یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

مقاله درباره ترانسفورماتور های جریان Current transformer

اختصاصی از یارا فایل مقاله درباره ترانسفورماتور های جریان Current transformer دانلود با لینک مستقیم و پر سرعت .

مقاله درباره ترانسفورماتور های جریان Current transformer


مقاله درباره  ترانسفورماتور های جریان Current  transformer

لینک پرداخت و دانلود *پایین مطلب*

 فرمت فایل:word (قابل ویرایش و آماده پرینت)

  تعداد صفحات:35

 ترانسفورماتور های جریان Current  transformer

در پستهای فشارقوی به منظور اندازه گیری مقدار جریان و یا حفاظت تجهیزات توسط رله های حفاظتی الکتریکی ازترانسفورماتورهای جریان استفاده می شود که دارای دو وظیفه اصلی می باشند :

1ـ پایین آوردن مقدار جریان فشار قوی بطوری که قابل استفاده برای اندازه گیری از قبیل آمپر متر و مگا واتمتر و کنتورهای اکتیو و راکتیو و همچنین رله های حفاظتی جریانی باشد .

2 ایزوله کردن و جدا کردن دستگاههای اندازه گیری و حفاظتی از ولتاژ فشار قوی در اولیه . بطور کلی ترانسفورماتور های جریان اولیه آنها در مسیر جریان مورد حفاظت و یا اندازه گیری قرار گرفته و در ثانویه آن ، با نسبتی معین جریانی متفاوت داریم مثلاً ترانس جریان با نسبت 200/1 یعنی ترانسی که بازای 200  آمپر در طرف اولیه 1 آمپر در طرف ثانویه ( به شرط برقراری مدار ) ایجاد می کند .

طبعاً هر قدر جریان اولیه تغییر کند جریان در طرف ثانویه نیز به همان نسبت تغییر می کند . ولی به خاطر محدودیت هسته ترانس جریان برای عبور خطوط قوای مغناطیسی این قاعده تا حد معینی از افزایش جریان ارتباط دارد . به خاطر حفاظت وسایل اندازه گیری در برابر ضربه های ناشی از اضافه جریان معمولاً ازترانس جریان نهایی استفاده می شود که هسته آنها خیلی زود اشباع می شود . برعکس برای اینکه سیستمهای حفاظتی دقیقتر عمل کنند به ترانس جریانهای احتیاج داریم که هر چه دیرتر اشباع بشوند مثلاً ده ، پانزده یا بیست برابر جریان نامی . طرز کار ترانس جریان نیز بدین صورت است که جریان مدار از اولیه آن عبور کرده و باعث ایجادخطوط قوای مغناطیسی می شود این خطوط قوا به نوبه خود درثانویه ایجاد جریان می کند . جریان موجود در سیم پیچ ثانویه خطوط قوای دیگری را در هسته بوجود می آورد که جهت آن مخالف جهت خطوط قوای اولیه بوده و آنرا خنثی می کند چنانچه مدار ثانویه ترانس جریان در حالی که ترانس در معرض جریان اولیه است باز شود . خطوط قوای مربوط به ثانویه صفر شده و در هسته فقط خطوط قوای مربوط به اولیه باقی می ماند که این خطوط قوای هسته را گرم کرده و باعث سوختن ترانس جریان می شود . لذا همیشه اخطار می شود که ثانویه ترانس جریان که درمدار قرار گرفته باز نشود یا به مداری با مقاومت بیشتر از حد مجاز متصل نشود .


دانلود با لینک مستقیم


مقاله درباره ترانسفورماتور های جریان Current transformer

مقاله رله های جریان

اختصاصی از یارا فایل مقاله رله های جریان دانلود با لینک مستقیم و پر سرعت .

مقاله رله های جریان


مقاله رله های جریان

لینک پرداخت و دانلود در "پایین مطلب"

 فرمت فایل: word (قابل ویرایش و آماده پرینت)

 تعداد صفحات:8

رله های جریان

خطوط هوائی یا کابلهای زیرزمینی که برای انتقال یا توزیع توان الکتریکی استفاده می شن فیدر می گن . توی یه سیستم انتقال و یا توزیع ممکنه از چند نوع حفاظت استفاده بشه. فیدرها رو بوسیله 3 روش حفاظت می کنند.
حفاظتهای جریان زیاد(
overcurrent protection)

حفاظت دیستانس (distance protection)حفاظت پایلوت(pilot protection)
حفاظت جریان زیاد از قدی می ترین نوع حفاظتهاست و خودش هم به 2 نوع تقسیم میشه

1- طرحهای درجه بندی شده جریان و زمان غیر جهت دار
2-طرحهای درجه بندی شده جریان و زمان جهت دارو طبق این دو نوع تقسیم ، از این نوع حفاظت توی موارد زیر استفاده می کنند

- فیدرهای توزیع و فوق توزیع با سیستمی که ولتاژ اون کمتر از 63 کیلوولت باشه ، تغذیه خطا هم فقط از یه طرف باشه .(با این روش رله های جریان زیاد می تونند با فیوزها هماهنگ بشن)

- جاهائی که زمان عملکردش زیاد مهم نیست و احتیاج زیادی به عملکرد سریع وجود نداشته باشیم

- در ولتاژهای خیلی زیاد ، توی خطوط انتقال از رله های جهت دار یا غیر جهت دار برای حفاظت رله های حفاظتی اصلی با عملکرد آنی استفاده می شن.
- و آخرین استفاده هم رله های اتصال زمین. برای خطاهای زمین با مقاومت زیاد که توسط ریه های حفاظتی اصلی تشخیص داده نمی شن ، مورد استفاده قرار می گیرند

خوب همونطور که از اسم این رله پیداست ، برای حفاظت سیستم در مقابل جریانهای زیاده... برای رله یه جریان تعریف می کنند (Iset) که اگر جریان عبوری از این کمتر باشه رله عمل نمی کنه. اگر برابر باشه ، رله در آستانه عمل کردنه و اگر بیشتر باشه ، رله عمل می کنه. که البت زمان مشخصی هم می تونند برای عملکرد رله بدن تا بتونند رله های توی خطوط (پشت سر هم ) رو با هم هماهنگ کنند.

براینکه بین رله های جریان هماهنگی ایجاد بکنند از 3 نوع روش استفاده می کنند..

- جریان

- زمان

- ترکیبی(جریان و زمان)

در روش تشخیص بر اساس زمان ، برای رله های جریان که در سیستم هستند و کلیدهای سیستم قدرت رو کنترل می کنند ، یه تاخیر زمانی در نظر می گرند تا اطمینان حاصل بشه که نزدیکترین کلید به محل خطا عمل بکنه و سیستم رو باز بکنه. ساده تر بگم!!! مثلا وقتی یه خطا توی سیستم بوجود میاد(اتصال کوتاه) تو ییک سری رله که پشت سر هم هستند جریان زیادی عبور می کنه و اون رله ای که اول از همه از اون جریان عبور میکنه بعد از زمان مشخص (مثلا 0.25) عمل می کنه و وقتی که رله اول قطع می کنه جریان رو ، رله بعد از اون چون هنوز زمانش تموم نشده ، با قطع شدن جریان زمانسنجش از کار می افته و دیگه عمل نمی کنه همچنین رله های بعد از اون!!! و با این کار اولین رله عمل می کنه و نزدیکترین کلید باز می شه که توی این روش دیگه کل کلیدهای یه مسیر باز نمی شن و فقط قسمتی که اتصال کوتاه داره از سیستم جدا میشه و در کل زمان هماهنگی بین این رله ها خیلی مهمه و میشه گفت که به خاطر

1- زمان لارم برای قطع جریان خطا توسط کلید

2- خطاهای مربوط به رله و ct و عملکرد کلید

3- زمان مربوط به حرکت اضافی رله پشتیبان overshoot

4- فاصله ایمنی

و به دلیل نوع کارکردش از رله های زمان معین ، در مواردی استفاده میشه که اختلاف جریان اصال کوتاه توی قسمتهای مختله خط خیلی کم باشه و جریان به عنوان کمیت برای هماهنگی رله ها قابل استفاده نباشه(مثل خطوط انتقال)
در رله های با تشخیص بر اساس جریان، با تغییر موقعیت خطا ، امپدانس بین منبع و خطا تغییر می کنه ، پس مقدار جریان خطا به محل وقوع خطا بستگی داره . در این نوع رله ها زمان مهم نیست و بر اساس افزایش و کالهش امپدانس خطوط ( به علت اتصال کوتاه) عمل می کنند و چون در این روش زمان نقشی نداره از رله ها با عملکرد سریع استفاده میشه. این نوع رله های نمی تونند بین اتصال کوتاهای کهدر نقاط مختلف ایجاد میشه تفاوت قائل بشن.. مثلا نمی تونند تشخیص بدن که ابتدای فیدر اتصالی به وجود اومده یا ابتدای فیدر بعدی!!! (اختلاف ای 2 تا هم چند متر بیشتر نباشه!!) و با وجود مشکلات دیگه ای از قبیل کارکرد رله توی جریانهای بیشتری از جریان تنظیمی و (خطای رله) و یا خطای ترانسفورماتور جریان و یا خطای محاسبا ت اتصال کوتاه و یا وجود مولفه
dc
میرا شونده در جریانهای اتصال کوتاه و .... این مسئله حادتر میشه!!
پس بنابر این ویژگی ها این روش ، روش مناسب و عملی برای درجه بندی صحیح بین دو تا کلید نیست. ولی اگر امپدانس بزرگی بین 2 کلید وجود داشته باشه ، میشه از این روش استفاده کیرد.


دانلود با لینک مستقیم


مقاله رله های جریان

جریان متناوب ac و جریان مستقیم dc

اختصاصی از یارا فایل جریان متناوب ac و جریان مستقیم dc دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 10

 

جریان متناوب(AC) و جریان مستقیم (DC)

جریان(dc)تعریف جریان مستقیم (DC یا جریان پیوسته)، عبور پیوسته جریان الکتریسیته از یک هادی نظیر یک سیم از پتانسیل بالا به پتانسیل کم است. در جریان مستقیم، بار الکتریکی همواره در یک جهت عبور می کند که این امر جریان مستقیم را از جریان متناوب (AC) متمایز می کند.

در واقع جریان مستقیم ابتدا برای انتقال توان الکتریکی پس از کشف تولید الکتریسیته در اواخر قرن 19 توسط توماس ادیسون بکار رفت. امروزه استفاده از جریان مستقیم برای این منظور غالباً کنار گذاشته شده است، چرا که جریان متناوب (که توسط نیکلا تسلا کشف و توسعه داده شده ) برای انتقال در طول خطوط بلند بسیار مناسب تر است (جنگ جریان ها را مشاهده کنید). هنوز هم انتقال توان DC برای اتصال شبکه های توان AC با فرکانس های مختلف به هم، بکار می رود.

DC

 عموماً در بسیاری از کاربرد های کم ولتاژ استفاده می شود، خصوصاً در جایی که انرژی از طریق باتری ها تامین می شود که تنها می توانند ولتاژ DC تولید کنند. اکثر سیستم های خودکار، از DC استفاده می کنند. اگرچه که ژنراتور یک وسیله AC است که از یک یکسو کننده برای تولید DC استفاده می کند. اغلب مدارات الکترونیکی نیاز به یک منبع تغذیه DC دارند. با وجود اینکه DC مخفف جریان مستقیم است اما کلاً به ولتاژهای با پلاریته ثابت، DC گفته می شود. برخی از انواع DC دارای تغییرات ولتاژ زیادی هستند، مانند خروجی دست نخورده یک یکسوساز. با عبور این خروجی از یک فیلتر RC پایین گذر، ولتاژ پایدار تری حاصل می شود.

معمولاً به دلیل ولتاژهای بسیار پایین بکار رفته در سیستم های جریان مستقیم، نصب آنها نیازمند پریزها، کلیدها و لوازم ثابت متفاوتی از آنچه که برای جریان متناوب به کار می رود است. در یک وسیله جریان مستقیم این نکته بسیار مهم است که پلاریته آنرا معکوس وصل نکنیم، مگر اینکه وسیله داری یک پل دیودی برای اصلاح این امر باشد. (که اکثر دستگاه های عمل کننده با باتری این امکان را ندارند.)

امروزه (سال 2000م) گرایشاتی در جهت سیستم های انتقال جریان مستقیم ولتاژ بالا (HVDC) ایجاد شده است. همچنین DC در سیستم های برق خورشیدی که توسط باتری های خورشیدی تغذیه می شوند، به کارمی رود.جریان

متناوب(AC)

تعریف یک جریان متناوب (AC ) جریان الکتریکی ای است که در آن اندازه جریان به صورت چرخه ای تغییر می کند، بر خلاف جریان مستقیم که در آن اندازه جریان مقدار ثابتی می ماند. شکل موج معمول یک مدار AC عموماً یک موج سینوسی کامل است چرا که این شکل موج منجر به انتقال انرژی به موثرترین صورت می شود. اما به هر حال در کاربردهای خاص، شکل موج های متفاوتی نظیر مثلثی یا مربعی نیز استفاده می شود.

تاریخچه توان الکتریکی با جریان متناوب، نوعی از انرژی الکتریکی است که برای تغذیه تجاری الکتریسیته به عنوان توان الکتریکی، از جریان متناوب استفاده می کند. ویلیام استنلی جی آر کسی است که یکی از اولین سیم پیچ های عملی را برای تولید جریان متناوب طراحی کرد. طراحی وی یک صورت ابتدایی ترانسفورماتور مدرن بود که یک سیم پیچ القایی نامیده می شد. از سال 1881م تا 1889م سیستمی که امروزه استفاده می شود، توسط نیکلا تسلا، جرج وستینگهاوس، لوییسین گاولارد، جان گیبس و الیور شالنجر طراحی شد.

سیستمی که توماس ادیسون برای اولین بار برای توزیع تجاری الکتریسیته بکار برد، به دلیل استفاده از جریان مستقیم محدودیت های داشت که در این سیستم برطرف شد. اولین انتقال جریان متناوب در طول فواصل بلند در سال 1891م نزدیک تلورید کلورادو اتفاق افتاد که چند ماه بعد در آلمان ادامه پیدا کرد. توماس ادیسون به علت اینکه حقوق انحصاری اختراعات متعددی را در فن آوری جریان مستقیم «DC» داشت، استفاده از جریان مستقیم را، به شدت حمایت می کرد اما در نهایت جریان متناوب به عرصه استفاده عمومی آمد (جنگ جریان ها را مشاهده کنید). چارلز پروتیوس استینمتز از جنرال الکتریک بسیاری از مشکلات مرتبط با تولید الکتریسیته و انتقال آن را با استفاده از جریان متناوب حل کرد.

توزیع برق و تغذیه خانگی بر خلاف جریان DC، جریان AC را می توان توسط یک ترانسفورماتور به سطوح مختلف ولتاژی انتقال داد. هر چه میزان ولتاژ افزایش یابد، انتقال توان هم موثرتر صورت خواهد گرفت. افزایش میزان قابلیت انتقال توان به علت قانون اهم است، تلفات انرژی الکتریکی وابسته به عبور جریان از یک هادی است. تلفات توان به علت جریان توسط رابطه P=I^2*R محاسبه می شود، بنابراین اگر جریان دو برابر شود، تلفات چهار برابر خواهد شد.

با استفاده از ترانسفورماتور، ولتاژ را می توانیم به یک ولتاژ بالا افزایش دهیم تا بتوانیم توان را در طول فواصل بلند در سطح جریان پایین انتقال داده و در نتیجه تلفات کاهش یابد. سپس می توانیم ولتاژ را دوباره به سطحی که برای تغذیه خانگی بی خطر باشد، کاهش دهیم.

تولید الکتریکی سه فاز بسیار عمومی است و استفاده ای موثرتر از ژنراتورهای تجاری را برای ما ممکن می سازد. انرژی الکتریکی توسط چرخش یک سیم پیچ داخل یک میدان مغناطیسی در ژنراتورهای بزرگ و با هزینه بالا ایجاد می شود. اما به هر حال جای دادن سه سیم پیچ جدا روی یک محور (بجای یک سیم پیچ)، هم نسبتاً آسان و هم مقرون به صرفه است. این سیم پیچ ها روی محور ژنراتورها نصب شده اند اما از نظر فیزیکی جدا اند و دارای یک اختلاف زاویه 120 درجه ای نسبت به هم هستند. سه شکل موج جریان


دانلود با لینک مستقیم


جریان متناوب ac و جریان مستقیم dc

مقاله مبانی ماشینهای الکتریکی جریان مستقیم

اختصاصی از یارا فایل مقاله مبانی ماشینهای الکتریکی جریان مستقیم دانلود با لینک مستقیم و پر سرعت .

مقاله مبانی ماشینهای الکتریکی جریان مستقیم


مقاله مبانی ماشینهای الکتریکی جریان مستقیم

لینک پرداخت و دانلود در "پایین مطلب"

فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات 4

وسایل تبدیل انرژی الکترومکانیکی گردان را ماشینهای الکتریکی می گویند.
طبقه بندی ماشینهای الکتریکی
ماشینهای الکتریکی به دو طریق دسته بندی می شوند:
1-
از نظر نوع جریان الکتریکی
الف- ماشینهای الکتریکی جریان مستقیم
ب- ماشینهای الکتریکی جریان متناوب
2-
از نظر نوع تبدیل انرژی
الف- مولدهای الکتریکی که انرژی مکانیکی را به انرژی الکتریکی تبدیل می کنند
ب- موتورهای الکتریکی که انرژی الکتریکی را به انرژی مکانیکی تبدیل می کنند
به طور کلی ماشینهای الکتریکی جزء وسایل تبدیل انرژی غیر خطی هستند یعنی هر تغییر در ورودی همیشه به یک نسبت در خروجی ظاهر نمی شود.
مولد ساده جریان مستقیم
یک مولد ساده جریان مستقیم از چهار قسمت اصلی زیر تشکیل شده است
1-
قطبهای مغناطیسی: که وظیفه ایجاد میدان مغناطیسی مولد را بعهده دارد و می تواند بصورت آهنربای دائم و یا آهنربای الکتریکی باشد
2-
هادیها: برای ایجاد ولتاژ القایی به کار گرفته میشود
3-
کموتاتور: در ساده ترین حالت از دو نیم استوانه مسی که توسط میکا نسبت به یکدیگر عایق شده اند تشکیل می گردد، وظیفه یک طرفه کردن ولتاژ و جریان القایی را در خارج از مولد بعهده دارد.
4-
جاروبک: جهت انتقال جریان الکتریکی از هادیها به مصرف کننده استفاده میشود شکل زیر مولد ساده جریان مستقیم را نشان میدهد.

طرز کار مولد ساده جریان مستقیم: با حرکت هادیها در فضای ما بین قطبها باعث میشود میدان مغناطیسی توسط هادیها قطع میشود بدین ترتیب مطابق پدیده القاء در هادیها ولتاژ القاء میشود.ابتدا و انتهای هر کلاف به یک نیم استوانه مسی یا یک تیغه کوموتاتور وصل میشود روی تیغه های کوموتاتور دو عدد جاروبک بطور ثابت قرار داشته و با حرکت هادیها تیغه های کموتاتور زیر جاروبک می لغزند، بدین ترتیب در ژنراتورهای جریان مستقیم از طریق کوموتاتور ولتاژ القاء شده طوری به جاروبکها منتقل می شود که همیشه یکی از جاروبکها دارای پلاریته مثبت و دیگری دارای پلاریته منفی است. شکل موج ولتاژ القاء شده در این مولد ساده بصورت زیر می باشد.

برای افزایش سطح ولتاژ القاء شده و بهبود یکسوسازی بمنظور داشتن ولتاژ با دامنه ثابت باید تعداد کلافها را افزایش داد و کلافها را به کمک تیغه های کوموتاتور سری کنیم.
چگونگی تغییر پلاریته ولتاژ القایی در مولد ساده
در مولد جریان مستقیم تغییر پلاریته ولتاژ خروجی عملاٌ در صورت ایجاد یکی از دو حالت زیر ممکن می شود:
1-
جهت چرخش آرمیچر عوض شود
2-
جهت جریان در سیم پیچ قطبها تغییر کند در صورتیکه قطبها از نوع مغناطیس دائم نباشد
چگونگی تغییر دامنه ولتاژ القایی در مولد ساده
برای افزایش دامنه ولتاژ القا شده دو روش ممکن است:
1-
افزایش سرعت چرخش آرمیچر که باعث افزایش ولتاژ بصورت خطی می شود

2- افزایش جریان تحریک که باعث افزایش ولتاژ مولد بصورت غیر خطی می شود

 


دانلود با لینک مستقیم


مقاله مبانی ماشینهای الکتریکی جریان مستقیم

جبران فلیکر ولتاژ توسط SVC و کاهش نامتعادلی جریان همزمان با آن

اختصاصی از یارا فایل جبران فلیکر ولتاژ توسط SVC و کاهش نامتعادلی جریان همزمان با آن دانلود با لینک مستقیم و پر سرعت .

جبران فلیکر ولتاژ توسط SVC و کاهش نامتعادلی جریان همزمان با آن


جبران فلیکر ولتاژ توسط SVC و کاهش نامتعادلی جریان همزمان با آن

مقالات علمی پژوهشی برق با فرمت           Pdf           صفحات  12

چکیده:
بخش عمده سیستمهای قدرت را شبکههای توزیع و مصرفکنندگان متصل به آن تشکیل میدهند. در بخشهای مختلف شبکه توزیع بارهایی
نظیر کورههای قوس الکتریکی، دستگاههای جوشکاری و موتورها وجود دارند که باعث به وجود آمدن مشکلات زیادی در زمینهی کیفیت
توان میشوند. ازجملهی پدیدههای کیفت توان میتوان به فلیکر ولتاژ و نامتعادلی جریان اشاره کرد. فلیکر ولتاژ اثرات مخرب زیادی روی
تجهیزات حساس میگذارد و باعث بروز خطا در عملکرد آنها میشود. نامتعادلی جریان نیز همچون فلیکر مشکلاتی در شبکه قدرت به
وجود میآورد. بهطور مثال این پدیده باعث اختلال در عملکرد تجهیزات حفاظتی از قبیل رلهها میشود و همچنین موجب افزایش تلفات در
سیستم قدرت میشود.
مطالعات گستردهای برای جبران سازی این دو پدیده صورت گرفته که هرکدام نقاط قوت و ضعف فراوانی دارند که یکی از روشها برای
کم کردن این اثرات، استفاده از جبران سازها میباشد. این مقاله قصد دارد همزمان دو پدیدهی فلیکر ولتاژ و نامتعادلی جریان را بهوسیله یک
SVC جبران کند. روش ارائهشده برای این کار، استفاده از تزریق توان راکتیو است که میزان این توان راکتیو با کنترل زاویه آتش کلیدها
تعیین میشود. برای محاسبه زاویه آتش، مؤلفههای موهومی جریان بار و جبران ساز اندازهگیری شده و سپس با استفاده از کنترلر و مدار
کلیدزنی مقدار آن تعیین میشود. نتایج حاصل از این تحقیق در حضور جبران ساز و بدون حضور آن که توسط نرمافزارهای مربوطه مورد
بررسی قرار گرفته، نشان میدهد علاوه بر جبران فلیکر ولتاژ جریان نیز متعادلتر شده است.
واژگان کلیدی: فلیکر ولتاژ، نامتعادلی جریان، شبکههای توزیع، جبران ساز توان راکتیو

 


دانلود با لینک مستقیم


جبران فلیکر ولتاژ توسط SVC و کاهش نامتعادلی جریان همزمان با آن