فرمت فایل : word(قابل ویرایش)
تعداد صفحات:161
سیمنار کارشناسی ارشد رشته عمران- زلزله
فهرست مطالب:
عنوان صفحه
فصل اول: آنالیز دینامیکی با استفاده از بردارهای ریتز وابسته به بار
بخش اول: تحلیل دینامیکی
مقدمه
1-1- اصول اولیه تحلیل دینامیکی
2-1- تعادل دینامیکی
3-1- روش حل گام به گام
4-1- روش برهم نهی مدی
5-1- تحلیل طیف پاسخ
6-1- حل در حوزه فرکانس
7-1- حل معادلات خطی
بخش دوم: محاسبه بردارهای متعامد بر جرم و سختی
مقدمه
1-2- روش جستجوی دترمینانی
2-2- کنترل ترتیب استورم
3-2- متعامد سازی گرام اشمیت
4-2- تکرار زیر فضای بلوکی
5-2- حل سیستمهای منفرد
6-2- ایجاد بردارهای ریتز وابسته به بار
بخش سوم: کلیات روش LDR
1-3- روش جداسازی دو مرحله ای در تحلیل سازه ها
1-1-3- جداسازی مسائل خطی دینامیکی به وسیله برهم نهی مدی
2-3- استفاده از بردارهای ریتز در دینامیک سازه ها
1-2-3- روش ریلی برای سیستمهای تک درجه آزادی
3-3- تولید خودکار بردارهای ریتز وابسته به بار
4-3- تاثیر فرمول بندی اجزای محدود بر ایجاد بردارهای ریتز وابسته به بار
1-4-3- ماتریس جرم
2-4-3- بردار بارگذاری
1-2-4-3- محتوای فرکانسی
2-2-4-3- توزیع مکانی
بخش چهارم: ارتباط میان الگوریتم بردارهای ریتز وابسته به بار و روش Lanczos
1-4- روش Lanczos
عنوان صفحه
2-4- خواص اساس بردارهای ریتز وابسته به بار
3-4- نکاتی در مورد تعامد بردارهای پایه ریتز وابسته به بار
4-4- تحلیل سیستمهای با میرایی
1-4-4- روند حل برای میرایی متناسب (با ماتریس سختی)
2-4-4- روند حل برای میرایی غیر متناسب
5-4- فلسفه اساسی فراسوی بردارهای ریتز وابسته به بار
بخش پنجم: توسعه تخمین خطا برای بردارهای ریتز وابسته به بار
1-5- تخمین های خطای مکانی برای ارائه بارگذاری
2-5- ارائه بارگذاری به وسیله پایه بردارهای ریتز وابسته به بار
3-5- تخمین های خطا با استفاده از مجموع بارهای ارائه شده
4-5- تخمین خطا براساس معیار اقلیدسی بردار خطای نیرو
5-5- روشهای جمع بندی برای آنالیز برهم نهی مستقیم بردار
1-5-5- روش تصحیح استاتیکی
2-5-5- روش شتاب مدی
6-5- رابطه میان بردارهای ریتز وابسته به بار و حل مقدار ویژه دقیق
بخش ششم: الگوریتمی جدید برای ایجاد بردارهای ریتز وابسته به بار
1-6- استقلال خطی بردارهای ریتز وابسته به بار
1-1-6- روش Lanczos و مساله از دست دادن تعامد
2-1-6- بردارهای ریتز وابسته به بار و مساله از دست دادن تعامد
3-1-6- باز متعامد سازی انتخابی
4-1-6- کاربرد کامپیوتری متعامد سازی انتخابی
2-6- تنوع محاسباتی الگوریتم بردارهای ریتز وابسته به بار
1-2-6- بردارهای ریتز LWYD
2-2-6- کاربرد کامپیوتری با استفاده از فرم کاهش یافته سه قطری
3-6- کاربرد عددی روی سیستمهای ساده سازهای
1-3-6- حل مثال با استفاده از برنامه CALSAP
2-3-6- توضیح مدل ریاضی
3-3-6- ارزیابی گونه های محاسباتی الگوریتم ریتز
بخش هفتم: تحلیل دینامیکی غیرخطی با برهم نهی مستقیم بردارهای ریتز
1-7- منبع و حد رفتار غیرخطی
2-7- تکنیک های راه حل برای تحلیل دینامیکی غیرخطی
3-7- روشهای انتگرال گیری مستقیم
عنوان صفحه
4-7- روشهای برهم نهی برداری
5-7- گزینش بردارهای انتقال برای روشهای برهم نهی
6-7- خط مشی های حل سیستمهای غیرخطی کلی
7-7- خط مشی های حل سیستمهای غیرخطی محلی
بخش هشتم: توصیف فیزیکی الگوریتم ریتز و ارائه چند مثال
1-8- مقایسه حل با استفاده از بردارهای ویژه و بردارهای ریتز
مثال 1:
مثال 2:
مثال 3:
بخش نهم: تحلیل دینامیکی با استفاده از بردارهای ریتز
1-9- معادله حرکت کاهش یافته
نتیجه
مراجع فصل اول
ضمیمه
فصل دوم: آنالیز استاتیکی فزاینده غیرخطی مودال (MPA)
بخش اول: آنالیز استاتیکی فزاینده غیرخطی
1-1- روندهای تحلیلی
2-1- پیدایش روش غیرخطی استاتیکی
3-1- فرضیات اساسی
1-3-1- کنترل براساس نیرو یا تغییر مکان
2-3-1- الگوهای بارگذاری
3-3-1- تبدیل سازه MDF به SDF
4-3-1- تغییر مکان هدف
5-3-1- حداکثر شتاب زمین
4-1- روش آنالیز استاتیکی غیرخطی
5-1- روش گام به گام در محاسبه منحنی ظرفیت
1-5-1- روش گام به گام محاسبه منحنی ظرفیت
6-1- محدودیتهای POA
بخش دوم: MPA
1-2- معادلات حرکت
2-2- معرفی سیستمهای مورد بررسی و حرکت زمین
3-2- روند تقریبی تحلیل
1-3-2- بسط مدی نیروهای موثر
2-3-2- ایده اساسی
4-2- روشUMRHA
1-4-2- سیستمهای خطی
2-4-2- سیستمهای غیرخطی
5-2- MPA
1-5-2- سیستمهای الاستیک
2-5-2- سیستمهای غیرالاستیک
6-2- خلاصه MPA
7-2- برآورد روش
فهرست اشکال
عنوان صفحه
شکل 1-1- ایده آل سازی سازه با جرم گسترده
شکل 1-3- الگوریتم ایجاد بردارهای ریتز وابسته به بار
شکل 2-3- نیروهای اینرسی و الاستیک در مقابل فرکانسهای مدی
شکل 1-4- روش Lanczos
شکل 1-5- مقایسه مقیاسهای مختلف خطا ارائه شده توسط روابط مختلف
شکل 2-5- الگوریتم ترکیب بردارهای ریتز وابسته بهار وتکرار زیرفضا برای حل مساله ویژه عمومی
شکل 1-6- الگوریتم بردارهای ریتز وابسته به بار (اصلاح شده)
شکل 2-6- مدل فرضی سکوی دریایی
شکل 3-6- ارائه بارگذاری موج معیار خطای اقلیدسی
شکل 4-6- ارائه بارگذاری زلزله معیار خطای اقلیدسی
شکل 5-6- سطح تعامد باقی مانده با استفاده از الگوریتمهای مختلف
شکل 6-6- حداکثر خطا در نیروی برشی تیر (بارگذاری موج)
شکل 7-6- حداکثر خطا در نیروی برشی تیر (بارگذاری زلزله)
شکل 8-6- اشکال مدی برای همگرایی بارگذاری موج
شکل 9-6- اشکال مدی برای همگرایی بارگذاری زلزله
فهرست جداول
عنوان صفحه
جدول 1-6- تعداد عملیات لازم برای روندهای متعامدسازی
جدول 2-6- حداکثر خطا در نیروی برشی تیر (%) بارگذاری زلزله
جدول 1-8- درصد خطا (ریتز و ویژه)
جدول 2-8- مشارکت جرمی (مقادیر ویژه)
جدول 3-8- مشارکت جرمی (ریتز)
جدول 4-8- مشارکت جرمی (مقادیر ویژه دقیق)
فصل اول
تحلیل دینامیکی با استفاده از بردارهای ریتز وابسته به بار
بخش اول:
تحلیل دینامیکی
مقدمه
توسعه و رشد سریع سرعت کامپیوترها و روشهای اجزای محدود در طی سی سال گذشته محدوده و پیچیدگی مسائل سازه ای قابل حل را افزایش داده است. روش اجزای محدود روش تحلیلی را فراهم کرده است که امکان تحلیل هندسه، شرایط مرزی و بارگذاری دلخواه را به وجود آورده است و قابل اعمال بر سازههای یک بعدی، دو بعدی و سه بعدی میباشد. در کاربرد این روش برای دینامیک سازهها ویژگی غالب روش اجزای محدود آن است که سیستم پیوسته واقعی را که از نظر تئوری بینهایت درجة آزادی دارد، با یک سیستم تقریبی چند درجه آزادی جایگزین نماید. هنگامی که با سازههای مهندسی کار میکنیم غیر معمول نمیباشد که تعداد درجات آزادی که در آنالیز باقی میمانند بسیار بزرگ باشد. بنابراین تأکید بسیاری در دینامیک سازه برای توسعة روشهای کارآمدی صورت میگیرد که بتوان پاسخ سیستمهای بزرگ را تحت انواع گوناگون بارگذاری بدست آورد.
هر چند اساس روشهای معمول جبر ماتریس تحت تاثیر درجات آزادی قرار نمیگیرند، تلاش محاسباتی و قیمت، به سرعت با افزایش تعداد درجات آزادی افزایش مییابند. بنابراین بسیار مهم است که قیمت محاسبات در حد معقول نگهداشته شوند تا امکان تحلیل مجدد سازه بوجود آید. هزینه پایین محاسبات کامپیوتری برای یک تحلیل امکان اتخاذ یک سری تصمیمات اساسی در انتخاب و تغییر مدل و بارگذاری را برای مطالعة حساسیت نتایج، بهبود طراحی اولیه و رهنمون شدن به سمت قابلیت اعتماد برآوردها فراهم میآورد. بنابراین، بهینه سازی در روشهای عددی و متدهای حل که باعث کاهش زمان انجام محاسبات برای مسائل بزرگ گردند بسیار مفید خواهند بود.
شکل 1-1- ایده آل سازی سازه با جرم گسترده
استفاده از بردارهای ویژه، برای کاهش اندازة سیستمهای سازهای یا ارائه رفتار سازه به وسیلة تعداد کمی از مختصات های عمومی (تعمیم یافته) – در فرمول بندی سنتی – احتیاج به حل بسیار گرانقیمت مقدار ویژه دارد.
یک روش جدید از تحلیل دینامیکی که نیاز به برآورد دقیق فرکانس ارتعاش آزاد و اشکال مدی ندارد توسط ویلسون Wilson یوان (Yuan) و دیکنز (Dickens) (1.17) ارائه شده است.
روش کاهش، بردارهای ریتز وابسته به بار WYD Ritz vectors) که D, Y, W (حروف اختصاری نویسندگان)( بر مبنای بر هم نهی مستقیم بردارهای ریتز حاصل از توزیع مکانی و بارهای مشخص دینامیکی میباشد. این بردارها در کسری از زمان لازم برای محاسبة اشکال دقیق مدی، توسط یک الگوریتم بازگشتی ساده بدست میآیند. ارزیابیهای اولیه و کاربرد الگوریتم در تحلیل تاریخچه زمانی زلزله نشان داده است که استفاده از بردارهای ریتز وابسته به بار منجر به نتایج قابل مقایسه یا حتی بهتری نسبت به حل دقیق مقدار ویژه شده است.
در اینجا هدف ما تحقیق در جنبههای عملی کاربرد کامپیوتری بردارهای ریتز وابسته به بار، خصوصیات همگرایی و بسط آن به حالتهای عمومی تر بارگذاری میباشد. به علاوه، استراتژیهای توسعه برای تحلیل دینامیکی سیستمهای غیر خطی ارائه خواهد شد. نیز راهنماییهایی برای توسعه الگوریتمهایی برای ایجاد بردارهای ریتز تهیه شده است.
1-1- اصول اولیه تحلیل دینامیکی
تمام سازه های واقعی هنگام بارگذاری یا اعمال تغییرمکان به صورت دینامیکی رفتار می کنند. نیروهای اینرسی اضافی، با استفاده از قانون دوم نیوتن، برابر نیرو در شتاب میباشند. اگر نیروها و یا تغییر مکانها بسیار آرام اعمال شوند نیروهای اینرسی قابل صرفنظر کردن می باشند و یک تحلیل استاتیکی قابل انجام است. بنابراین می توان گفت، تحلیل دینامیکی بسط ساده ای از تحلیل استاتیکی میباشد.
بعلاوه تمام سازه های حقیقی بالقوه دارای درجات آزادی نامحدودی می باشند. بنابراین بحرانی ترین قسمت در تحلیل سازه ایجاد مدلی با تعداد درجات آزادی محدود می باشد که دارای تعدادی اعضای تقریباً بدون جرم و تعدادی گره باشد، که بتواند رفتار سازه را به طور مناسبی تخمین بزند. جرم سازه را می توان درگره ها متمرکز نمود. نیز برای یک سیستم الاستیک خطی خصوصیات سختی اعضاء را می توان باصحت بسیار خوبی تخمین زد- باتوجه به داده های تجربی- هرچند تخمین بارگذاری دینامیکی، اتلاف انرژی و شرایط مرزی می تواند بسیار مشکل باشد.
با در نظر گیری موارد گفته شده برای کاهش خطاهای موجود لازم است تحلیل های دینامیکی متعدد با استفاده از مدلهای مختلف دینامیکی، بارگذاری و شرایط مرزی به کار گرفته شود و انجام حتی 20 آنالیز کامپیوتری برای طراحی یک سازه جدید و یا برآورد یک سازه موجود ممکن است لازم شود.
با توجه به تعداد زیادی آنالیزهای کامپیوتری که برای یک تحلیل دینامیکی نمونه لازم است باید در کامپیوترها روشهای عددی مناسبی برای محاسبات به کار رود.
2-1- تعادل دینامیکی
تعادل نیرویی برای یک سیستم چند درجه آزادی با جرم متمرکز شده، به صورت تابع زمان را می توان این گونه نوشت:
F(t)I + F(t)D + F(t)S = F(t) (1-2-1)
F(t)I : بردار نیروهای اینرسی عمل کننده بروی جرم
F(t)D : بردار نیروی میرایی لزج، یا اتلاف انرژی می باشد.
F(t)S : بردار نیروهای داخلی تحمل شده توسط سازه
F(t) : بردار بارهای اعمالی
معادله (1.2.1) برمبنای قوانین فیزیکی قرار دارد و برای هر دو دسته سیستمهای خطی و غیرخطی معتبر می باشد.
برای بسیاری از سیستمهای سازه ای تخمین رفتار خطی برای سازه انجام می گردد تا معادله فیزیکی
(1.2.1) تبدیل به گروهی از معادلات دیفرانسیل مرتبه دوم خطی گردد.
(2-2-1)
که M ماتریس جرم، C ماتریس میرایی، K ماتریس سختی می باشند. بردارهای وابسته به زمان , , , مقادیر مطلق تغییر مکان، سرعت و شتاب می باشند.
برای بارگذاری زلزله F(t) نیروی خارجی برابر صفر می باشد. حرکت اساسی لرزهای سه مؤلفه u(t)ig می باشند که در نقطه ای زیر پی ساختمان در نظر گرفته می شوند. بنابراین می توانیم معادله (1.2.2) را با توجه به , , ,که کمیاتی نسبی (نسبت به مؤلفههای زلزله) می باشند بنویسیم.
بنابراین مقادیر مطلق تغییر مکان، سرعت و شتاب را می توان از معادله (1.2.2) حذف نمود.
u(t)a = u(t) + {rx} u(t)xg + {ry} u(t)yg + {rz} u(t)zg
(t)a = (t) + {rx} (t)xg + {ry} (t)yg + {rz} (t)zg (3-2-1)
ü(t)a= ü(t) + {rx} ü(t)xg + {ry} ü(t)yg + {rz} ü(t)zg
که {ri} برداری است که در درجات آزادی جهتی 1 می باشد و بقیه عناصر آن صفرند.
با قرار دادن این معادله (3-2-1) در (2-2-1) داریم:
Mü(t) + C (t) + Ku(t) = -Mx ü(t)xg - My ü(t)yg – Mz ü(t)zg (4-2-1)
که
Mi = M{ri}
روشهای کلاسیک گوناگونی برای حل معادله (1-4) وجود دارد که هرکدام دارای محاسن و معایب خاص خود می باشند که آنها را به صورت خلاصه بیان می کنیم.
3-1- روش حل گام به گام
عمومی ترین روش تحلیل دینامیکی روش افزایشی است که معادلات تعادل در زمانهای t, 2t, 3t , … حل می شوند. که تعداد زیادی از اینگونه روشهای افزاینده برای حل وجود دارد. در حالت عمومی این روشها شامل حل گروه کاملی از معادلات تعادل در هر افزایش زمان می باشند. در صورت انجام تحلیلی غیرخطی ممکن است لازم باشد تا ماتریس سختی سازه را شکل دهی مجدد نماییم.
نیز امکان دارد در هر گام زمانی برای رسیدن به تعادل نیاز به تکرار داشته باشیم. از دیدگاه محاسباتی ممکن است حل یک سیستم با چند صد درجة آزادی زمان بسیاری طلب نماید.
بعلاوه ممکن است نیاز داشته باشیم تا میرایی عددی یا مجازی را به دستة زیادی از این راه حلهای افزایشی برای بدست آوردن راه حلی پایدار اضافه کنیم. برای تعدادی از سازه های غیرخطی که تحت تأثیر حرکت زمین قرار گرفته اند، روشهای حل عددی افزایشی لازم می باشد.
برای سیستمهای سازه ای بسیار بزرگ ترکیبی از برهم نهی مودی و روشهای افزایشی می توانند بسیار مؤثر باشند. (برای سیستمهای با تعداد کمی المانهای غیرخطی).
4-1- روش برهم نهی مودی
معمول ترین و مؤثرترین رهیافت برای آنالیز لرزه ای سازه های خطی روش برهمنهیمودی می باشد. پس از آنکه گروهی از بردارهای متعامد برآورد شدند این روش دستة بزرگ معادلات تعادل را به تعداد نسبتاً کمتری از معادلات دیفرانسیل مرتبه دوم تبدیل می کند که این باعث کاهش قابل توجهی در زمان محاسبات میشود.
نشان داده شده است که حرکات لرزه ای زمین تنها فرکانسهای پایین سازه را تحریک می نماید.به صورت معمول حرکات زلزله در فواصل زمانی 200 نقطه در ثانیه ثبت می گردند. بنا بر این داده های بارگذاری پایه شامل اطلاعات بالای 50 دور در ثانیه نمی باشند.با توجه به این مطلب صرف نظر از مودها و فرکانسهای بالاتر معمولاَ باعث ایجاد خطا نمی شوند.
5-1- تحلیل طیف پاسخ
روش تحلیل برهم نهی مودی اولیه ، که تنها به سازه های الاستیک خطی محدود می باشد، پاسخ کامل تاریخچة زمانی تغییر شکلهای گره ها و نیروهای اعضا را به علت حرکت زمین ویژه ای بدست می دهد. استفاده از این روش دو عیب دارد:
این روش حجم خروجی بالایی ایجاد می کند که این امر سبب زیاد شدن عملیات طراحی به خصوص هنگامی که بخواهیم نتایج را برای کنترل طراحی به کار بریم میگردد.
تحلیل باید برای چندین زلزله دیگر هم تکرار شود تا اطمینان حاصل گرد که تمام مدها تحریک شده اند.
مزایای محاسباتی قابل توجهی در استفاده از تحلیل طیف پاسخ برای پیش بینی تغییر مکانها و نیروهای اعضاء در سیستمهای سازه ای وجود دارد. این روش فقط شامل محاسبة حداکثر مقدار تغییر مکانها و نیروهای اعضاء با استفاده از طیفی هموار شده است که میانگین چندین زلزله است، می باشد. سپس لازم است برای بدست آوردن متحملترین مقدار اوج تغییر مکان یا نیرو از روشهای CQC ، SRSS و یا CQC3 استفاده گردد.
6-1- حل در حوزة فرکانس
رهیافت پایة استفاده شده در حل معادلات تعادل دینامیکی در دامنه فرکانس بسط نیروهای خارجیF(t) در قالب عبارات سری های فوریه یا انتگرالهای فوریه می باشد.
حل شامل عبارات مختلط است که محدوده زمانی+ تا - را پوشش می دهد. بنابراین روشی بسیار کارا برای گونههای بارهای تکرارای مانند: ارتعاشات مکانیکی، آکوستیک، امواج دریا و باد می باشد. هرچند استفاده از حل در حوزة فرکانس برای تحلیل سازههایی که تحت تأثیر زلزله قرار می گیرند دارای معایب چندی نیز می باشد.
فهم ریاضیات به کار رفته برای دسته زیادی از مهندسان سازه بسیار مشکل می باشد. بنابراین مطمئن شدن از صحت حل بسیار مشکل است.
برای نوع بارگذاری لرزه ای این روش از نظر عددی کارا نمی باشد. انتقال نتایج از حوزه فرکانس به حوزة زمان حتی با استفاده از روشهای FFT مقدار محاسبات عددی قابل توجهی را لازم دارد.
روش محدود به سیستمهای ساختمانی خطی می باشد.
روش برای حل غیرخطی تقریبی اندر کنش خاک / سازه و پاسخ در ساختگاه بدون توجیه نظری کافی استفاده شده است. به طور مثال، این روش به صورت، رفتاری تکراری برای ساختن معادلات خطی به کار می رود، جملات میرایی خطی بعد از هر تکرار تغییر می کنند تا استهلاک انرژی در خاک را تخمین بزنند. بنابراین تعادل دینامیکی در خاک ارضا نمی شود.
7-1- حل معادلات خطی
حل گام به گام معادلات دینامیکی، حل در حوزة فرکانس و برآورد بردارهای ویژه و بردارهای ریتز تماماً احتیاج به حل معادلات خطی دارند که به صورت زیر بیان میشود.
AX=B (1-7-1)
که در اینجا A یک ماتریس N×N متقارن است که تعداد زیادی جمله صفر دارد. ماتریسهای B و X که
"N × M"هستند بیانگر این مطلب است که بیشتر از یک حالت بارگذاری در یک زمان قابل حل می باشد. که روشهای متعددی برای کاهش حافظه مصرفی توسط A وحل دستگاه همزمان وجود دارد. (روش حذفی گوس,حل اسکای لاین و روشهای بسیار متنوع دیگر که برای معکوس سازی ماتریسها به کار می روند از جمله روشهای:افراز کردن,سه قطری کردن,کاهش ماتریس,روش جوردن و...)
فرمت:word(قابل ویرایش)
تعداد صفحات:163 صفحه
مقدمه
۱-۱- اصول اولیه تحلیل دینامیکی
۲-۱- تعادل دینامیکی
۳-۱- روش حل گام به گام
۴-۱- روش برهم نهی مدی
۵-۱- تحلیل طیف پاسخ
۶-۱- حل در حوزه فرکانس
۷-۱- حل معادلات خطی
بخش دوم: محاسبه بردارهای متعامد بر جرم و سختی
مقدمه………………………………………………………………………………………………………………………………..
۱-۲- روش جستجوی دترمینانی…………………………………………………………………………………………………
۲-۲- کنترل ترتیب استورم…………………………………………………………………………………………………………
۳-۲- متعامد سازی گرام اشمیت…………………………………………………………………………………………………
۴-۲- تکرار زیر فضای بلوکی……………………………………………………………………………………………………..
۵-۲- حل سیستمهای منفرد………………………………………………………………………………………………………..
۶-۲- ایجاد بردارهای ریتز وابسته به بار………………………………………………………………………………………
بخش سوم: کلیات روش LDR…………………………………………………………………………………………………..
1-3- روش جداسازی دو مرحله ای در تحلیل سازه ها…………………………………………………………………
۲-۳- استفاده از بردارهای ریتز در دینامیک سازه ها……………………………………………………………………..
۳-۳- تولید خودکار بردارهای ریتز وابسته به بار…………………………………………………………………………..
۴-۳- تاثیر فرمول بندی اجزای محدود بر ایجاد بردارهای ریتز وابسته به بار………………………………….
۱-۴-۳- ماتریس جرم……………………………………………………………………………………………………………
۲-۴-۳- بردار بارگذاری………………………………………………………………………………………………………..
۱-۲-۴-۳- محتوای فرکانسی…………………………………………………………………………………………….
۲-۲-۴-۳- توزیع مکانی…………………………………………………………………………………………………..
بخش چهارم: ارتباط میان الگوریتم بردارهای ریتز وابسته به بار و روش Lanczos………………………
1-4- روش Lanczos………………………………………………………………………………………………………………..
۲-۴- خواص اساس بردارهای ریتز وابسته به بار………………………………………………………………………….
۳-۴- نکاتی در مورد تعامد بردارهای پایه ریتز وابسته به بار………………………………………………………….
۴-۴- تحلیل سیستمهای با میرایی………………………………………………………………………………………………..
۱-۴-۴- روند حل برای میرایی متناسب (با ماتریس سختی)…………………………………………………….
۲-۴-۴- روند حل برای میرایی غیر متناسب……………………………………………………………………………
۵-۴- فلسفه اساسی فراسوی بردارهای ریتز وابسته به بار………………………………………………………………
بخش پنجم: توسعه تخمین خطا برای بردارهای ریتز وابسته به بار……………………………………………….
۱-۵- تخمین های خطای مکانی برای ارائه بارگذاری……………………………………………………………………
۲-۵- ارائه بارگذاری به وسیله پایه بردارهای ریتز وابسته به بار……………………………………………………..
۳-۵- تخمین های خطا با استفاده از مجموع بارهای ارائه شده………………………………………………………
۴-۵- تخمین خطا براساس معیار اقلیدسی بردار خطای نیرو…………………………………………………………
۵-۵- روشهای جمع بندی برای آنالیز برهم نهی مستقیم بردار………………………………………………………
۱-۵-۵- روش تصحیح استاتیکی……………………………………………………………………………………………
۲-۵-۵- روش شتاب مدی…………………………………………………………………………………………………….
۶-۵- رابطه میان بردارهای ریتز وابسته به بار و حل مقدار ویژه دقیق…………………………………………….
بخش ششم: الگوریتمی جدید برای ایجاد بردارهای ریتز وابسته به بار…………………………………………
۱-۶- استقلال خطی بردارهای ریتز وابسته به بار………………………………………………………………………….
۱-۱-۶- روش Lanczos و مساله از دست دادن تعامد……………………………………………………………..
۲-۱-۶- بردارهای ریتز وابسته به بار و مساله از دست دادن تعامد…………………………………………….
۳-۱-۶- باز متعامد سازی انتخابی………………………………………………………………………………………….
۴-۱-۶- کاربرد کامپیوتری متعامد سازی انتخابی……………………………………………………………………..
۲-۶- تنوع محاسباتی الگوریتم بردارهای ریتز وابسته به بار……………………………………………………………
۱-۲-۶- بردارهای ریتز LWYD……………………………………………………………………………………………..
۲-۲-۶- کاربرد کامپیوتری با استفاده از فرم کاهش یافته سه قطری……………………………………………
۳-۶- کاربرد عددی روی سیستمهای ساده سازهای……………………………………………………………………….
۱-۳-۶- حل مثال با استفاده از برنامه CALSAP……………………………………………………………………..
۲-۳-۶- توضیح مدل ریاضی………………………………………………………………………………………………….
۳-۳-۶- ارزیابی گونه های محاسباتی الگوریتم ریتز…………………………………………………………………
بخش هفتم: تحلیل دینامیکی غیرخطی با برهم نهی مستقیم بردارهای ریتز……………………………………
۱-۷- منبع و حد رفتار غیرخطی…………………………………………………………………………………………………
۲-۷- تکنیک های راه حل برای تحلیل دینامیکی غیرخطی……………………………………………………………
۳-۷- روشهای انتگرال گیری مستقیم…………………………………………………………………………………………..
۴-۷- روشهای برهم نهی برداری………………………………………………………………………………………………..
۵-۷- گزینش بردارهای انتقال برای روشهای برهم نهی…………………………………………………………………
۶-۷- خط مشی های حل سیستمهای غیرخطی کلی……………………………………………………………………..
۷-۷- خط مشی های حل سیستمهای غیرخطی محلی…………………………………………………………………..
بخش هشتم: توصیف فیزیکی الگوریتم ریتز و ارائه چند مثال……………………………………………………..
۱-۸- مقایسه حل با استفاده از بردارهای ویژه و بردارهای ریتز……………………………………………………..
مثال ۱:
مثال ۲:
مثال ۳:
بخش نهم: تحلیل دینامیکی با استفاده از بردارهای ریتز………………………………………………………………
۱-۹- معادله حرکت کاهش یافته………………………………………………………………………………………………….
نتیجه…………………………………………………………………………………………………………………………………………
مراجع فصل اول………………………………………………………………………………………………………………………..
ضمیمه………………………………………………………………………………………………………………………………………
فصل دوم: آنالیز استاتیکی فزاینده غیرخطی مودال (MPA)
بخش اول: آنالیز استاتیکی فزاینده غیرخطی……………………………………………………………………………….
۱-۱- روندهای تحلیلی……………………………………………………………………………………………………………….
۲-۱- پیدایش روش غیرخطی استاتیکی……………………………………………………………………………………….
۳-۱- فرضیات اساسی……………………………………………………………………………………………………………….
۱-۳-۱- کنترل براساس نیرو یا تغییر مکان……………………………………………………………………………..
۲-۳-۱- الگوهای بارگذاری……………………………………………………………………………………………………
۳-۳-۱- تبدیل سازه MDF به SDF…………………………………………………………………………………………
۴-۳-۱- تغییر مکان هدف……………………………………………………………………………………………………..
۵-۳-۱- حداکثر شتاب زمین…………………………………………………………………………………………………
۴-۱- روش آنالیز استاتیکی غیرخطی…………………………………………………………………………………………..
۵-۱- روش گام به گام در محاسبه منحنی ظرفیت…………………………………………………………………………
۱-۵-۱- روش گام به گام محاسبه منحنی ظرفیت…………………………………………………………………….
۶-۱- محدودیتهای POA…………………………………………………………………………………………………………….
بخش دوم: MPA……………………………………………………………………………………………………………………….
1-2- معادلات حرکت……………………………………………………………………………………………………………….
۲-۲- معرفی سیستمهای مورد بررسی و حرکت زمین…………………………………………………………………..
۳-۲- روند تقریبی تحلیل……………………………………………………………………………………………………………
۱-۳-۲- بسط مدی نیروهای موثر…………………………………………………………………………………………..
۲-۳-۲- ایده اساسی……………………………………………………………………………………………………………..
۴-۲- روشUMRHA…………………………………………………………………………………………………………………
۱-۴-۲- سیستمهای خطی……………………………………………………………………………………………………..
۲-۴-۲- سیستمهای غیرخطی………………………………………………………………………………………………..
۵-۲- MPA………………………………………………………………………………………………………………………………
۱-۵-۲- سیستمهای الاستیک…………………………………………………………………………………………………
۲-۵-۲- سیستمهای غیرالاستیک…………………………………………………………………………………………….
۶-۲- خلاصه MPA…………………………………………………………………………………………………………………..
7-2- برآورد روش…………………………………………………………………………………………………………………….
فهرست اشکال
شکل ۱-۱- ایده آل سازی سازه با جرم گسترده……………………………………………………………………………
شکل ۱-۳- الگوریتم ایجاد بردارهای ریتز وابسته به بار…………………………………………………………………
شکل ۲-۳- نیروهای اینرسی و الاستیک در مقابل فرکانسهای مدی………………………………………………..
شکل ۱-۴- روش Lanczos………………………………………………………………………………………………………
شکل ۱-۵- مقایسه مقیاسهای مختلف خطا ارائه شده توسط روابط مختلف…………………………………….
شکل ۲-۵- الگوریتم ترکیب بردارهای ریتز وابسته بهار وتکرار زیرفضا برای حل مساله ویژه عمومی..
شکل ۱-۶- الگوریتم بردارهای ریتز وابسته به بار (اصلاح شده)…………………………………………………….
شکل ۲-۶- مدل فرضی سکوی دریایی………………………………………………………………………………………..
شکل ۳-۶- ارائه بارگذاری موج معیار خطای اقلیدسی………………………………………………………………….
شکل ۴-۶- ارائه بارگذاری زلزله معیار خطای اقلیدسی…………………………………………………………………
شکل ۵-۶- سطح تعامد باقی مانده با استفاده از الگوریتمهای مختلف…………………………………………….
شکل ۶-۶- حداکثر خطا در نیروی برشی تیر (بارگذاری موج)……………………………………………………..
شکل ۷-۶- حداکثر خطا در نیروی برشی تیر (بارگذاری زلزله)…………………………………………………….
شکل ۸-۶- اشکال مدی برای همگرایی بارگذاری موج…………………………………………………………………
شکل ۹-۶- اشکال مدی برای همگرایی بارگذاری زلزله………………………………………………………………..
فهرست جداول
جدول ۱-۶- تعداد عملیات لازم برای روندهای متعامدسازی………………………………………………………..
جدول ۲-۶- حداکثر خطا در نیروی برشی تیر (%) بارگذاری زلزله………………………………………………..
جدول ۱-۸- درصد خطا (ریتز و ویژه)………………………………………………………………………………………..
جدول ۲-۸- مشارکت جرمی (مقادیر ویژه)…………………………………………………………………………………
جدول ۳-۸- مشارکت جرمی (ریتز)……………………………………………………………………………………………
جدول ۴-۸- مشارکت جرمی (مقادیر ویژه دقیق)…………………………………………………………………………
جدول ۵-۸- مشارکت جرمی (بردارهای ریتز)……………………………………………………………………………..