو قطبی مغناطیسی کوتاه . معادل یک حلقله ………………………………. 13

3-1- میدانهای دور دو قطبی کوچک و دو قطبی کوتاه ………………………….16

4-1- مقایسه میدانهای دور حلقه کوچک و دو قطبی کوتاه ………………………20

5-1- آنتن حلقه ای . حالت کلی ………………………………………………….. 21

6-1- پترن های میدان دور آنتهای حلقه ای دایره ای با جریان یکنواخت ………. 26

7-1- حلقه کوچک به عنوان یک حالت خاص …………………………………… 30

8-1- مقاومت تشعشع حلقه ها ……………………………………………………… 31

9-1- خاصیت جهتی آنتهای حلقه ای دایره ای با جریان یکنواخت …………….. 37

10-1- جدول فرمول های حلقه ……………………………………………………. 39

11-1- آنتهای حلقوی مربعی ………………………………………………………. 40

12-1- آنتهای حلقوی دایروی …………………………………………………….. 53

13-1- حلقه ی دایروی حامل یک جریان ثابت ………………………………….. 61

فصل دوم

2- آنتهای حلقوی کوچک …………………………………………………………. 65

1-2- دوگانگی ……………………………………………………………………… 66

2-2- آنتن حلقوی کوچک ………………………………………………………… 71

فصل سوم

3- آنتهای یاگی یودا ……………………………………………………………….. 77

منابع و مأخذ ………………………………………………………………….91

مقدمه :

از آغاز تمدن بشری مخابرات اهمیت اساسی را برای جوامع انسانها داشته است . در مراحل اولیه مخابرات توسط امواج صوتی از طریق صدا صورت می گرفت . با افزایش مسافات لازم برای مخابرات ابزارهای مختلفی مانند طبلها ، بوقها و غیره ارائه شدند .

برای مسافات طولانیتر روشها و وسائل ارتباطات بصری مانند پرچمهای خبری و علائم دودی در روز و آتش در شب به کار برده شدند .

البته ابزارهای مخابراتی نوری از قسمت مرئی طیف الکترومغناطیسی استفاده میکنند. تنها در تاریخ اخیر بشر است که طیف الکترومغناطیسی خارج از ناحیه مرئی برای ارتباطات راه دور از طریق امواج رادیوئی به کار برده شده است .

آنتن رادیوئی یک قطعه اساسی در هر سیستم رادیوئی می باشد . یک آنتن رادیوئی یک ابزاری است که امکان تشعشع یا دریافت امواج رادیوئی را فراهم می سازد .

به عبارت دیگر ، یک آنتن یک موج هدایت شده روی یک خط انتقال را به یک موج فضای آزاد در حالت ارسال و برعکس در حالت دریافت تبدیل می کند . بنابراین ، اطلاعات می تواند بدون هیچ گونه ساختار و وسیله واسطه ای بین نقاط و محلهای مختلف انتقال یابد .

فرکانسهای ممکن امواج الکترومغناطیسی حامل این اطلاعات طیف الکترومغناطیسی را تشکیل می دهد .

باند فرکانسهای رادیوئی در ضمیمه ارائه شده اند . یکی از بزرگترین منابع انسان طیف الکترومغناطیسی است و آنتنها در استفاده از این منبع طبیعی نقش اساسی را ایفاء کرده اند . یک تاریخ مختصر تکنولوژی آنتنها بحثی از کاربردهای آنها ذیلاً ارائه می شود .

مبنای نظری آنتها بر معادلات ماکسول استوار است . “جیمز کلارک ماکسول” (۱۸۳۱ – ۱۸۷۹ ) در سال ۱۸۶۴ در حضور انجمن سلطنتی انگلستان نظریه خود را ارائه داد مبنی بر اینکه نور و امواج الکترومغناطیسی پدیده های فیزیک یکسانی هستند .

همچنین پیش بینی کرد که نور و اختلالات الکترومغناطیسی را می توان بصورت امواج رونده دارای سرعت برابر توجیه کرد .

فیزیکدان آلمانی “هاینریش هرتزگ” (۱۸۵۷ – ۱۸۹۷) در سال ۱۸۸۶ توانست صدق ادعاو پیش بینی ماکسول را مبنی بر اینکه کنشها و پدیده های الکترومغناطیسی می توانند در هوا منتشر شوند ، نشان دهد .

هرتز کشف کرد که اختلالات الکتریکی می توان توسط یک مدار ثانویه با ابعاد مناسب برای حالت تشدید و دارای یک شکاف هوا برای ایجاد جرقه آشکار کرد .

منبع اولیه اختلالات الکتریکی مورد بررسی هرتز شامل دو ورق هم صفحه بود که هر ورق با یک سیم به یک سیم پیچ القائی وصل می شد .

این اولین آنتن مشابه آنتن دو قطبی ورق خازنی مورد بحث در بخش ۲-۱ می باشد . هرتز آنتهای دو قطبی و حلقوی و نیز آنتهای انعکاسی سهموی استوانه ای نسبتاً پیچیده ای را دارای دو قطبیهائی در امتداد خط کانونی شان بعنوان تغذیه ساخت .

مهندس برق ایتالیایی “گوگلیلمو مارکونی” نیز یک استوانه سهموی میکروویو در طول موج ۲۳ سانتیمتر را برای انتقال کد اولیه اش ساخت . ولی کارهای بعدیش برای حصول برد مخابراتی بهتر در طول موجهای بلندتر بود .

برای اولین مخابرات رادیوئی در ماورای اقیانوس اطلس در سال ۱۹۰۱ آنتن فرستنده شامل یک فرستنده جرقه ای بود که بین زمین و یک سیستم شامل ۵۰ عدد سیم قائم متصل می شد .

سیم ها از هم باز شده و توسط یک سیم افقی متصل به دو دکل نگه داشته می شد . آنتن گیرنده توسط بالونهائی آویزان می شدند . مارکونی اهمیت مرتفع کردن آنتها را در این فرکانسهای پائین در حدود ۶۰ کیلوهرتز درک می کرد .

فیزیکدان روسی ” الکساندر پوپوف ” (۱۸۵۹ – ۱۹۰۵) نیز اهمیت کشف امواج رادیویی را توسط هرتز تشخیص داد و یک سال قبل از مارکونی شروع به کار و فعالیت در مورد روشهای دریافت آنها نمود .

اغلب افتخار کاربرد اولین آنتن در اولین سیستم رادیوئی را در سال ۱۸۹۷ برای ارسال یک سیگنال از کشتی به ساحل در مسافت سه میل به او می دهند .

در هر حال ، این مارکونی بود که رادیوی تجارتی را توسعه داده و مخابرات رادیوئی را در ماورای اقیانوس اطلس ایجاد کرد . مارکونی را می توان پدر رادیو آماتور دانست .

توسعه آنتها در سالهای اولیه به علت عدم وجود و در دسترس نبودن مولدهای سیگنال محدود بود . در حدود سالهای ۱۹۲۰ پس از آنکه لامپ تریود “دوفارست” برای ایجاد سیگنالهای امواج پیسوته تا ۱ مگاهرتز به کار رفت ، ساخت آنتهای تشدیدی (با طول تشدید) مانند دو قطبی نیم موج امکان یافت .

در این فرکانسهای بالاتر امکان ساخت آنتها با ابعاد و اندازه های فیزیکی در حدود تشدید (یعنی نیم طول موج) فراهم شد .

قبل از جنگ دوم جهانی مولدهای سیگنال مگنیترون و کلایسترون میکروویو (در حدود ۱ گگا هرتز) همراه با موجبرهای تو خالی اختراع و توسعه یافتند . این تحولات منجر به ابداع و ساخت آنتهای بوقی شد ، گر چه سالها قبل “چندر بوز” (۱۸۵۸- ۱۹۳۷) در هندوستان اولین آنتن بوقی الکترومغناطیسی را ساخت .

در سال ۱۹۳۴ اولین سیستم رادیو تلفنی میکروویو تجارتی بین انگلستان و فرانسه در فرکانس عمل ۸/۱ گگا هرتز برقرار شد .

در خلال جنگ دوم جهانی یک فعالیت وسیع طراحی و توسعه برای ساخت سیستمهای رادار منجر به ابداع انئاع مختلف آنتهای مدرن مانند آنتهای بشقابی (منعکس کننده) ، عدسیها و آرایه های شکافی موجبری شد .

حال ، نظر خود را به کاربردهای آنتها معطوف می کنیم . انتقال انرژی الکترومغناطیسی می تواند توسط نوعی از ساختارهای هدایت کننده امواج (مانند یک خط انتقال) صورت گیرد و یا می تواند از طریق آنتهای فرستنده و گیرنده بدون هیچ گونه ساختار هدایت کننده واسطه ای انجام گیرد .

اگر فاصله بین فرستنده و یک گیرنده برابر r باشد ، تلفات توان برای خط انتقال متناسب با ۲(e-αr) است .

α ثابت تضعیف خط انتقال می باشد . اگر آنتها در یک سیستم خط دید به کار رود ، تلفات توان متناسب با  است . عوامل مختلفی در انتخاب بین خطوط انتقال یا آنتها دخالت دارند .

بطور کلی ، خطوط انتقال در فرکانسهای پائین و فواصل کوتاه عملی هستند فرکانسهای بالا اغلب به علت پهنای باند موجود به کار می روند . با افزایش فواصل و فرکانسها تلفات سیگنال و هزینه های کاربرد خطوط انتقال بیشتر می شود و در نتیجه استفاده از آنتها ارجحیت می یابد . استثناء قابل توجه این قاعده خط انتقال فیبر نوری در طیف مرئی می باشد .

در چندین کاربرد باید از آنتها استفاده کرد . برای مثال ، آنتها را باید در مخابرات رادیو سیار شامل هواپیماها ، فضاپیماها ، کشتیها ، یا خودروهای زمینی به کار برد . آنتها در سیستمهای رادیوئی سخن پراکنی شامل یک ایستگاه فرستنده و تعداد نامحدود گیرنده ها که احیاناً مانند رادیوی خودرو متحرک و سیار است ، نیز به کار می رود .

کاربردهای غیر سخن پراکنی مانند سیستمهای رادیو سیار شهرداری (مانند پلیس ، آتش نشانی ، امداد ، بهداشت و بهداری) و رادیو آماتور نیز به آنتها نیاز دارند در کاربردهای غیر مخابراتی مانند رادار نیز آنتها لازم هستند .

عوامل دیگری که در انتخاب نوع سیستم انتقال تأثیر می گذارند ، شامل دلایل تاریخی ، ایمنی و اطمینان پذیری هستند .

قبل از آنکه تکنولوژی رادیوئی در دسترس باشد ، شرکتهای تلفن آغاز به اتصال پایانه های بی شمار ارسال و دریافت توسط خطوط انتقال کردند . اخیراً شرکتهای تلفن استفاده بیشتری را از رادیو به عمل می آورند .

در آمریکا بیشتر از نصف مکالمات تلفنی دور (بین شهری) توسط ارتباطات رادیوئی میکروویو انجام می گیرد . خطوط انتقال یک درجه از ایمنی را فراهم می سازند . در یک سیستم رادیوئی بی سیم هر فرد مجهز به یک گیرنده مناسب می تواند به یک انتقال اطلاعات گوش فرا دهد ، ولی برای تخطی به خطوط انتقال با سیم یک اتصال فیزیکی ضرورت دارد .

برای ایجاد ایمنی در یک ارتباط رادوئی در سیستمهای رادیوئی پیچیده تر کدگذاری را می توان به کار برد . ولی ، ایمنی مخابرات در معدودی از ارتباطات مخابراتی لازم است.

اطمینان پذیری عامل دیگری است که باید در نظر گرفته شود . برای مثال ، سیگنالهای رادیوئی توسط شرایط محیطی مانند ساختارها و موانع در طول مسیر سیگنال ، یونسفر و جو تأثیر می پذیرند .

بعلاوه ، تداخل همواره تهدیدی برای سیستمهای رادیوئی می باشد . کلیه این عوامل همراه با یک مقایسه هزینه سیستمهای خطوط انتقال و سیستمهای رادیوئی متشکل از آنتها باید ملحوظ و در نظر کرفته شود .

هر ساله هزینه دستگاههای رادیوئی کاهش یافته و اطمینان پذیری آنها بهبود می یابد . این عوامل به کاربرد سیستمهای رادیوئی ارجحیت می دهد . بنابراین ، تقاضا برای آنتها و نیاز به دانش فنی در مورد عملکرد آنها همواره وجود خواهد داشت .

در دو بخش بعد این فصل یک مرور مختصر اصول میدانهای الکترومغناطیسی و حل معادلات ماکسول را برای مسائل تشعشع ارائه می دهیم . پس از آنکه چند رابطه اساسی را استنتاج کردیم ، کابرد مستقیم معادلات ماکسول تنها در چند مورد خاص ضرورت دارد . باقیمانده این فصل به بررسی اصطلاحات آنتها و چند مثال ساده اختصاص دارد .

همچنین کاربردهای آنتها در سیستمهای مخابراتی و رادار مورد بحث و بررسی قرار میگیرد .

۱- آنتن حلقه ای

ابتدا ، پترن میدان یک حلقۀ کوچک به نحو بسیار ، ساده ای نتیجه گیری می شود ؛ با در نظر گرفتن آنکه حلقه مربعی و دارای چهار دو قطبی خطی کوتاه است . سپس این معادلات بر اساس روش طولانی تری بر مبنای این فرض که حلقۀ کوچک معادل یک دو قطبی کوتاه مغناطیسی است ، تکمیل خواهد شد .

سرانجام ، حالت کلی آنتن حلقه ای با جریان یکنواخت برای حلقه هایی با هر اندازه عمل می شود . با وجود آنکه غالب نتیجه گیریها در مورد حلقه های دایره ای است ، دربارۀ حلقه های مربعی نیز بحث و نشان داده می شود که حلقه های دایره ای و مربعی وقتی سطح آنها کوچک باشد ، میدانهای دور یکسانی دارند و در صورتی که سطح آنها بزرگ باشد میدانهایشان مختلف خواهد بود .

۱-۱- حلقۀ کوچک

در این قسمت ، روشی بسیار ساده برای پیدا کردن پترن میدان یک حلقۀ کوچک عمل میشود .

 یک حلقۀ کوچک دایره ای به شعاع a را با توزیع جریان یکنواخت هم فازی ، طبق شکلa1-1 ، در نظر می گیریم .

شعاع a در مقایسه با طول موج خیلی کوچک است ( λ >> a ) . اکنون فرض کنید که حلقۀ دایره ای با یک مربع به طول ضلع d ، و نیز جریان یکنواخت هم فاز طبق شکلb1-1 در دست باشد .

بدین طریق ، حلقه می تواند نظیر چهار دو قطبی خطی کوتاه عمل کند . d را طوری انتخاب می کنیم که سطح حلقۀ مربعی برابر سطح حلقۀ دایره ای شود . یعنی ،

اگر جهت حلقه مثل شکل ۲-۱ باشد ، میدان الکتریکی دور آن فقط دارای یک مؤلفۀ EФخواهد بود . برای پیدا کردن پترن میدان دور در صفحه y-z ، فقط لازم است ۲ قطبی از ۴ دو قطبی خطی کوچک (۲ و ۴) را بررسی کنیم .

سطح مقطع عرضی حلقه در صفحه y-z در شکل ۳-۱ نشان داده شده است .

 چون دو قطبیهای کوچک منفرد ۲ و ۴ در صفحۀ y-z غیر جهتی هستند ، پترن میدان حلقه در این صفحه همان است که برای دو منبع نقطه ای ایزوتروپیک به دست آمد . بنابراین ،

ضریب i در رابطۀ (۴-۱) نشان می دهد که میدان کل EФ با میدانEФ۰  دو قطبی منفرد در فاز تربیعی است . اکنون اگر λ >> d باشد ، رابطۀ (۴-۱) را می توان نوشت ،

در تکمیل فرمول دو قطبی ، دو قطبی در جهت z قرار گرفته بود ، در حالی که در حالت اخیر دو قطبی در جهت x قرار دارد (ر.ک به شکلهای ۲-۱ و ۳-۱ ) .

زاویۀ θ در فرمول دو قطبی از محور دو قطبی اندازه گیری می شود و در حالت اخیر مقدار آن o90 است . زاویۀ θ در فرمول (۵-۱) زاویۀ دیگری نسبت به دو قطبی و مشابه شکلهای (۲-۱) و (۳-۱) است . بنابراین ، برای میدان دور EΦ۰دو قطبی منفرد ،

 

 

 


دانلود با لینک مستقیم

دانلود پایان نامه مطالعه و شبیه سازی آنتنهای تلفن همراه

اختصاصی از یارا فایل دانلود پایان نامه مطالعه و شبیه سازی آنتنهای تلفن همراه دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه مطالعه و شبیه سازی آنتنهای تلفن همراه


دانلود پایان نامه مطالعه و شبیه سازی آنتنهای تلفن همراه

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:65

پایان نامه جهت اخذ درجه کارشناسی

فهرست مطالب:                                                                                                                          II                

عنوان                                                                                                                                             صفحه

I چکیده………………………………………………………………………………………………………………………………………………………………….

 

فهرست مطالب…………………………………………………………………………………………………………………………………………………….. II

 

فرهنگ اختصارات……………………………………………………………………………………………………………………………………………… IV

 

فهرست اشکال……………………………………………………………………………………………………………………………………………………… 1

 

فصل 1 مشخصات تشعشعی یک آنتن…………………………………………………………………………………………………………………….. 5

1-1) مقدمه ……………………………………………………… ……………………………………………… ……………………………………………… 5

1-2) تقسیم بندی نواحی اطراف یک آنتن …………………………………………………. ……………………………………………………………5

1-3) شدت تشعشعی آنتن…………………………………………………………………… ………………………………………………………………..6

1-4) نمودارهای تشعشعی……………………………………………………………………. ………………………………………………………………..7

…………………………………………………………. …………………………………………………………..10 HPBW 1-5) پهنای تابه نیم توان

یک آنتن ……………………………………………….. …………………………………………………….11VSWR 1-6) پهنای باند فرکانسی و

1-7) بهره جهتی آنتن …………………………………………………………………………. ……………………………………………………………..12

1-8) سمتگرایی ……………………………………………………………………………….. ……………………………………………………………….13

1-9) بازده تشعشعی آنتن ……………………………………………………………………… ……………………………………………………………13

) ……………………………………………………………….. ……………………………………………………………..13g 1-10) بهره یا گین آنتن (

1-11) امپدانس ورودی آنتن …………………………………………………………………. …………………………………………………………….14

1- 12) قطبش موج ………………………………………………………………………… ………………………………………………………………...14

1-13) ضریب کیفیت (Q) در مدارات سری………………………………………………. ………………………………………………………….15

فصل 2- آنتن های تلفن همراه…………………………………………………………………. ………………………………………………………….17

2-1) مقدمه…………………………………………………………………………………….. …………………………………………………………………17

2-2) آنتن کوچک چیست ؟ …………………………………………………………………. …………………………………………………………….17

2-3) آنتن F معکوس و عملکرد یک آنتن تلفن همراه ……………………………………… …………………………………………………….18

2-4) شاسی در گوشی موبایل ……………………………………………………………… …………………………………………………………….21

2-5) آنتنهای سیمی…………………………………………………………………………. …………………………………………………………………22

2-6) موقعیت آنتن در موبایل……………………………………………………………… ……………………………………………………………….24

2-7) حجم آنتن……………………………………………………………………………… …………………………………………………………………27

2-8) انواع کلاسهای آنتنهای موبایل………………………………………………………… ……………………………………………………………29

فصل 3 – توصیف کیفی و تحلیل عملکرد آنتن PIFA ……………………………………… …………………………………………………..34

3-1) مقدمه…………………………………………………………………………………. …………………………………………………………………….34

3-2) تغییرات پورت زمین و تاثیر آن روی آنتن PIFA در گوشی موبایل………………….. ……………………………………………..34

3-3) تحلیل آنتن PIFA با استفاده از مدل های معادل …………………………………….. ……………………………………………………41

3-4 ) روش تحلیل عملکرد آنتن PIFA در این پژوهش……………………………………. ……………………………………………………43

3-5) شبیه سازی یک آنتن مونوپل به کمک نرم افزار HFSS ……………………………. …………………………………………………..44

فصل 4 – نحوه طراحی آنتن PIFA در این تحقیق…………………………………………. ……………………………………………………..48

4-1) مقدمه………………………………………………………………………………….. ……………………………………………………………………48

4-2) طراحی اولیه آنتن……………………………………………………………………… ………………………………………………………………..48

4-3) تبدیل آنتن PIFA  تک باند به دو باند……………………………………………….. ……………………………………………………….53

4-4) بهینه سازی آنتن طراحی شده…………………………………………………………. …………………………………………………………….55

4-5)جمع بندی………………………………………………………………………………. ………………………………………………………………….66

فهرست اشکال

 

فصل اول – مشخصات تشعشعی یک آنتن

 

شکل1-1 نواحی اطراف یک آنتن.. 5

شکل1-2 میدانها در فاصله دور و نزدیک آنتن.. 6

شکل1-3 عنصر زاویه فضایی.. 7

شکل1-4 نمودار قطبی پرتو تشعشعی صفحه H.. 8

شکل1-5 نمودار سه بعدی پرتو تشعشعی.. 8

شکل1-6 یک نمونه نمودار قطبی پرتو توان. 9

شکل1-7 ضریب پرتو یک منبع خطی یکنواخت. 10

شکل1-8 الف)قطبش خطی افقی ب)قطبش خطی قائم پ)قطبش دایروی راستگرد ت)قطبش دایروی چپگرد    

     ج) قطبش بیضوی چپگرد ث) قطبش بیضوی راستگرد……………………………………………………………………….15

 

فصل دوم- آنتن های تلفن همراه

 

شکل 2-1 آنتنهای قرار گرفته روی زمین.. 19

شکل 2-2 انواع آنتن های L وارون. 19

شکل2-3 شبیه سازی الگوی تشعشعی و میدان E یک گوشی تلفن نوعی در فرکانس MHz 900. 20

شکل2-4 شبیه سازی الگوی تشعشعی و میدان E یک گوشی تلفن نوعی در فرکانس MHz 1800. 21

شکل2-5 (الف) آنتن مونو پل (ب) آنتن Lوارون (ج) آنتن Fوارون. 22

شکل 2-6 شکل اولیه آنتن Fوارون مسطح.. 23

شکل2-7 انواع موقغیت آنتن در گوشی تلفن همراه 25

شکل 2-8 انواع موقعیت آنتن روی گوشی های کشویی.. 26

شکل 2-9 رابطه میان طول شاسی آنتن و پهنای باند در فرکانس MHz1850. 27

شکل2-10 رابطه میان طول آنتن و پهنای باند در فرکانس MHz890. 28

شکل 2-11 رابطه میان طول آنتن و پهنای باند در فرکانس MHz1850. 28

شکل 2-12 (الف)دو قطبی (ب) دو قطبی تا شده (ج) حلقه. 29

شکل 2-13 نمونه ای از یک آنتن شلاقی……………………………………………………………………………..30

شکل 2-14 نمونه هایی از آنتن پیچشی قرار گرفته در گوشی تلفن همراه……………………………………………30

شکل 2-15 یک نمونه آنتن درونی تک باند……………………………………………………………………………31

شکل 2-16 (الف) تشعشع کننده باند بالا (ب) تشعشع کننده باند پایین (ج) مونوپل. 31

شکل 2-17 نمایی از یک نمونه آنتن مرکب…………………………………………………………………………..32

 

 

 

فصل سوم – توصیف کیفی و تحلیل عملکرد آنتن PIFA

 

شکل 3-1 (الف) صفحه زمین متعارف (ب) صفحه زمین اصلاح شده (تمام ابعاد به میلیمتر است ) 34

شکل 3-2 آنتنPIFA دو باند(الف)صفحه زمین متداول (ب) صفحه زمین اصلاح شده(تمام ابعاد به میلیمتر است) 36

شکل 3-3 VSWR اندازه گیری شده و محاسبه شده بر حسب فرکانس برای آنتن PIFA تک باند (الف)روی صفحه زمین متداول (ب) روی صفحه زمین اصلاح شده 37

شکل 3-4 الگوی تشعشعی محاسبه شده آنتن PIFAتک باند در فرکانس MHz910 (الف) صفحه زمین متداول (ب) صفحه زمین اصلاح شده 38

شکل 3-5 نمودار VSWR آنتن دو باند(الف) باند MHz900 (ب) باند 1800MHz. 40

شکل 3-6 الگوی تشعشعی محاسبه شده برای آنتن دو باند در فرکانس MHz 1920 (الف)صفحه زمین متداول (ب) صفحه زمین اصلاح شده 41

شکل 3-7 نمای کناری آنتن PIFA. 41

شکل 3-8 مدل خط انتقال برای آنتن PIFA. 42

شکل 3-9 (الف) نتایج شبیه سازی (ب)نتایج مدل خط انتقال. 43

شکل 3-10 نمای کلی یک آنتن مونوپل ساده 44

شکل 3-11 نمودارVSWR آنتن طراحی شده. 45

شکل3-12 نمودارre (Z) آنتن طراحی شده . 45

شکل 3-13 نمودار الگوی تشعشعی آنتن به ازای phi=0 . 46

شکل 3-14 پرتو تشعشعی آنتن بصورت سه بعدی در فرکانس MHZ900. 46

 

فصل چهارم – نحوه طراحی آنتن PIFA در این تحقیق

 

شکل 4-1 نمایی از آنتن PIFA اولیه طراحی شده 49

شکل 4-2 نحوه اتصال آنتن به جعبه گوشی تلفن همراه 49

شکل 4-3 نمودار Im(Z) در اطراف فرکانس MHZ900. 50

شکل 4-4 نمودار Im(Z) در اطراف فرکانس MHZ900. 51

شکل 4-5 نمودار Im(Z) در اطراف فرکانس MHZ900. 51

شکل 4-6 نمودار Im(Z) در اطراف فرکانس MHZ900. 52

شکل 4-7 نمودار VSWR در باند MHZ 900. 52

شکل 4-8 نمایی از آنتن در صفحه X-Y. 53

شکل 4-9 نمایش گرافیکی میدان E در باند 900MHZ. 54

شکل 4-10 نمایش گرافیکی میدان E در باند 1800MHZ. 54

شکل 4-11 نمودار VSWR نسبت به تغییر در ارتفاع آنتن.. 55

شکل 4-12 نمودار VSWR نسبت به تغییر در محل تغذیه روی باند 1800MHZ و 900MHZ. 56

شکل 4-13 نمودار VSWR نسبت به تغییر در فاصله بین دو شکاف روی باند 1800MHZ. 57

شکل4-14 نمودار VSWR نسبت به تغییرات فاصله دو شکاف نسبت به منبع با حفظ فاصله بین دو شکاف روی باند 1800MHZ. 57

شکل 4-15 نمودار VSWR آنتن به ازای مقادیر مختلف پهنای اتصال کوتاه در باند MHz900…………………..58

شکل 4-16 نمودار VSWR آنتن به ازای مقادیر مختلف پهنای اتصال کوتاه در باند MHz1800………………….58

شکل 4-17 نمای کلی از آنتن طرا حی شده…………………………………………………………………………. 59

شکل 4-18 نمایی از آنتن در صفحه X-Y………………………………………………………………………….. 59

شکل 4-19 نمایی از آنتن در صفحه Z-X. 60

شکل 4-20 نمایی از آنتن در صفحه Z-Y. 60

شکل 4-21 آنتن طراحی شده در حضور جعبه رسانا 61

شکل 4-22 VSWR آنتن قبل از اضافه شدن جعبه رسانا در باند 900MHz. 61

شکل 4-23 VSWR آنتن قبل از اضافه شدن جعبه رسانا در باند MHz1800. 62

شکل 4-24 VSWR آنتن بعد از اضافه شدن جعبه رسانا در باند MHz900. 62

شکل 4-25 VSWR آنتن بعد از اضافه شدن جعبه رسانا در باند MHz1800……………………………….62

شکل 4-26 نمودار تشعشعی آنتن به dB در فضای آزاد به ازای phi=90 قبل از اضافه شدن جعبه رسانا( نرمالیزه نشده)……………………………………………………………………………………………………………………64

شکل 4-27 نمودار تشعشعی آنتن به dB در فضای آزاد به ازای phi=90 بعد از اضافه شدن جعبه رسانا( نرمالیزه نشده)…………………………………………………………………………………………………………………..64

شکل 4-28 نمودار تشعشعی آنتن به صورت سه بعدی در فرکانس MHZ 900…………………………………..65

شکل 4-29 نمودار تشعشعی آنتن به صورت سه بعدی در فرکانس MHZ 1800 ………………………………….65



فصل اول – مشخصات تشعشعی یک آنتن

 

1-1) مقدمه

انتقال امواج الکترومغناطیسی می تواند توسط نوعی از ساختارهای هدایت کننده امواج (مانند یک خط انتقال یا یک موجبر) صورت گیرد و یا می تواند از طریق آنتنهای فرستنده و گیرنده بدون هیچ گونه ساختار هدایت کننده واسطه ای انجام پذیرد. عوامل مختلفی در انتخاب بین خطوط انتقال یا آنتنها دخالت دارند. بطور کلی خطوط انتقال در فرکانسهای پایین و فواصل کوتاه عملی هستند. با افزایش فواصل و فرکانسها تلفات سیگنال و هزینه‌های کاربرد خطوط انتقال بیشتر میشود و در نتیجه استفاده از آنتنها ارجحیت می یابد]1[.

در حدود سالهای 1920 پس از آنکه لامپ تریود برای ایجاد سیگنالهای امواج پیوسته تا یک مگاهرتز بکار رفت، ساخت آنتنهای تشدیدی (با طول موج تشدید) مانند دوقطبی نیم موج امکان یافت و در فرکانسهای بالاتر امکان ساخت آنتنها با ابعاد و اندازه ی فیزیکی در حدود تشدید (یعنی نیم طول موج) فراهم شد. قبل از جنگ دوم جهانی مولدهای سیگنال مگنی‌ترون و کلایسترون و مایکروویو (در حدود یک گیگاهرتز) همراه با موجبرهای توخالی اختراع و توسعه یافتند. این تحولات منجر به ابداع و ساخت آنتنهای بوقی شد. در خلال جنگ دوم جهانی یک فعالیت وسیع طراحی و توسعه برای ساخت سیستم‌های رادار منجر به ابداع انوع مختلف آنتنهای مدرن مانند آنتنهای بشقابی (منعکس کننده) عدسی‌ها و آنتنهای شکافی موجبری شد


دانلود با لینک مستقیم