فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:30
پایان نامه کارشناسی
مهندسی نساجی-شیمی علوم الیاف
فهرست مطالب:
عنوان صفحه
أچکیده 1
مقدمه 2
1.1.تعریف مسئله 4
2.1.فایده پژوهش 5
3.1.اهداف پژوهش 5
4.1.سوالات پژوهش 5
5.1.تعاریف عملیاتی اجزاء مسئله 5
6.1.متغیرهای اساسی پژوهش 5
7.1.محدودیت های پژوهش 6
فصل دوم 7
مبانی نظری پژوهش 7
1.2. کلیاتی راجع به لیزر 8
1.1.2.نحوه ایجاد پرتو لیزر 8
شکل 2-1- نور لیزر[9] 8
2.1.2. تفاوت پرتو لیزر با نور معمولی 8
3.1.2.نمونه هایی از لیزرهای متداول 9
4.1.2.لیزر حالت جامد 9
5.1.2.لیزر گازی 9
شکل 2-2- لیزر گازی[9] 10
6.1.2.لیزر مایع 10
7.1.2.لیزر نیم رسانا 10
8.1.2.لیزر شیمیایی 11
شکل 2-3- لیزر شیمیایی[9] 11
9.1.2.لیزر کیلیتی 12
2.2.پیشینه پژوهش 12
جدول 2-1-نیروپارگی و ازدیادطول تاحدپارگی پلی استر پرتودهی شده[1] 12
جدول 2-2- خصوصیات خمش پلی استر پرتودهی شده[1] 13
جدول 2-3- نتایج آزمون قطره عمودی پلی استر پرتودهی شده[1] 14
شکل 2-4- اثر زبری سطح روی قابلیت خیس شدن[1] 14
جدول 2-4- قابلیت نفوذپذیری پلی استر پرتودهی شده[1] 15
فصل سوم 16
مواد و روش پژوهش 16
1.3.مواد 17
شکل 3-1- ساختار شیمیایی رنگزای راکتیو Blue 198[10] 17
2.3.نحوه انجام آزمایش 17
1.2.3.عملیات لیزر 17
شکل 3-2- ماشین برش و پرتودهی لیزر CO2 17
جدول 3-1- مشخصات فنی ماشین برش و پرتودهی لیزر CO2 18
2.2.3.عملیات رنگرزی 18
شکل 3-3- گراف رنگرزی 18
3.2.3.خصوصیات راحتی 19
4.2.3. قابلیت خمش 19
5.2.3. استحکام کششی 20
فصل چهارم 21
یافته های پژوهش 21
1.4. عملیات آماده سازی با پرتودهی لیزر 22
شکل 4-1- آزمون حکاکی لیزر بر روی پارچه ها 22
2.4. سختی خمش 22
جدول 4- 1 –سختی خمش نمونه های پنبه/پلی استر سفید (یک رو و دو رو) 22
3.4. آزمون جذب قطره 23
جدول 4-2- زاویه تماس قطره با پارچه پنبه/پلی استر سفید قبل و بعد از پرتودهی لیزر (درجه) 23
4.4. قابلیت نفوذپذیری هوا 23
جدول 4-3- قابلیت نفوذپذیری پارچه پنبه/پلی استر سفید قبل و بعد از پرتودهی (100Pa ) 24
5.4. استحکام کششی 24
جدول 4-4- استحکام کششی پارچه پنبه/پلی استر سفید قبل و بعد از پرتودهی 24
فصل پنجم 25
نتیجه گیری 25
منابع و مآخذ 27
فهرست اشکال
عنوان صفحه
شکل 2-1- نور لیزر 8
شکل 2-2- لیزر گازی 10
شکل 2-3- لیزر شیمیایی 11
شکل 2-4- اثر زبری سطح روی قابلیت خیس شدن 14
شکل 3-1- ساختار شیمیایی رنگزای راکتیو Blue 198 17
شکل 3-2- ماشین برش و پرتودهی لیزر CO2 17
شکل 3-3- گراف رنگرزی 18
چکیده
در این پژوهش، اثر پرتوافکنی لیزر CO2 روی استحکام تاری و خصوصیات راحتی پارچه پنبه/پلی استر سفیدگری شده بررسی شده است. نمونه های پارچه پنبه/پلی استر سفیدگری شده قبل از رنگرزی تحت پرتودهی لیزر CO2 با سه قدرت مختلف قرار گرفته و با رنگزای راکتیو گرم رنگرزی شده اند. پرتودهی لیزر خاصیت آبدوستی نمونه ها را بهبود داده است. قابلیت نفوذپذیری هوا نمونه های پنبه ای سفید شده کاهش یافته است. جهت زیردست پارچه ها خصوصیت خمش نمونه ها قبل و بعد از پرتودهی لیزر مورد بررسی قرار گرفته است و مشاهده شده است که در نمونه های سفید سختی خمش کاهش و در نمونه های خام افزایش یافته است.
مقدمه
واژه فولاد ساختمانی (structural steel) عموماً به فولادهای C-Mn اطلاق می شود که ساختاری فریتی – پرلیتی دارند و در تناژ بالا برای مصارف ساختمانی و شیمیایی تولید می شوند. تولیدات اغلب به صورت ورق و مقاطع شکل دار است. که ضخامت آنها گاه بیش از 10 سانتیمتر می رسد، استحکام تسلیم تا حدود N/mm² 500 است ولی گریدهای کم آلیاژ با انجام عملیات حرارتی تا مقادیر N/mm²700 را نیز کسب می کنند. ساختمان، پل، مخازن، کشتی و خودرو از کاربردهای مرسوم این فولادها به شمار می آید، اما اخیراً در سکوهای نفت و گاز دریایی، خطوط لوله و مصارف دمای پایین نیز وارد شده اند و مصارف آنها گسترش روزافزونی یافته است.
تحقیقات ده1950 را می توان انقلابی در طراحی فولادهای سازه قلمداد نمود؛ کار دو نفر از محققین نشان داد که ریز کردن دانه های فریت منجر به افزایش استحکام تسلیم تافنس فولادی می شود. به این ترتیب فولادهای ساختمانی با نقطه تسلیم Mpa 300 همراه با ضربه پذیری خوب و قابلیت جوشکاری مناسب تولید شد که در ترکیب آنها از مقادیر اندک آلومنیوم برای ریزسازی دانه ها استفاده شده بود. ریز کردن دانه ها در فولادهای فریتی –پرلیتی اکنون نیز مهمترین پارامتر متالوژیکی برای اصلاح فولادهای سازه به شمار می آید برای دستیابی به استحکام بالاتر مکانیزم های دیگری را مانند تشکیل رسوبات ریز می توان به کار گرفت. با افزودن مقادیر کم (تا حدود 15/0 درصد) عناصر نیوبیم، وانادیم و تیتانیم به فولادهای ساختمانی می توان استحکام تسلیم را تا حوالی Mpa 500 بالا برد این عناصر را میکروآلیاژی می نامند و آلیاژ حاصل در گروه فولادهای کم آلیاژ استحکام بالا (HSLA) قرار می گیرد.
در تحقیقات بعدی فرایند تولید فولاد HSLA نیز مورد توجه قرار گرفت و نورد کنترل شده به عنوان مکمل ترکیب شیمیایی برای دستیابی به سطوح استحکام بالاتر تعریف شد. به این ترتیب توانستند فولادهای ریزدانه را در حالت نورد شده و بدون نیاز به عملیات هزینه بر نرماله کردن به استحکام مورد نظر برسانند.نکته قابل توجه ان است که با حذف این عملیات حرارتی خواص مکانیکی بهتری هم در فولاد ایجاد می شد. تحقیقات دهه های 1970 به بعد نشان داد که علاوه بر حضور عناصر میکروآلیاژی و نورد کنترل شده،نحوه سرد شدن را نیز می توان چنان اجرا نمود که باز هم مشخصات مکانیکی را ارتقا دهد و به این ترتیب فرآوری ترمومکانیکی وارد صنعت تولید فولاد شد.
فولادهای کم آلیاژی استحکام بالا اولین کاربردهای خود را در آغاز دهه 1960 به صورت ورق و مقاطع ساختمانی به دلیل توانایی جوشکاری آسان کسب نمودند. در اوایل دهه 1970 این فولادها در خطوط لوله گرم همچنین شرایط سخت قطبی مورد استفاده قرار گرفتند و در اواخر این دهه، همزمان با بروز بحران انرژی فولادهای HSLAجهت کاهش وزن اتومبیل و کامیون به کار گرفته شد. در دهه 1980 فولادهای HSLA به صورت تیرچه و قطعات فورج شده توسعه یافته و کاربردهای خاص خود را پیدا کردند و بدون نیاز به عملیات حرارتی مورد استفاده قرار گرفتند. مراحل پیشرفت و توسعه تکنولوژی ساخت فولادهای HSLA را تا سال 1989 می توان در جدول 1 ملاحظه کرد.
علی رغم گسترش چشمگیر فولادهای استحکام بالا در ممالک توسعه یافته، این فولادها در کشور به خوبی معرفی نشده اند و به دلیل عدم آشنایی کافی مصرف کنندگان و مهندسین طراح با خواص آنها جایگاه خود را کسب ننموده اند. این در حالی است که استفاده از فولادهای کم آلیاژ استحکام بالا به جای فولادهای ساختمانی معمولی در صنعت سازه از نظر اقتصادی اهمین فوق العاده ای دارد. با توجه به این واقعیت و در نظر گرفتن اینکه گروهی از فولادهای استحکام بالا در کشور تولید می شود، در مقاله حاضر خواص این فولادها ارزیابی می شود و خصوصیات لازم برای سازه های مهندسی با مشخصات فولادهای استحکام بالا مقایسه و مورد بحث قرار می گیرد.
«تاًثیرات تقویت تراکمی بر روی استحکام برشی تیرهای پل بتن مسلح»
ظرفیت برشی پیش بینی شده از تیرهای بتن مسلح موجود یک موضوع مهمی است که لازم است به تفصیل بیشتری ذکر شود. توجه در خصوص اینکه آیا کد ارزیابی پل جاری برای انگلستان خیلی محافظه کارانه است هنگامی که مقاومت برش تیرهای بتن موجود ارزیابی می گردد که حاوی مقادیر قابل ملاحظه ای از فولاد می باشد در طی ارزیابی نا دیده گرفته می شود. این مقاله به تاثیرات سودمند چنین فولاد تراکمی ای بر روی استحکام برش تیرهای بتن مسلح توجه دارد. نتایج بررسی آزمایشگاهی با پیش بینی های کد جاری برای استحکام برش تیرهایی مقایسه می شوند که فرض می شوند صرفاً حاوی فولاد کشش می باشد. فشردگی های بعدی با یک راه حل پلاستیسیته حدّ بالایی انجام می شوند که قادر است تمام تقویت فولاد را در یک تیر بتن در نظر بگیرد. دلایل متعددی وجود دارند که چرا پل ها مخازن پنهان استحکام را، نشان می دهند و عمل غشاء فشاری احتمالاً از همه مهمتر است. با این حال، دلایلی از قبیل حضور فولاد فشاری به استحکام پنهان کمک می کند طوری که تحقیق از این نوع، برای ارزیابی درست و انجام پیش بینی های استحکام لازم است. و نشان داده می شود که حضور فولاد با فشردگی زیاد دارای تأثیر چشمگیری بر روی ظرفیت تیرهای پل بتن مسلح است که دارای تقویت نهایی برش می باشد.
نمادها(نمادگذاری):
Abs مساحت فولاد تحتانی در تیر d عمق مؤثر تیر
Ats مساحت فولاد فوقانی در تیر a طول دهانه برش
D نرخ پراکندگی یا پراکنش انرژی در واحد حجم
bs d فاصله از نقطه دوران تا فولاد کف(تحتانی)
ts d فاصله از نقطه دوران تا فولاد سر(فوقانی)
ED نرخ پراکنش انرژی کل در سیستم
EDc پراکنش انرژی ناشی از بتن (صرفاً)
EDci پراکنش انرژی ناشی از بتن در هر نقطه در امتداد خط ناپیوستگی
EDs پراکنش انرژی ناشی از فولاد (صرفاً)
fc استحکام فشاری مؤثر بتن ( ( fc=yfcu fcn استحکام مکعب فشاری بتن
ft استحکام کشش بتن
fy استحکام تسلیم فولاد
Pهر بار بکار رفته (N )
aزاویه بین جهت Si و خط ناپیوستگی
Sبردار جابجایی نسبی در عرض یک خط ناپیوستگی
Siبردار جابجایی نسبی در هر نقطه در امتداد یک خط از ناپیوستگی
IPفاصله از خط دوران تا بار نقطه اول(mm)
Lstirrap طول دهانه برش که بر روی آن رکاب ها(Stirrups) بطور مؤثر لنگر می شوند.
nتعداد رکاب هایی که ناپیوستگی مفروض را قطع می کند
Uجابجایی افقی نمادی از بخش صلب
WDکار خارجی کل انجام شده بر روی سیستم
Xعمق تا محور خنثی بصورت یک تناسب از d
aزاویهبین S و خط ناپیوستگی
¦دوران بفش صلب
Æزاویه داخلی اصطحکاک برای بتن
Vضریب تأثیر برای بتن
PS درصد فولاد طولی در تیر
Psv درصد فولاد رکاب (Stirrup)در تیر
مقدّمه:
به دلیل افزایش ترافیک و وزن بالاتر کامیونها،هر پل ای در انگلستان از لحاظ استحکام برش و انعطاف پذیری اش ،بصورت بخشی از برنامه ارزیابی پل انگلستان مورد ارزیابی قرار می گیرد. مؤسسهبزرگراه ها،ناحیه(مساحت) ای از بتن را تعریف کرده است. موسوم به ارزیابی استحکام برش تیرهای پل بتن، که حاوی مقادیر قابل توجهی از فولاد (متراکم) است. راهنمای ارزیابی پل انگلیسی BD 44/95 حضور فولاد(متراکم) فوقانی را نادیده می گیرد هنگامی که استحکام برشی یک تیر بتن مسلح را پیش بینی می نماید این موارد در طی یک فرآیند طراحی قابل بررسی می باشند.با این حال، ارزیابی فعلی با استفاده از نظریه الاستیک یک درک محافظه کارانه از استحکام یک پل بتن موجود را ارائه می کند اکثر پل های بتنی موجود دارای مقادیر کافی از فولاد برای ایجاد یک قفسه برای ساختمان Stirrupهستند. اما این فولاد(ثانویه)در طی ارزیابی نادیده گرفته میشود.این امر منجر به ترمیز غیرضروری شده و از لحاظ بالقوه برای جامعه در طی ارزیابی یک پل موجود،گران قیمت است.
کار زیادی برای چندین دهه به صورت ضرایب گوناگون انجام شده است که بر روی استحکام برشی تیرهای بتن تأثیر می گذارد(استحکام بتن،درصد تقویت کششی،درصد تقویت Itirrup ).
با این حال، کار کمی برای تعیین تأثیرات فولاد بر استحکام برشی تیرهای بتن انجام شده است کانینر و گروه محققان تمام فولاد را در تحلیل های خودشان با توسعه نظریه میدان فشرده انجام داده اند.
آنها متوجه شده انداستحکام فشار بتن در ارتباط با پهنا و تعداد ترک های کششی از بین میرود که موازی با تنش فشاری می باشد .Kemp وalsafi استفاده از راه حل پلاستیک ـ صلب مرز بالایی را پیشنهاد کردند که توسط نیلسن و براستروپ بدست آمد. امّا از یک روش دیگر استفاده کرد که پیشنهاد می کند که: دوران های بلوک های صلب در نقص برشی رخ می دهد شبیه به روش توسعه یافته توسط Ibell I .
روش پلاستیسیته مرز بالایی ، ارتباط خوب با نتایج آزمایش را فراهم می کند، هنگامی که ضریب تأثیر صحیح برای بتن انتخاب می شود .
Hamadi وRegan بیان کرده اند که منطقه فشردگی در تیر های بتن تا 40 % مقاومت برش کل را فراهم می نماید. بنابراین:شخص انتظار دارد که از تأثیرات سودمند بهره ببرد. با این حال،این امر در تحلیل آنها نادیده گرفته شد. تایلور انتقال نیرو را در ترک ها مطالعه کرد و پیشنهاد کرد که مقاومت برشی یک تیر توسط سه مؤلفه شکل گرفت:
عمل (dowel )،اصطحکاک ترک و برش منطقه فشاری. برش منطقه فشاری 20 الی %40 مقاومت برشی است. Anderson وRamiret نشان دادند که فولاد top بالایی در معرض خمیدگی (buckling ) در غیاب رکاب (stirrups ) می باشد اما مجدداً این امر در تحلیل نادیده گرفته شد. Wilby نتیجه گرفت که وقتی میله های تقویت کننده در مناطق فشردگی از تیر های مستطیلی لحاظ شدند که بطور ناکافی با stirrup ها دوباره کرنش دار شدند، خمیدگی تمایل دارد تا رخ دهد.
Regan یک بررسی جامع انجام داد که نشان می دهد که آنالوژی فرپای Morsch 45 چگونه توسط محققان گوناگون در بررسی رفتار برشی در بتن توسعه یافته و تمام تأثیرات فولاد بالایی نادیده گرفته شد. روشهای تحلیلی بکار رفته برای ارزیابی برش پله های بتن باید واقع بینانه و دقیق باشد شاید استفاده از یک روش پلاستیسیته ارزیابی مناسب باشد نظریه توسط Ibell توسعه می یابد و رفتار واقعی پل را در هنگام فروریزش با نتایج خوب نشان می دهد. یک مدل پلاستیسیته مرز بالایی در اینجا پذیرفته می شود و سعی دارد نشان دهد که حضور تقویت در تیرهای بتن تأثیر چشمگیر بر روی استحکام برش تیر دارد. با بررسی انواع فولاد و برش ها، اعتبار پیش بینی های نظریه پلاستیسیته شرح داده شد.
یافته های مفیدی بدست آمدندو تأثیرات فولاد بررسی شد،و پل ها ارزیابی شدند.
نظریه پلاستیسیته مرز بالایی ـ مفروضات تحلیلی مقدماتی:
فرض شد که a در مدل ازکارافتادگی برخورد پلاستیک رخ دهد و استحکام کامل موجود باشد، فقط ناحیه پلاستیک از رفتار تغییر شکل در نظر است. تغییر شکل الاستیک کم می باشد و نادیده گرفته می شود
(b) معیار کرامب ـ موهر اصلاح شده با برش کششی غیر صفر برای بتن در نظر می باشد.زاویه داخلی اصطحکاک Æ برای تمام ترکیبات تنشی°37 است.
(C) میله های فولاد نیروهای تنش محوری دارند و هر تأثیر dowel نادیده گرفته میشود.
(d) به ضریب V برای استحکام فشردگی بتن بکار می رود.
برنامهآزمایش:
چهار تیر بررسی گردید هر کدام دارای کمیت های گوناگون تقویت کف،پایین و برش بودند. یک آزمایش چهار نقطه ای بر روی هر کدام از تیر ها انجام گرفت . شکل 5 ابعاد نمونه های تیر را نشان می دهد. حداکثر بار مورد نیاز برای تمام آزمایشات با استفاده از یک سیستم بار گذاری کف افقی بدست آمد ( شکل 6 ) .
دو بلوک الوار نمونه را پشتیبانی ( تکیه گاه ) کردند و دو ورق P T FE ( برای حداقل سازی اصطکاک ) ، برای رابط های فصل مشترک ها ، تکیه گاه استفاده شدند. بیست های تکیه گاه در داخل ریل ها بر روی کف ،ثابت شدند که یک متر فاصله داشتند بار بکار رفته توسط دیوار قوی مقاوم شد.
یک جک هیدرولیک برای بکارگیری بار به ( تیر انتقال) استفاده شد که دو بار نقطه ای مورد نیاز برای تیر را انتقال داد. بارهای ( نقطه ای ) و تکیه گاه ها از طریق یاتاقان های صفحه فولادی به ابعاد100* 100 * 25 mm بدست آمدند بالشتک های لاستیکی نیز بین یاتاقان های صفحه و بتن قرار گرفتند، تا بار را به طور یکنواخت در سطح تیر توزیع کنند. زیرا بطور کامل هموار نبود . همچنین، این بالشتک های لاستیکی اجازه حرکت جانبی ، و جلوگیری از تأثیرات غشاء را داد. شکل 7 یک راه اندازی دستگاه آزمایش را نشان می دهد .
نمونه های آزمایش:
تمام تیرها دارای سطح مقطع کلی یکسان بودند. تقویت فولاد کشش طولی در تیرهای دو نمونه اول شامل، میله های با استحکام زیادT16 بودند اولین تیر حاوی فولاد کف و دومین تیر حاوی،فولاد بالا و پایین برابر (2 . 30 % ) بود. سومین نمونه حاوی دو میله T16 برای فولاد پایین با سیم های فولاد ملایم 3 mm برای فولاد فشاری بود . این امر برای ایجاد یک قفسه برای فولاد S tirrup برش بود و حضور فولاد بالایی در این نمونه می تواند ناچیز فرض شود . Stirrup ها شامل سیم فولادی ملایم 3 mm بودند و در فاصله 75 mm مرکز تا مرکز در سراسر طول تیر ،با Stirrup های اضافی بود که در هر سر تیر قرار داشت تا از خرابی احتمالی جلوگیری کند.
نمونه چهارم حاوی دو میله T16 با تسلیم زیاد برای فولاد کف و دو میله T16 با تسلیم زیاد برای فولاد بالایی بود. Stirrup ها حاوی سیم فولاد ملایم 3 mm بود و در فاصله 75 mm مرکز تا مرکز در سراسر طول تیر قرار داشت . مجدداً ،Stirrup های اضافی در انتهای هر تیر قرار داشت تا از خرابی جلوگیری گردد. شکل 8 جزئیات تقویت را برای چهار آزمایش نشان می دهد. دامنه لازم برای استحکام فشاری مکعب بتن 4 0 _ 5 0
mpa بود که بطور ایده آل به Sompa نزدیکتر است زیرا اکثریت پل های موجود دارای استحکام بتن در این محدوده است . مخلوط طراحی شده و بکار رفته به شرح زیر بود: ( بصورت تناسبی از مقدار سیمان به ازای وزن ): نتایج و بحث آزمایش
1-مقدمه:
فرآیند شکل دادن فلزات وابسته به جنس قطعه یا شمش اولیه وشکل هندسی آن ابزارشکل دادن،ابزارشکل دادن(ازلحاظ ماده وهندسه آن)، شرایط موجود در فصل مشترک ابزار وماده،حالت تنش در منطقه تغییرشکل، نوع ونحوه کاربرد ابزار، خصوصییات محصول نهایی و نهیتا شرایط محیط کارگاه می باشد.
یکی از پرمصرف ترین مقاطع تولیدی در فرآیندهای شکل دهی ،ورق هامی باشند.درابتدا سعی شده است تابا
بررسی تاثیر خواص موادبرشکل پذیری ورق ها در زمینه های توزیع کرنش، خواص موادوچروکیدگی،خواص مواد وشکست برشی، خواص مواد وبرگشت، اعمال خمش الاستیک زیر تنش تسلیم ، خمش ساده، ترکیبی از کشش انبساطی و خمش و کیفیت سطحی جنبه های مختلف شکل دهی ورق ها مشخص شود
فرآیندخم ورق یکی از ساده ترین و در عین حال پر استفاده ترین فرآیند های شکل دهی فلزات است.در عمل
قطعات متعددی وجود دارد که از ترکیب چند خم بر روی ورق ساخته شده است. یک روش برای تولید این گونه قطعات ایجاد تمامی خم ها به طور هم زمان در یک قالب می باشد. داشتن تخمینی از نیروی مورد نیاز و در صورت در موادی که تنوع خم ها زیاد است وابعاد بزرگ می باشد این روش مقرون به صرفه نیست. در روش دیگر ابتداتصویر یک رویه سه بعدی را به کمک گسترش، در صفحه ای تخت و کاملا پیوسته یعنی بدون چاک خوردگی یاچروک خوردگی بدست آورده و سپس می توان بااستفاده ازپرس های بریک وخم کاری های هوایی، رویه اولیه را ایجاد نمود. برای استفاده از این روش در ابتدا لازم است خطوط خم مشخص شوند.
2-شرایط کاری شناورها
انتخاب ماده بدنه شناور جهت عملکرد بهترومناسب، عملی حساس بوده وازاین روبایدشرایط موجودبه خوبی بررسی شده و خواص مورد نظر مشخص گردد.بررسی شرایط به صورت کامل کاری بسیار مشکل بوده وباید توجه داشت که ممکن است شرایط هر دریا و آبی متفاوت باشد و بنابراین در اینجا به بررسی کلی شرایط کاری
پرداخته خواهد شد.
در شرایط جنگی بر خورد، انفجار، فشار غیر عادی ناشی از سرعت زیاد و سایر شرایط مشکل جنگی می تواند
بدنه را تحت فشار قرار دهد. شرایط خاصی مانند آتش سوزی وانفجار نیز موجب ایجاد حرارت بر روی بدنه می گردد.
نیروهای وارده ازسوی دریا به چند صورت به بدنه شناور اعمال می شود که شامل نیرو های هیدرواستاتیک خم کننده و تاباننده، به طور متناوب و ثابت است. این نیروها باعث له شدن ، خم شدن وتابدیدن وسیله می شوند.اثرگردش ها و چرخیدن وسیله و وجود جریان های دریایی موجب خم شدن وسیله و ایجاد نیروهای خاص بر روی بدنه می گردد.نیروهای ناشی از ضربات امواج به خصوص وقتی که وسیله سرعت بالایی دارد، باعث ایجاد نیرو های درجهت خم کردن بدنه می گردد
فشار هیدرو استاتیک نیز تابع عمق کار شناور است که در زیردریایی ها این فشار با افزایش عمق اضافه می شود.
اضافه شدن عمق عملیاتی موجب در هم شکسته شدن زی دریایی شده و در واقع زیر دریایی منهدم می شود.
فرورفتن وغوض کردن زیر دریایی نیز خود موجب ایجاد نیروهای بویانسی می گردد که از طرف دریا به بدنه وارد می شود. وجود بار اضافی در زیر دریایی نیز موجب سنگین شدن زیر دریایی و بنابراین اعمال نیروی بویانسی اضافی به بدنه می گردد
بدنه شناور تحت خوردگی در انواع حالات آن واقع می شود و مسئله خوردگی یکی از مهمترین شرایط موجود
در دریا می باشد که برروی بدنه اثر گذار است.دردریاعلاوه بر آب شور که موجب خوردگی میگردد،سایراملاح وجانداران دریایی نیز وجود دارند که بدنه باید شرایط تخریب کننده آنها مقابله نماید.شرایط خورندگی آب دریاهابا یکدیگر متفاوت است وبنابراین باید در هر دریا جهت بدست آوردن شرایط خوردگی سازه های دریایی، آزمایشاتی انجام گیرد.
3-مشخصات مواد بدنه شناور ها
ماده ای که جهت ساخت بدنه یک شناور انتخاب می شود، برای مقابله با شرایط کاری وجوابگویی به انتظارات از وسیله باید دارای خواص متعدد و متفاوتی باشد که به احتمال زیاد همه آنها در یک ماده جمع نخواهد شد. از این روبا توجه به اهمیت هر خاصیت و نحوه جوابگویی آن درشرایط کاری ونیز اولویت هایی که طرح مشخص می نماید وهمچنین با توجه به روش های جایگزینی که برای رسیدن به بعضی از خواص مورد نظر وجود دارد، می توان از بعضی خواص صرف نظر نمود. این وظیفه طراح است که باید با دید وسیع و انتخاب دقیق، باتوجه به پارامترهای ذکر شده ماده مورد نظر راانتخاب کند.ازطرف دیگرمسائل مربوط به ساخت و نکات تکنولوژی نیز وجود دارد که ماده انتخاب شده باید به همه آنها پاسخ دهد. در این بخش به بررسی خواص مورد نیاز برای بدنه پرداخته شود.
3-1-استحکام:
دارا بودن استحکام مکانیکی مناسب که شامل استحکام نهایی می شود برای یک ماده، تقریباً در تمام کاربردهای صنعتی از اهمیت زیادی برخوردار است و از پارامترهای مهم محسوب می گردد.استحکام مکانیکی ماده مورد استفاده در شناورها خاصیت آصلی ماده مورد نظراست.چرا که مقدار استحکام بدنه بر ضخامت پوسته اثر مستقیم دارد عامل مقاومت شناور در برابر فشار آب می باشد.
به طور معمول استحکام مورد نظر جهت انتخاب مواد توسط طراح وسیله به صورت دامنه ای از استحکام مطرح می گردد که در این صورت باتوجه به مشکلات مربوطه به تهیه مواد خاص برای زیر دریایی های، دامنه ای از انتخاب هانیز وجود خواهد داشت. امروزه با پیشرفت هایی که در زمینه های مختلف علم مواد به وجود آمده است، موادی بااستحکام بالا ایجاد شده که استفاده از آنها در شناورها باعث کم شدن ضخامت بدنه گشته است.در عین حال امکان ساخت شناورهای بزرگ با امکانات متعدد، اهداف چند منظوره، قابلیت های پیشرفته و ظرفیت بار قابل حمل فراهم شده است.
استفاده از موادی بالاتر موجب کاهش هزینه های مربوط نیز می شود، چون موجب مصرف کمتر ماده برای بدنه می گردد .درشکل(1) مقایسه بین چند ماده مهندسی از نظر استحکام صورت گرفته است.برای تعیین ضخامت مناسب پوسته وشکل دقیق بدنه، طراحان از روش های کامپیوتری استفاده می کنندولی روش های سازه ای نیز وجود دارد.
3-2-چقرمگی
با توجه به اینکه بدنه شناور در شرایط خاص جنگی تحت ضربه حاصل از امواج انفجار قرار می گیرد و یا درحالت های عادی ممکن است باصخره های دریایی بر خورد کند و علاوه بر این مثل در زیر دریایی ها وارد شدن به عمق های زیاد بحرانی خطر لهیدگی را در پی دارد، در نتیجه تافنس یا چقرمکی ماده بدنه از اهمیت ویژه ای برخودار است. در تمام این حالات ترجیح داده میشود که در بدنه شناور به جای شکستن و ترک خوردن، خم شود . دراین حال ایجاد شدن؟ یک فرورفتگی (در بدنه در شرایط حاد) از غرق شدن جلوگیری خواهد شد .
استفاده ار ماده ای با چقرمگی خوب موجب میگردد تا نگرانی از نظر شکست و ترک در حین شکل دهی محل هایی با زوایای تند وجود نداشته باشد در واقع تافنس خوب ماده مورد نظر، ساخت،تولید ، و تغییر و تنظیم بدنه را نیز آسانتر نموده و هزینه های مربوطه را کاهش می دهد
در شکل (2) مقایسه ای بین چقرمگی و استحکام تسلیم چند ماده که در صنایع دریایی مورد استفاده قرارمیگیرند ،انجام شده است.
3-3- مقاومت خستگی
با توجه به این که امواج دریا و ضربه های ناشی از انفجار های زیر آبی نیز به طور متناوب بر روی بدنه شناور نیرووارد میکنند . بنابراین یدنه شناور تحت نیروهای متناوب گوناگون و بعضا شدیدی قرار دارد و این نیروهای متناوب منشا خستگی در مواد هستن . در صورتی که ماده مورد استفاه در بدنه شناور دارای مقاومت به خستگی بالایی نباشد در واقع عمر بدنه مدت کوتاهی خواهد بود . باا بودن مقاومت خستگی به مقدار زیادی بر روی افزایش طول عمر بدنه شناور و بنابراین کم نسبت به هزینه طول عمر اثر دارد .
از طرف دیگر با معلوم بودن طول عمر مورد انتظار از یک شناور میتونان ماده ای را انتخاب نمود که در حد پاسخگویی به نیاز ها بوده و بنابراین دیگر نیازی به استفاده از مواد گران قیمت با تکنولوژی های شکل دهی و ساخت پر هزینه ،نیست.
4-3- مقاومت خوردگی
به علت وجود یون های کلر در آب دریا و مجاورت دائمی بدنه آب ، به طور یک خوردگی عمومی در بدنه ایجاد میگردد. البته مشخصات خورندگی آب دریا در محل های مختلف متفاوت است که با توجه به تحقیقات گسترده ای که بر روی آب های دنیا صورت گرفته است ، پیش بینی رفتار خورندگی آب دریا نسبتا آسان شده است.
سرعت خورده شدن سطوح در زیر آب بیشتر توسط سرعت نفوذ اکسیژن دیر بین لایه های زنگ و ارگانیسم های دریای کنترل می شود. سرعت آب به جز در مواردی که آب دارای آلودگی های صنعتی است ، برروی خوردگی بدنه اثر ندارد.بنابراین در دریا به علت وجود آب شور ، بدنه به طور کلی در معرض یک روند خوردگی عمومی قرار دارد که برای رفع آن نیاز به استفاده از مواردی با مقاومت خوردگی بالا وجود دارد. وجود این خاصیت موجب افزایش طول عمر و کم شدن هزینه تعمیر و نگهداری می شود .در دریا علاوه بر خوردگی عمومی حاصل از آب دریا ، ارگانیسم ها و موجودات دریایی نیز ئجود دارند که موجب تسریع در سرعت خوردگی و ایجاد محل های مناسب جهت خوردگی موضعی میشوند. وجود انواع خزه ها وصدف های چسینده موجب ایجاد سلول های خوردگی در روی بدنه میگردد.
برای جلوگیری این این اتفاق اصل از زنگ های ضد خزه استفاد می شود که می تواند به خوبی جلو چسبیدن
خزه ها را به بدنه شناور بگیرد . در ضمن زنگ ها خود مانع رسیدن آب دریا به دبدنه نیز هستند و برای جلوگیری از انواع دیگر بر روی بدنه مفید می باشند . علی رغم مزایای استفاده از رنگ های مختلف، این رنگ ها اغلب سمی بوده و مشکلات زیست محیطی را نیز در پی دارند. استفاده از موادی که خود به طور ذاتی خاصیت ضد خزه داشته باشد در حال حاضر محدود به انواع خاص کمپوزیت ها می شود که با استفاده از زرین های خاص از چسبیدن خزه ها سایر جانداران به بدنه جلوگیری می کند . ولی فلزات این خاصیت را ندارند.
چیدن خزه و جانداران دریایی علاوه بر مسئله خوردگی نیز موجب کم شدن سرعت ،کم شدن ، سرعت عمل می شود به جز این دو نوع روند خوردگی انواع دیگری از خوردگی نیز در دریا وجود دارد که بر روی بدنه اثری میگذارند.
3-4-1- خوردگی گالوانیکی
با توجه به تعدد قطعات در شناور استفاده از چندین ماده متفاوت برای کاربد های مختلف در کنار یکدیگر اجتناب ناپذیر است . از این رئ با توجه به موقعیت مواد درسری گالوانیکی ممکن است مواد استفاده شده،با هم تشکیل پیل گالوانیکی داده و خوردگی یکی به شدت افزایش یابد. به عنوان مثال در کنار فولاد و تیتانیوم و همچنین فولاد در کنار تیتانیوم به راحتی پیل تشکیل داده و دچار خوردگی میگردد. به همین دلیل در انتخاب ماده ای برای ساخت بدنه باید به موقعیت و محل آن ماده در جدول سری گالوانیکی و نیز موقعیت و محل مواد مرتبط با ماده اصلی در جدول مذکور توجه کرده و تشکیل زوج گالوانیکی توسط آن مواد را مد نظر قرار داد.
در عمل استفاده از مواد متفاوت در شناور اجتناب ناپذیر است و بنابراین حتما از انواع عایق ها ،پوشش های مانع خوردگی گالوانیکی و اصولا از حفاظت کاتدی استفاده می شود. حفاظت کاتدی که با به کارگیری آلیاژهای روی ومنیزیم صورت میگیرد ،علاوه بر رفع مشکلات خوردگی گالوانیکی به جلوگیری از خوردگی همیومی نیز کمک می کند
3-4-2-خوردگی تنشی
این نوع خوردگی در واقع یک نوع خوردگی موضعی است که در اثر وجود همزمان تنش کشی و عامل خورنده بر روی قطعه اتفاق می افتد. در واقع تنش موجب تسریع شدید در خوردگی میگردد. عوامل زیادی بر روی سرعت خوردگی تنشی اثر دارد که از آن جمله می توان به نوع ماده مورد استفاده ، مقدار تنش ،نوع محیط خورنده،دما و زمان اشاره نموده. تنش هایش قطعات ممکن است از نوع تنش های پسماند و یا تنش های اعمالی باشند که در هر صورت خوردگی تنشی را تسریع می کنند.
از آنجایی که وجود تنش و محیط خورنده در سازه های دریاییغیر قابل اجتناب است ، بنابراین استفاده از موادی که نسبت به خوردگی تنشی مقاوم باشند در ساخت بدنه مفید خواهد بود . در حال حاضر فقط تیتانیوم وکمپوزیت های خاصی وجود دارند که نسبت به خوردگی تنشی مقاوم هستند و سایر مواد در این شرایط خورده خواهند شد . برای کم کردن اثر خوردگی تنشی روش های حذف تنش های پسماند از طریق عملیات حرارتی ، طراحی درست جهت به حداقل رساندن تنش های کششی در شناور و استفاده از روش های علم مکانیک شکست مفید خواهد بود
3-4-3- خوردگی حفره ای
مقاومت در برابر خوردگی حفره ای و بین دانه ای نیز از جمله خواصی است که ماده بدنه باید دارا باشد . خوردگی حفره ای در بعضی از مواد به صورت ایجاد حفره هایی کوچک بر روی سطح آغاز می شود و به دلیل عدم خروج یون های خوردنده از محل خوردگی تشدید می گردد.
خوردگی بین دانه ای نیز در اثر حساس بودن رسوب هایی که در روی مرز دانه ها قرار دارند ، در مقابل به وجود می آید و گاهی در ورق های نوردی به صورت جهت دار ظاهر میشود . به طور کلی باید گفت ه ماده مورد استفاده به عنوان بدنه شناور باید نسیت به این نوع خوردگی نیز مقاوم باشد و از نظر ساختاری طوری باشد که تحت محیط های دریایی دچار خوردگی بین دانه ای نشود . در جدول (1) مقایسه ای بین خواص خوردگی برخورد از مواد مهندسی صورت گرفته است
3-5-عدم حساسیت نسبت به دما و آتش(در زیر دریایی ها)
بدنه زیر دریایی در واقع پوسته محافظ زیر دریایی و سپر آن نیز می باشد. بدنه در حین عملیات جنگی در برابرانواع انفجارهاو حرارت حاصل از آنها قرار می گیرد.از طرف دیگر در داخل زیر در یایی انواع مواد مشتعل شونده مانند روغن و سوخت وقطعات پلاستیکی و غیره وجود دارد که در شرایط خاصی ممکن است مشتعل شده و زیر دریایی را دچار آتش سوزی کنند.در صورت استفاده از بدنه ای که نسبت به حرارت وآتش مقاوم نباشد(مثلاٌآلومینییوم با نقطه ذوب 600درجه ی سانتیگراد)، درصورت بروز چنین مشکلی بدنه ازبین رفته و منجر به عرق وسیله خواهد شد. دراین باره توصیه می شود درمورد زی دریایی های جنگی از مواردی که نقطه ذوب بالایی دارند استفاده شود.
به طور کلی کارکردن وسائل مختلف دردرون زیر دریایی موجب ایجاد حرارت کلی و موضعی درزیر دریایی
می گردد.درصورتی که بدنه زیر دریایی نسبت به حرارت حساس باشد، یعنی با رفتن حرارت از خود بخارها و
گازهای سمی تولید کند.در این صورت با توجه به بسته بودن فضای زیر دریایی خدمه دچار مشکل شده ووسیله
عملاٌکارآیی نخواهد داشت. موادی مانند برخی از کامپوزیت ها دچار این نوع مشکل هستند[11].
3-6-مقاومت به سایش
بدنه شناور به طور دائم تحت سایش نامحسوس آب شور وهمچنین تحت سایش در اثر کشیده شده به اسکله وسایر وسایل دریایی است .دراین حالت پوسته احتیاج به مقاومت به سایشی دارد که به وسیله آن دربرابر این گونه عوامل تخریب کننده مقاومت کند[9].به طور معمول با انتخاب ماده ای با استحکام مناسب، مقاومت به سایش بدنه نیز تامین می گردد.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:20
چکیده لاتین :
DURABILITY DESIGNE OF GFRP RODS FOR CONCRETE
REINFORCEMENT
International Center for Urban Safety Engineering,
Institute of industrial science, university of Tokyo
4-6-1 Komaba, Meguro, Tokyo, Japan
To deal with the corrosion of reinforcing steel in concrete, FRP has been used throughout the world. They do not corrode even in chloride environments by sea water and deicing salt. Considering the durability of the material, FRP will become a major reinforcing material for concrete in highly corrosive environment. One of the problems of FRP is that some of the FRP rods and sheets deteriorate due to other causes such as alkali attack, acid attack, ultraviolet ray attack, etc. Among them, alkali attack to glass fibers and GFRP is the largest problem. It is difficult to apply the material as internal reinforcement of concrete. To deal with the problem, many attempts are performed. This paper explains how to deal with the problem to produce high alkali resistant GFRP using durability design.
INTRODUCTION
Concrete Structures throughout the world have been deteriorated severely due to chloride induced steel corrosion. To deal with the problem, many attempts were performed, such as to use galvanized steel bars, epoxy-coated bars, Catholic protection, etc. Among these attempts, FRP was evaluated as one of the best method to deal with the problem because FRP does not corrode even in chloride environment.
As mentioned by JSCE research committee 1, many researches were Performed mostly in Japan, north America and Europe to utilize FRP as concrete reinforcement since 1980,s.In Japan , a large amount of FRP has been applied to reinforced concrete structures not only to new structures but also to existing structures using recommendations by JSCE 2.3 , etc. The types of FRP commonly being used are rods embedded in concrete for new structures and sheets applied to the surfaces of existing structures.
Concrete structures are normally used for more than 50 to 100 years, and the reinforcements must be also durable enough to reinforce the concrete for the same period of time. Although FRP does not corrode in chloride environment, we have already clarified that FRP deteriorates in other environments such as high concentration of alkali and acid. Ultra – violet rays from sunlight, etc.
To deal with the problem, care must be taken how to use FRP materials as reinforcements for concrete structures. One method is to use high durable material such as CFRP as concrete reinforcement. Another method is to change the properties of the existing FRP so that it may not deteriorate easily in these environments.
Considering these conditions, this paper is written to explain briefly through our works in IIS, the cause of FRP deterioration and basic concept to deal with these problems. In this paper, explanation is given on FRP rods using carbon fibers, Aramid fibers and glass fibers.
MAIN CAUSES OF FRP DETERIORATION
FRP is a composite material, composed of millions of fibers and resin. The diameters of fibers are in the range of 6 (carbon fibers) to 15 microns (Aramid fibers and glass fibers). As shown in figure 1, when tensile load is applied to FRP, fibers carry load and resin transfers stress to the neighboring fibers. The resin can also protect fibers from ingress of harmful ions from their environment. In this paper, carbon fiber reinforced plastics, Aramid fiber reinforced plastics and glass fiber reinforced plastics are abbreviated as CFRP, AFRP and GFRP.
Deterioration of both fibers and resin, and also the transition zone between fibers and resin govern the durability of FRP. This makes the deterioration mechanism of FRP complicated compared to steel. As most of the mechanical properties are governed by fibers, if the fibers are not deteriorated, FRP can resist against load in most cases. But when resin is attacked and deteriorated, the fibers fall off from the surface and FRP reduces strength.
Considering the properties and usage of FRP, important items on deterioration to be considered are listed below. Item 1) to 3) are for reinforcements embedded in concrete (rods), and items 4) to 6) are for surface reinforcements (mainly sheets).
چکیده فارسی:
دوام طراحی میله های GFRP برای استحکام بتن
برای سرو کار داشتن با خورندگی و تقویت کننده در بتنFRP همچنان در سرتاسر جهان مورد استفاده قرار می گیرد . آنها حتی در محیطی کلریدی بوسیله آب دریا نیز خورده نمی شوند. با توجه به دوام مواد FRP به عنوان یک تقویت کننده اصلی ماده برای بتن در یک محیط با تحلیل پذیری و خورندگی بالا استفاده خواهد شد . یکی از مشکلات FRP آن است که بعضی از میله ها و صفحات FRP به خاطر بعضی از مشکلات از جمله حملۀ قلیایی و بازی حملۀ اسیدی . تابش پرتو ماوراء بنفش و غیره خراب شده و رو به زوال می رود . در میان آنها ، حمله بازی و قلیایی برای بافت شیشه ای و GFRP بزرگترین مشکل محسوب می شود .
آن مشکل است تا از این مواد به عنوان استحکامات داخلی بتن استفاده و به کار گرفت . برای مواجه شدن و سرو کار داشتن با همچون مشکلی بسیاری از روشها و تلاشها را اجرا کردند . این نوشته توضیح می دهد که چگونه می توان ، همچون مشکلی برای تولید یک GFRP مقاوم مورد استفاده در طراحی در مقابل محیط قلیایی زیاد مواجه شود .
مقدمه
ساختمان های بتنی در سراسر جهان به خاطر خوردگی فولاد در مقابل محیط کلریدی خراب و یا بدتر شده اند . برای مواجه نشدن این مشکل ، بسیاری از روشها از جمله استفاده از تیرهای فولاد گالوانیزه ، پوشش اپوکسی تیر ها ، حفاظت کلی وغیره اجرا شدند . در میان این روشها FRP فقط با یکی از روشها برای مواجه شدن به این مشکل آزمایش و ارزیابی شد چون FRP حتی در محیط کلریدی نیز خورده نمی شود .
همانطور که بوسیله کمیته تحقیق JSCE ذکر شد ، بسیاری از تحقیقات در ژاپن ، آمریکای شمالی و اروپا اجرا شد اند تا از FRP به عنوان استحکام بتن مورد استفاده قرار گیرد . در ژاپن ، مقدار زیادی از FRP برای تقویت و استحکام نه تنها ساختمانهای جدید بلکه تمام ساختمانهای بتنی مورد استفاده قرار گرفت اما همچنین برای ساختمانهای موجود نظریه JSCE و غیره نیز مورد استفاده قرار گرفت . انواع FRP های در حال حاضر مورد استفاده قرار گرفته میله های جا سازی شده در بتن برای ساختمانهای جدید و صفحات به کار گرفته شده برای سطوح ساختمانهای موجود می باشد .
ساختمانهای بتنی به صورت نرمال و معمولی برای بیش از 50 تا 100 سال مورد استفاده قرار می گیرد و آرماتور گذاری ها همچنین باید دوام کافی برای تقویت بتن در چنین زمانی را داشته باشند . همچنین FRP در محیط کلریدی خورده نمی شود ، ما هم اکنون توضیح دادیم که FRP در محیط های اسیدی و بازی با غلظت بالا به تابشی پرتو ماوراء بنفش از خورشید و غیره رو به زوال می رود .
برای سر و کار داشتن با این مشکل ، این حفاظت باید چگونگی استفاده از مواد FRP را به عنوان تقویت کننده های ساختمانهای بتنی را بداند . یک روش استفاده از مواد پردوام مانند CFRR به عنوان تقویت کننده های بتن است و روش دیگر تغییر دادن خصوصیات موجود در FRP است بطوریکه آن ممکن است به این راحتی در این محیط ها خراب نشود .
با توجه به این شرایط ، این نوشته بطور خلاصه کار مارا در IIS ، علت دوام FRP و راه کارهای اساسی برای سرو کار داشتن با این مشکلات را توضیح می دهد . در این تحقیق ، توضیحات در باره میله های FRP با استفاده از رشته های کربنی ، شیشه ای و Aramid داده شده است .
دلایل اصلی دوام FRP
FRP یک ماده ترکیبی است که از میلیون ها رشته و رزین تشکیل شده است . قطر این رشته ها از 6 (رشته های کربنی ) تا 15 (رشته های شیشه ای و Aramid ) میکرون است .همانطور که در شکل یک نشان داده شده است هنگامی که بار کششی به FRP اعمال میشود، فیبرها بار را حرکت داده و انتقال دهنده های زرین فشار را به فیبرهای مجاور منتقل می کنند.این زرین همچنین می تواند از فیبرها در مقابل یونهای زیان آور از محیط های اطراف حفاظت کند.در این تحقیق مصنوعات تقویت کننده فیبر کربن ، آرامید و شیشه ای به عنوان CFRP CFRP,AFRP, مختار شده اند.
زوال و خراب شدن هم فیبر و هم رزین و همچنین انتقال ناحیه بیرون فیبرورزین دوام FRP را کنترل می کند. این دوام مکانیسم FRP را در مقایسه با فولاد پیچیده می سازد. اگر فیبرها مقاوم نباشند، FRP میتواند درمقابل بار در بسیاری از حالات مقاومت کند. اما هنگامی که رزین مورد حمله قرار می گیرد و مقاومت می کند، فیبرها از سطح منحرف شده و FRP نیرو را کاهش میدهد. (شکل 2 را نگاه کنید).
شکل 1: ترکیب FRP
شکل 2: مقاومت GFRPبه دلیل حمله الکلی
با توجه به خصوصیات و استفاده FRP ، آیتم و بخشهای مهمی درباره دوام و رسیدگی در لیست زیر می باشد:
آیتم های 1تا 3 در مورد تقویت کننده های جاسازی شده در بتن (میله ها) است و آیتم های 4تا 6 مربوط به تقویت کننده های سطحی است.
1- شکستگی به علت فرسودگی ثابت
2- شکستگی به علت فرسودگی
3- مقاومت الکلی
4- مقاومت اسیدی
5- مقاومت در برابر تابش اشعه ماوراء بنفش
6- مقاومت در برابر ذوب یخ زدگی سطحی