یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

الگوریتم 20 ص

اختصاصی از یارا فایل الگوریتم 20 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 25

 

الگوریتم

هر برنامه، می بایست دارای یک طرح و یا الگو  بوده تا برنامه نویس بر اساس آن عملیات خود را دنبال نماید.از دیدگاه برنامه نویسان ، هر برنامه نیازمند یک الگوریتم است . بعبارت ساده ، الگوریتم ، بیانه ای روشمند بمنظور حل یک مسئله بخصوص است . از منظر برنامه نویسان ،الگوریتم بمنزله یک طرح کلی و یا مجموعه دستورالعمل هائی است که با دنبال نمودن آنان ، برنامه ای  تولید می گردد.

الگوریتم های میکرو در مقابل ماکرو

الگوریتم ها دارای ویژگی های متفاوتی می باشند . ما می توانیم در رابطه با  الگوریتم  استفاده شده  به منظور نوشتن یک برنامه مشخص صحبت نمائیم . از این زاویه  ، ما  صرفا" در رابطه با الگوریتم  در سطح ماکرو(macro level)  ، صحبت نموده ایم . در چنین مواردی ، الگوریتم ارائه شده ، سعی در بدست آوردن جنبه های عمومی برنامه از طریق یک مرور کلی به برنامه در مقابل درگیر شدن در جزئیات را  دارد.ما می توانیم در رابطه با الگوریتم ها ، از سطح "میکرو" صحبت نمائیم . از این زاویه ، به سطوح پایین تر رفته و به عوامل اساسی ونگهدارنده ای  که یک جنبه خاص از برنامه را با  یکدیگر مرتبط می نماید، صحبت کرد.  مثلا" در صورتیکه شما دارای داده هائی هستید که می بایست قبل از استفاده  مرتب گردند ،الگوریتم های مرتب سازی متعددی در این زمینه وجود داشته و  می توان یکی از آنها را بمنظور تامین اهداف مورد نظر خود انتخاب نمود. انتخاب یک الگوریتم مرتب سازی  ، صرفا" باعث حل شدن یکی از جنبه های متفاوت برنامه می گردد . پس از مرتب سازی داده ها ،می بایست از یک الگوریتم میکرو دیگر بمنظور نمایش  داده  ها ی مرتب شده استفاده  گردد .

همانگونه که احتمالا" حدس زده اید ، ما می توانیم تمام الگوریتم های میکرو را بمنظور ایجاد یک الگوریتم ماکرو ، جمع آوری نمائیم . اگر ما با الگوریتم های میکرو ، آغاز نمائیم ، و حرکت خود را بسمت نمایش ماکروی یک برنامه ، پیش ببریم ، کاری را انجام داده ایم که موسوم به طراحی " پایین به بالا" (buttom-up)  ، است . اگر ما فعالیت خود را با یک الگوریتم ماکرو آعاز و حرکت خود را بسمت پائین و الگوریتم های میکرو ، ادامه دهیم ، طراحی از نوع " بالا به پایین " (top-down)  را انجام داده ایم .

شاید این سوال مطرح گردد که  کدام روش بهتر است ؟ اگر شما تمام مقالاتی را که تاکنون در این زمینه نوشته شده اند را  دنبال نمائید ، هرگز به یک نتیجه قابل قبول دست نخواهید یافت . هر رویکرد، دارای نکات مثبت و منفی مربوط به خود است . صرفنظر از رویکرد طراحی استفاده شده ، می بایست دارای الگوئی (طرحی) مناسب برای برنامه باشیم .حداقل، نیازمند یک اعلامیه از مسئله برنامه نویسی و یک طرح ( الگو) برای برخورد با مسئله ، خواهیم بود . پس از شناخت مسئله ، می توان  نحوه حل مسئله را  ترسیم کرد.  شناخت عمیق و مناسب نسبت به  مسئله ای که قصد حل آن را داریم ، شرط اساسی و ضروری برای طراحی یک برنامه است .با توجه به اینکه این اعتقاد وجود دارد که شناخت جامع و کلی از مسئله ای که حل آن را داریم ، بخشی ضروری در اولین مرحله برنامه نویسی است ، ما در ادامه از رویکرد "بالا - پایین "، تبعیـت می نمائیم . فراموش نکنیم که  رویکرد فوق ، امکان مشاهده مجازی از هر مسئله برنامه نویسی را فراهم خواهد نمود.

مراحل پنج گانه

هر برنامه را صرفنظر از میزان پیچیدگی آن ، می توان  به  پنج مرحله اساسی تجزیه کرد :

مقدار دهی اولیه

ورودی

پردازش

خروجی

پاکسازی

در ادامه به بررسی هریک از مراحل فوق ، خواهیم پرداخت .

مرحله مقداردهی اولیه

مرحله مقداردهی اولیه ، اولین مرحله ای است که می بایست در زمان طراحی یک برنامه  در رابطه با آن فکر کرد . مرحله فوق ، شامل تمامی عملیات مورد نیازی  است که برنامه می بایست قبل ازبرقراری ارتباط  با کاربر ، انجام دهد . در ابتدا ممکن است این موضوع که عملیاتی را قبل از برقراری  ارتباط با کاربر می بایست انجام داد ، تا اندازه ای عجیب بنظر رسد ولی احتمالا" برنامه های زیادی را مشاهده نموده اید که در این راستا عملیات مشابهی را انجام می دهند. مثلا" ،  در زمان استفاده از برنامه هائی نظیر Word ، Excel و یا برنامه های مشابه دیگر ، با چنین مواردی برخورد نموده ایم . مثلا"  با انتخاب  گزینه منو File ، می توان  لیستی از فایل هائی را که با آنها


دانلود با لینک مستقیم


الگوریتم 20 ص

الگوریتم 23 ص

اختصاصی از یارا فایل الگوریتم 23 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 23

 

مقدمه

در سالهای اخیر آمارشناسان به طور زیاد روش‌های الگوریتم مونت کارلوی زنجیر مارکوفی (MCMC) را رسم کرده‌اند. الگوریتم نمونه‌گیری گیبر یکی از بهترین روش‌های شناخته شده است برای آشنایی با شرایط مسأله فرض کنید در بردار تصادفی () برای محاسبه چگالی کناری x ، با مشکل روبرو هستیم اما چگالی‌های شرطی و و … در دسترس می‌باشند. در روش نمونه‌گیری گیبس مشاهداتی به صورت غیرمستقیم ازx تولید می‌شود و به کمک آنها چگالی کناری x را بررسی می‌کنیم.

حالا توجه قابل ملاحظه‌ای به الگوریتم متروپولیس- هستینگس تخصیص داده شده است که توسط متروپولیس و روسنبلوس، تلر (1953) گسترش و بعداً توسط هستینگس (1970) نظم داده شده است. الگوریتم M-H به طور زیاد در فیزیک کاربرد دارد و هنوز با وجود مقاله‌ای که توسط هستینگس ارائه شده است، به طور خیلی کم برای آمارشناسان شناخته شده است.

به دلیل سودمندی الگوریتم M-H ، کاربردهای آن به طور مداوم ظاهر می‌شود. برای مثال‌های جدید مولر (1993)، چیب وگریبزگ (1994) و فیلیپس و اسمیت (1994) را ببینید.

ما مقدمه‌ای را از این الگوریتم تهیه کرده‌ایم که از اصول اولیه آن مشتق شده است این مقاله به تنهایی مربوط به تئوری زنجیر مارکوف است. مطالب مربوط به این مقاله چنان که در پایین می‌آید به بحث گذاشته می‌شود. در بخش 2،‌ ما به طور خلاصه مشابه روش‌پذیرش- رد کردنی را مرور می‌کنیم. اگر چه MCMC نیست ولی بعضی از تفسیرهایی که در الگوریتم متروپولیس- هستینگس ظاهر می‌شود را به کار می‌برد و این مقدمه ای خوب برای این موضوع است. بخش 3 ارتباط تئوری زنجیر مارکوف به فضای وضعیت دائم را معرفی می‌کند که با فلسفه کلی که در پشت روش MCMC است همراه می‌شود. در بخش 4 الگوریتم M-H را نتیجه می‌گیریم و بخش 5 شامل مقالاتی می‌شود که با انتخاب چگالی کاندیدی- تولیدی در ارتباط هستند.

2- نمونه‌گیری پذیرش- رد کردنی

بر خلاف روش‌های MCMC که در پایین توضیح داده شده تکنیک‌های مشابه قدیمی که نمونه‌های مارکوفی را تولید نمی‌کند وجود دارد. روش مهم این دسته روش A-R است که به این صورت است.

روش A-R :

روش A-R به طور علمی نمونه‌هایی را تولید می‌کند که از چگالی معین می‌آید که یک چگالی غیرنرمالی و k یک ثابت نرمالیز است که ناشناخته است.

فرض کنید که h(x) یک چگالی باشد که با روش‌هایی معین می‌تواند شبیه‌سازی شود و فرض کنید که یک ثابت شناخته شده C باشد طوری که برای تمام x ها باشد.

*یک مقدار Z از h(.) و یک مقدار U از (1/0)U (توزیع یکنواخت روی (اره)) بگیرید. اگر آنگاه z=y و به * برگردید،‌در غیر این صورت باز هم به * برگردید.

به آسانی نشان داده می‌شود که این y یک متغیر تصادفی از است. برای اینکه این روش مفید و سودمند باشدC باید با دقت انتخاب شود.

 

نظر به تولید چگالی همچنین در الگوریتم M-H ظاهر می‌شود، اما قبل از در نظر گرفتن تفاوت‌ها و مشابهت‌ها، ما به منطق و فکری که در پشت روش MCMC است توجه می‌کنیم.

3- شبیه‌سازی مونت کارلوی زنجیر مارکوفی

روش معمول تئوری زنجیر مارکوفی روی فضای وضعیت این است که با یک انتقال کرنل


دانلود با لینک مستقیم


الگوریتم 23 ص

ترجمه مقاله مکانیسم تحمل خطا برای شبکه محاسباتی با استفاده از الگوریتم نقطه نظارت(Checkpoint )

اختصاصی از یارا فایل ترجمه مقاله مکانیسم تحمل خطا برای شبکه محاسباتی با استفاده از الگوریتم نقطه نظارت(Checkpoint ) دانلود با لینک مستقیم و پر سرعت .
ترجمه مقاله مکانیسم تحمل خطا برای شبکه محاسباتی با استفاده از الگوریتم نقطه نظارت(Checkpoint )

این مقاله ترجمه مقاله انگلیسی Fault Tolerance Mechanism for Computational Grid
Using Checkpoint Algorithm می باشد ./

 

سال انتشار : 2013/

تعداد صفحات مقاله انگلیسی :7/

تعداد صفحات فایل ترجمه : 15/

فرمت فایل ترجمه : Word /

 

مقاله اصلی را به زبان انگلیسی می توانید رایگان از اینجا دریافت فرمایید /

 

 

به همراه ترجمه فایل پاورپوینت ارایه نیز شامل 39 اسلاید نیز تقدیم شما می شود . 

چکیده

شبکه­های محاسباتی برنامه­های علمی با مقیاس زیاد را با استفاده از منابع ناهمگن و از نظر جغرافیایی توزیع شده حل کرده­اند. زیرساخت شبکه مجموعه بزرگی از گره­های توزیع شده و متصل شده با یک ارتباط است. در شبکه محاسباتی تاب­آوری خطا یکی از نواحی اصلی تحقیقاتی است. تحمل خطا با توزیع لازم است که مسائلی را مرتبط با ناهمگنی سخت­افزای، سیستم­های عامل، شبکه­ها، میان­افزارها، برنامه­های کاربردی، منابع پویا و مقایس­پذیری ایجاد می­کند. در این صفحه از مقاله تمرکز اصلی ما بر توسعه سیستم تحمل خطا برای شبکه­های محاسباتی است. ما تحمل خطای موجود را در شبکه محاسباتی به صورت دقیق مطالعه کرده­ایم، و علل شکست آن را مشخص کرده­ایم. بنابراین نقطه نظارت فرآیندی است که یک محل طراحی شده در یک برنامه را مشخص می­کند که درآن فرآیندهای نرمال به خصوص برای حفظ وضعیت اطلاعات لازم برای از سرگیری فرآیند در زمان بعد متوقف می­شود. Checkpointing فرآیند ذخیره اطلاعات وضعیت است. زمانی که تعداد منابع موجود در شبکه افزایش می­یابد احتمال وقوع خطا نیز افزایش می­یابد. برای این منظور ما یک شبکه محاسباتی براساس میان­افزار Alchemi راه­اندازی کرده­ایم. Alchemi یک چارچوب محاسبه شبکه مبتنی بر NET است که ادوات زمان اجرا و محیط برنامه­نویسی موردنیاز برای ساخت شبکه محاسباتی را ارائه می­دهد. پس از تنظیم محیط شبکه نقاط بازرسی مختلفی را ایجاد کرده­ایم و با محصول chandy-Lamport مقایسه می­کنیم.

 

 

 

تماس با ما برای راهنمایی یا ترجمه با آدرس ایمیل:

magale.computer@gmail.com

 

 

شماره تماس ما در نرم افزار تلگرام:

تماس با ما+98 9337843121 

 

 تماس با ماکانال تلگرام‌  @maghalecomputer

 

 توجه: اگر کارت بانکی شما رمز دوم ندارد، در خرید الکترونیکی به مشکل برخورد کردید و یا به هر دلیلی تمایل به پرداخت الکترونیکی ندارید با ما تماس بگیرید تا راههای دیگری برای پرداخت به شما پیشنهاد کنیم.


دانلود با لینک مستقیم


ترجمه مقاله مکانیسم تحمل خطا برای شبکه محاسباتی با استفاده از الگوریتم نقطه نظارت(Checkpoint )

پروژه ی الگوریتم friend با سی شارپ

اختصاصی از یارا فایل پروژه ی الگوریتم friend با سی شارپ دانلود با لینک مستقیم و پر سرعت .

روش پارتیشن بندی پویا با روش پارتیشن بندی ایستا:

یعنی اینکه ابتدا حافظه به عنوان یک پارتیشن یک جا و یکپارچه در نظر گرفته می شود.هنگامی که پروسه ای می خواهد وارد حافظه شود،حجم پروسه مشخص می شود.اگر حجم پروسه بزرگتر از نصف حافظه ی ما باشد،مستقیما در حافظه قرار می گیرد و زمانی که پروسه ها از حافظه خارج می شوند،ان پارتیشنی که پروسه در ان قرار داشت ،با پارتیشن مجاور ان مقایسه می شود.اگر پارتیشن مجاور پارتیشن پروسه ،ازاد بود،این دو پارتیشن که هم اندازه هستند به هم می چسبند.این عمل چسباندن پارتیشن ها تا جایی پیش می رود که حافظه ی ما دوباره یکپارچه شود.


دانلود با لینک مستقیم


پروژه ی الگوریتم friend با سی شارپ