یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

تحقیق درباره ی مجله

اختصاصی از یارا فایل تحقیق درباره ی مجله دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 81

 

» ریاضیات و بند کفش «

آیا هیچ گاه از خود پرسیده اید که چه کسی یک ریاضیدان است؟ چندین سال پیش حرفه ای برای این پرسش در ذهن من ایجاد شد و به نظرم رسید که ریاضیدان شخصی است که قدرت تشخیص فرصتهای موجود برای به

کار گیری ریاضیات را دارد و این در حالی است ک بقیه افراد متوجه این فرصتها نیستند. در این مورد می توان بند کفش را در نظر گرفت آقای جان هاتسون استاد علوم کامپیوتر دانشگاه کارولینای شمالی مقاله ای با عنوان

» معمای بند کفش« به رشته تحریر درآورده است. حداقل سه نوع آرایش کلی برای بستن بند کفش وجود دارد که عبارت است از نوع امریکایی(زیگراگ)، نوع اروپایی و نوع کفاشی(ایرا نی). هر چند از نظر خریدار شکل ظاهری و زمان لازم برای گره زدن دارای اهمیت است ولی برای تولید کنندگان کفش، موضوع مهمتر آن است که کدام یک از آرایشها دارای کوتاهترین طول بوده و در نتیجه کمترین هزینه را در بر خواهد داشت؟ در این مبحث به منظور یافتن طول بند فقط اندازه خطوط مستقیم مورد توجه قرار گرفته است. فزض شده است که طول مورد نیاز برای گره زدن در تمامی آرایشها یکسان است و از این رو در نظر گزفته نشده است. توصیه میشود از چشمهای کسی ه کفش را پوشید ه است به کفش بنگرید و در این راستا منظور از ردیف بالای سوراخها آنهایی است که نزدیک پا باشند.نکته دیگر اینکه در اینجا ضخامت بند (ضخامت خط) معادل صفر و سوراخها به عنوان نقطه فرض شده اند. حال اگر به دقت به مساله بنگریم، خواهیم دید که طول بند به سه پارامتر بستگی دارد که در روی شکل نیز مشخص شده اند: 1- تعداد سوراخها(n ) 2- فاصله بین سوراخهای متوالی (d ) 3- فاصله بین سوراخها ی چپ و راست در هر ردیف (g ).

بااستفاده از قضیه فیثاغورث می توان طول بندها را یافت (البته شادی تعجب کنید که قضیه چنین مرد بزرگی دارای این کاربرد باشد):

الف)آمریکا ئی :

ب)اروپایی :

ج)کفاشی :

حال بایددید که کدامیک از آرایشها کوتاهتر و برای اینکار در نظر گرفته می شوند:

الف)آمریکایی ب)اروپایی :

ج)کفاشی:

در اینجا این سوال مطرح است که آیا نوع آمریکایی همیشه کوتاهترین طول را دارد ؟ بااستفاده از قوانین جبری می توان دید ک اگر dو g غیر صفر بوده و n حداقل 4 باشد دارندگان کوتاهترین طول به ترتیب عبارت خواهد بود از نوع آمریکایی ، ارپایی، و کفاشی، اگر n =3 باشد مجدداَ آرایش آمریکایی کوتاهترین طول را دارد ولی طول دو نوع دیگر مساوی می شودو نها یتاَاگرn =2 شود( یعنی تنها در سوراخ در هر طرف) طول یکسان خواهد شدولی احتمالاَ ریاضیدانها فقط به این حالت علاقه مند می باشند.


دانلود با لینک مستقیم


تحقیق درباره ی مجله

تحقیق درباره ی ریاضیات و کاربرد آن

اختصاصی از یارا فایل تحقیق درباره ی ریاضیات و کاربرد آن دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 13

 

ریاضی 

 هدف «ریاضیات علم نظم است و موضوع آن یافتن، توصیف و درک نظمی است که در وضعیت‌های ظاهرا پیچیده‌ نهفته است و ابزارهای اصولی این علم ، مفاهیمی هستند که ما را قادر می‌سازند تا این نظم را توصیف کنیم» . دکتر دیبایی استاد ریاضی دانشگاه تربیت معلم تهران نیز در معرفی این علم می‌گوید: «علم ریاضی، قانونمند کردن تجربیات طبیعی است که در گیاهان و بقیه مخلوقات مشاهده می‌کنیم . علوم ریاضیات این تجربیات را دسته‌بندی و قانونمند کرده و همچنین توسعه می‌دهند.» دکتر ریاضی استاد ریاضی و رئیس دانشگاه صنعتی امیرکبیر نیز در معرفی این علم می‌گوید: «ریاضیات علم مدل‌دهی به سایر علوم است. یعنی زبان مشترک نظریات علمی سایر علوم ، علم ریاضی می‌باشد و امروزه اگر علمی را نتوان به زبان ریاضی بیان کرد، علم نمی‌باشد.» اهداف گرایش‌های مختلف این رشته عبارتنداز: 1- ریاضی کاربردی: هدف از این شاخه تربیت کارشناسی است که با اندوخته کافی از دانش ریاضی، توانایی تحلیل کمی از مسائل صنعتی، اقتصادی و برنامه‌ریزی را کسب نموده، توان ادامه تحصیل در سطوح بالاتر را داشته باشد. 2- ریاضی محض: هدف از این شاخه ریاضی، تربیت متخصصان جامع در علوم ریاضی است که آمادگی لازم برای ادامه تحصیل در جهت اشتغال به پژوهش و نیز انتقال علم ریاضی در سطوح دانشگاهی را داشته باشند. آشنایی با تجزیه و تحلیل مسائل در قالب ریاضی و مدل‌سازی ریاضی نیز از اهداف دیگر شاخه ریاضی محض است. 3- ریاضی دبیری: هدف از شاخه دبیری تربیت دبیران و کارشناسان متخصص آموزش ریاضی است که پاسخگوی نیازهای آموزش و پرورش کشور در سطوح پیش‌دانشگاهی باشند. ماهیت : « ریاضیات بر خلاف تصور بعضی از افراد یکسری فرمول و قواعد نیست که همیشه و در همه‌جا بتوان از آن استفاده کرد بلکه ریاضیات درست فهمیدن صورت مساله و درست فکر کردن برای رسیدن به جواب است و برای به دست آوردن این توانایی ، دانشجو باید صبر و پشتکار لازم را داشته باشد تا بتواند حتی به مدت چندین ساعت در مورد یک مساله ریاضی فکر کرده و در نهایت با ابتکار و خلاقیت آن را حل کند» فارغ‌التحصیلان این رشته می‌توانند پس از پایان تحصیلات، در ادارات دولتی برای مسوولیتهایی که به نوعی با تجزیه و تحلیل مسائل سروکار دارند، در بخش‌ خصوصی در اموری همانند طراحی سیستمها در امر بهینه‌سازی و بهره‌وری ، در بخش صنعت برای اموری همانند مدل‌سازیهای ریاضی و در آموزش و پرورش و ... ، مسوولیتهای متفاوتی را به عهده گیرند. گرایش‌‌های مقطع لیسانس: «رئیس اتحادیه بین‌المللی ریاضیدانان جهان در یازدهمین اجلاس آکادمی جهان سوم که اخیرا در تهران برگزار شد، عنوان کرد که بهتر است بگوییم ریاضیات و کاربردهای آن، نه اینکه ریاضیات را به محض و کاربردی تفکیک کنیم چرا که به اعتقاد ریاضیدانها هیچ مقوله ریاضی نیست که روزی کاربردی برای آن پیدا نشود.» «ریاضیات محض بیشتر به قضایا و استدلالها ، منطق موجود در آنها و چگونگی اثباتشان می‌پردازد اما در ریاضیات کاربردی چگونه استفاده کردن و به کارگرفتن قضایا، آموزش داده می‌شود، به عبارت دیگر در این شاخه، کاربرد ریاضیات در مسائل موجود در جامعه بیان می‌گردد» «وقتی صحبت از ریاضی محض می‌شود نباید تصور کرد که تنها باید در گوشه‌ای نشست و به حل مسائل ریاضی پرداخت بلکه این علم ، بخصوص در مدارج بالا، ارتباط نزدیکی با طبیعت دارد به عبارت دیگر ایده‌های ریاضی از ذهن پژوهشگران نمی‌روید بلکه ریاضیدانها غالبا الهام خود را از طبیعت می‌گیرند و به قول «ژان باپتیت فوریه» ریاضیدان مشهور قرن نوزدهم فرانسه «تعمق در طبیعت، پربارترین منابع اکتشافات ریاضی است.» عموما ریاضیات کاربردی به شاخه‌ای از ریاضی گفته می‌شود که کاربرد علمی مشخصی داشته باشد برای مثال در اقتصاد، کامپیوتر،‌فیزیک و یا آمار و احتمال کاربرد داشته باشد و ریاضی محض نیز به شاخه‌ای گفته می‌شود که به نظریه‌پردازی ریاضی می‌پردازد اما باید توجه داشت که امروزه این دو گرایش آن‌چنان در هم ادغام شده‌اندکه


دانلود با لینک مستقیم


تحقیق درباره ی ریاضیات و کاربرد آن

تحقیق درباره ی ریاضیات و صنعت

اختصاصی از یارا فایل تحقیق درباره ی ریاضیات و صنعت دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 5

 

به نام آنکه با او بوده و تنها نبوده است

وزارت علوم و تحقیقات و فن آوری

شورای ریاضیات شهرستان خمین

جشنواره دانش آموزی ریاضی

موضوع تحقیق:

ریاضیات و صنعت

گردآورنده:

عاطفه فرجی

آدرس: بلوار قدس- کوچه سنت

تلفن: 09188666303

مقدمه:

ابتدا درباره ی نقش ریاضی در دنیا چند سطری می نویسیم.

ریاضیات نقشی بسیار مهم در دنیا دارد برای اینکه ما اگر بخواهیم هر کاری را که انجام دهیم باید حساب کنیم که آن کار درست است یا غلط. مثال: اگر یک فضانورد هنگامی که می خواهد به فضا برود باید ابتدا(قد، وزن، ضربان قلب و تمام این ها را اندازه گیری و سپس با استفاده از معاملات ریاضی حساب کند که آیا او توانایی به فضا رفتن را دارد یا اینکه نه یا میزان سوختی را که سفینه ی او تا فضا مصرف می کند، با استفاده از معاملات ریاضی محاسبه می کند. خوب حال می خواهیم ببینیم ریاضی چه نقشی در صنعت دارد.

ریاضیات و صنعت قطعات سازی:

به نام و یاد خداوند باری تعالی آغاز می کنیم.

ریاضیات در هر چیزی که در دنیا است دخالت فراوانی دارد چرا که هر چیزی را که بخواهیم بسازیم یا اینکه حمل کنیم باید حساب کنیم که ببینیم آیا می شود یا اینکه نه.

نقش ریاضی در صنعت خودرو سازی این است که اگر بخواهیم یک قطعه از خودرو را بسازیم باید از محاسبات ریاضی استفاده کنیم برای مثال:

برای ساختار سر سیلندر ماشین باید چه کار کنیم و چه محاسباتی را انجام دهیم.

برای ساخت یک سر سیلندر ماشین باید ابتدا فلزاتی را با هم ترکیب کنیم باید حساب کنیم که آلیاژهای مربوط را به چه نسبتی با هم ترکیب کنیم. که فلزی که به دست می آید و قالب ریزی می شود آیا مقاومت فشارهایی ناشی از قدرت موتور را دارد.

به مرحله ی قالب ریزی می رسیم: در این مرحله برای قالب ریزی باید حساب کنیم که چه مقدار از فلز مذابی را که به دست آمده است در قالب بریزیم که قطعه با محاسباتی که ما کرده ایم درست از کار درآید.

بعد از ساخت قطعه به مرحله ی تراشکاری می رسیم که قطعه باید تراشکاری برود و در تراشکاری جای لوازم سرسیلندر تراشیده شود.

در تراشکاری، تراشکار سرسیلندر خام را با استفاده از محاسباتی که انجام داده است رویش نقشه و طرح را کشیده و زیر دستگاه می گذارد. تا جای قطعات که روی سرسیلندر بسته می شود تراشیده شود اندازه محاسبات به کامپیوتر داده می شود و دستگاه تراش مشغول تراش می شود.

تراشکاری تمام شده است و سر سیلندر خودرو آماده آن است که به خودروسازی ارسال شود و آماده استفاده است.

یک سرسیلندر کامل متشکل از:

1) میل سوپاپ

2) استکال تایپیت

3) کاسه نمد

4) شیم سوپاپ

5) سوپاپ

6) گیت و فنر

لازم به ذکر است که هر کدام از این نیاز به مراحل ساخت و آماده شدن هستند و باید برای ساخت آن ها از محاسبات ریاضی استفاده شود تا هر کدام به اندازه های متعادل، استاندارد درآید.

مرحله ی جمع کردن سر سیلندر با استفاده از لوازمی که نام برده شد:

در این مرحله مکانیک باید با استفاده از اندازه گیری و محاسباتی که انجام می دهد(وسایل اندازه گیری کلیس) سرسیلندر را طوری جمع کند که بتواند کارایی لازم را در موتور اتومبیل داشته باشد. مرحله آخر سرسیلندر، را روی موتور بسته و آماده ی بازدهی است.

خوش بختانه وطن عزیزمان ایران با یاری خدا و با اتکای مهندسان جوانی که با علم ریاضی آشنایی کاملی دارند توانسته ایم در صنعت خودروسازی خرف های فراوانی زده و توانایی وطن عزیزمان ایران را به رخ جهانیان بکشیم.


دانلود با لینک مستقیم


تحقیق درباره ی ریاضیات و صنعت

دانلود تحقیق کامل درباره سپیده دم ریاضیات جدید 38 ص

اختصاصی از یارا فایل دانلود تحقیق کامل درباره سپیده دم ریاضیات جدید 38 ص دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 38

 

لگاریتم:

همچنانکه امروزه می دانیم قدرت لگاریتم به عنوان یک ابزار محاسباتی در این حقیقت نهفته است که ضرب و تقسیم به کمک آن به اعمال ساده تر جمع و تفریق تحویل می شوند.

نشانه ای از این ایده در فرمول که در زمان نپر کاملاً شناخته شده بوده پیدا شد و کاملاً محتمل است که خط فکری نپر با این فرمول شروع شده است چه در غیر این صورت تعیین محدود کردن لگاریتمها به لگاریتم سینوس زوایا توسط وی مشکل است. نپر حداقل به مدت 20 سال بر روی نظریة خودکار کار کرد و منشاء اندیشة هر چه باشد، تعریف نهایی او از لگاریتم چنین است پاره خطی مانند AB و نیمه خطی مانند DE، به صورتی که در شکل 1 نشان داده شده در نظر بگیرید.

فرض کنید که نقاط F,C همزمان بترتیب از نقاط B,A در امتداد این خطوط با سرعت ادامة واحدی شروع به حرکت نمایند. فرض کنید C با سرعتی که از نظر عدد برابر با فاصلة CB است حرکت کند و سرعت حرکت F یکنواخت باشد در این صورت نپر DF را به عنوان لگاریتم CB تعریف می کند یعنی، با قراردادن CB=y , DF=x.

شکل 1

X=Naplogy

برای احتراز از مزاحمت کسرها نپر طول AB را به اختیار کرد زیرا بهترین جداول سینوسی که در دسترس وی بود تا هفت رقم اعشار بسط پیدا می کردند. از تعریف نپر و از طریق استفاده از معلوماتی که در دسترس نپر نبود چنین نتیجه می شود که

 

لذا این بیان مکرر گفته شده که لگاریتمهای نپری لگاریتم های طبیعی هستند در واقع بی اساس است. مشاهده می شود که لگاریتم نپری با افزایش عدد، کاهش می یابد. بر خلاف آنچه در مورد لگاریتم های طبیعی اتفاق می افتد بعلاوه آشکار می شود که، در دوره های مساوی متوالی از زمان، y مطابق یک تصاعد هندسی کاهش پیدا می کند در حالی که x مطابق یک تصاعد حسابی افزایش می یابد.

بنابراین، اصل بینانی دستگاه لگاریتم ها یعنی ارتباط بن یک تصاعد هندسی و یک تصاعد حسابی را داریم حال، برای مثال نتیجه می شود که اگر آنگاه:

Naploga –Naplogb=Naplogc-Naplgd

که یکی از نتایج متعددی است که به وسیله ی نپر برقرار شده است.

نپر بحث خود درباری لگاریتم ها را رد 1413 در رساله ای تحت عنوان شرح قانون شگف انگیز لگاریتم ها منتشر کرد. این اثر حاوی جدولی است که لگاریتم سینوس زوایا را برای دقیقه های متوالی یک کمان می دهد رساله شرح علاقه فوری و گسترده ای را بر انگیخت و در سال بعد از انتشار آن هنری بریگز (1561-1631) استاده هندسه در کالج گرشام در لندن و بعداً استاد در آکسفورد به ادینبورو سفر کرد تا مراتب احترام خود را به مخترع کبیر لگاریتم ها ادامه کند. در ضمن این ملاقات بود که نپر و بریگنیر به این توافق رسیدند که جداوال در چنان تبدیل که لگاریتم 1 ماه و لگاریتم 10 هر توان مناسبی از 10 می شود مفیدتر خواهد بود بدین ترتیب لگاریتم امروزی بریگزی یا متعارفی تکوین یافت این گونه لگاریتم ها، که اساساً لگاریتم های در مبنای 10 می باشند کارآیی برتر خود را در محاسبات عددی مرهون این حقیقت هستند که دستگاه شمار مانیز در مبنای 10 است. برای دستگاه شماری که پایه دیگری مانند b داشته باشد، البته، به منظور محاسبات عددی مناسبتر خواهد بود که جداول لگاریتم نیز در مبنای b باشند.

بریگز همه ی توان خود را در راه ساختن جدولی بر پایة طرح جدید وقف کرد و در 1624 حساب لگاریتم خود را که شامل یک جدول 14 رقمی از اعداد از 1 تا 20000 و از 90000 تا 100000 بود منتشر کرد. مشکاف از 20000 تا 50000 بعداً به کمک آدریان ولاک (1600-1666) کتاب فروش و ناشر هلندی پر شد در 1620 ادمونه گانته (1581-1626) یکی از همکاران بریگز، یک جدول هفت رقمی از لگاریتم های متعارفی سینوس و تانژانت زوایا برای فواصل قوسی یک دقیقه منتشر نمود. گانته بود که واژه های کسینوس و کتانژانت را ابداع کرد، مهندسان وی را به خاطر «زنجیر گانته» شناختند.

بریگز و ولاک چهار جدول بنیادی لگاریتم ها را منتشر نمودند که تنها در همین اواخر وقتی، در بین 1924 و 1949 جداوال جامع 20 رقمی در انگلستان به عنوان جزئی از جشن سیصدمین سال کشف لگاریتم محاسبه شد کنار گذاشته شدند.

کلمة لگاریتم به معنی «عدد نسبت» است و توسط نپر، بعد از آنکه بدواً از اصطلاح عدد ساختگی استفاده کرد اتخاذ گردید. بریگز کلمه ی مانیتس را که کلمه لاتینی از ریشه اتروسکی است، معمول کرد که در اصل به معنی «جمع» یا «پارسنگ» بوده و در ولاک به کار افت عجیب است که در جدول اولیة لگاریتم های متعارفی رسم این بود که مانیتس را نیز مانند مفسر چاپ کنند، و از قرن هجدهم به بعد هم بود که رسم فعلی چاپ، مانتیسها به تنهایی، متداول گردید.

اختراع شگفت انگیز پز بگرمی در سرتاسر اروپا مورد استقبال واقع شد. در نجوم بویژه زبان برای چنان اکتشافی بسیار آماده بود بنابه اظهار لاپلاس، اختراع لگاریتم ها «با کوتاه کردن زحمات، عمر منجمین را دو برابر کرد» بونانتوراکاوالیری تلاش زیادی برای متداول نمودن لگاریتم ها در ایتالیا به عمل آورد. خدمت مشابهی را یوهان کپکر در آلمان و


دانلود با لینک مستقیم


دانلود تحقیق کامل درباره سپیده دم ریاضیات جدید 38 ص

ریاضیات و نجوم

اختصاصی از یارا فایل ریاضیات و نجوم دانلود با لینک مستقیم و پر سرعت .

لینک دانلود و خرید پایین توضیحات

فرمت فایل word  و قابل ویرایش و پرینت

تعداد صفحات: 26

 

در آمد ریاضی ها"ریاضیات و نجوم ارتباط بسیار نزدیکی در قرون مختلف تا به حال داشته اند.که البته نجوم بسیاری از مکشوفاتش را مدیون حمایتهای رابطه های ریاضی است.در این مقاله ی کلان، به این مهم پرداخته شده است."رصدخانه ای که مامون ضمیمه بیت الحکمه کرد، مرکزی شد برای مطالعه در نجوم و ریاضیات.در این رصدخانه مسلمین محاسبات مهم نجومی انجام دیدند چنانکه طول یک درجه از نصف النهار را با دقتی نزدیک به حاسبات ریاضی امروز اندازه گرفتند.تفصیل طرز عمل و محاسبه را ابن خلکان در شرح حال محمد بن موسی خوارزمی نقل میکند.ارقام معروف هندی از همین ایام نزد مسلمین متداول شد و ظاهرا" ترجمه کتاب نجومی سدهانته معروف به سندهند از سنسکریت به عربی که بوسیله ی محمد بن ابراهیم فزاری انجام شد و همچنین کارهای خوارزمی از اسباب رواج این ارقام شد، چنانکه جنب و جوش بازرگانی مسلمین و وسعت دامنه تجارت آنها بعدها موجب انتشار استعمال این نوع ارقام در اروپا شد.

در نجوم مطالع مسلمین مخصوصا" ارزنده بود.مطالعات بابلیها، هندوان و ایرانیان که به آنها رسید از اسباب عمده  (Albumasar) می خوانده اند: مجموعه در پیشرفت آنها: ابو معشر بلخی که اروپائیها در قرون وسطی وی را بنام زیجاتی داشت که در آن حرکات سیارات از روی طریقه هندی و رصد گنگ دز محاسبه شده بود و اگر چه اصل آن نمانده است اما آثار دیگر او از خیلی قدیم به زبان لاتینی ترجمه و مکرر چاپ شده است و اینهمه او را در نجوم در تمام قرون وسطی شهرت جهانی بخشید.با اینهمه، وی روی هم رفته به عنوان یک منجم بیشتر اهمیت دارد تا بعنوان یک عالم نجوم.از اینها گذشته، تجارب و اطلاعات صائبین نیز در پیشرفت نجوم اسلام تاثیر بسیار داشت.پابت ابن قره- که به هندسه و فیزیک علاقه داشت، در تحقیق طول سال شمسی و درجه آفتاب  مطالعات مهمی کرد.بتانی که نیز از میراث صائبین بهره داشت با تالیف زیجی در بسط هیئت و نجوم اسلامی تاثیر قابل ملاحظه ای داشت.وی حرکت نقطه اوج آفتاب را کشف کرد و بعضی اقول بطلیموس را در این باب نقد نمود.ملاحظات او در باب خسوف در محاسباتی که دانتورن (Dunthorn) از علماء قرن هجدهم اروپا کرد به عنوان یک راهنما یا محرک تلقی شد.نیز وی برای مسائل مربوط به مثلثات کروی راه حلهایی یافت که رجیومانتس (متوفی 1476) از آنها استفاده کرد.

سه شاهکار نجومی مسلمین در این زمینه به عقیده ی سارتون، یکی صور الکوکب عبد الرحمن صوفی است ( متوفی 376 ) دیگر زیج ابن یونس(متوفی 399) است که شاید بزرگترین منجمین اسلام باشد و چون وی آن را بنام احاکم بامرالله خلیفه فاطمی مصر ساخت زیج حاکمی خوانده می شود.سومین شاهکار نجومی عبارتست از زیج الغ بیگ که با همکاری امثال قاضی زاده رومی و غیاث الدین جمشید کاشانی تدوین شد اما قتل الغ بیگ مطالعات جدی مربوط به نجوم را در شرق در واقع پایان داد.ازجمله اقدامات علمی مسلمین در امور مربوط به ریاضی نجوم اصلاح  تقویم بود.در عهد جلال الدوله  ملکشاه سلجوقی که گویند عمر خیام هم با منجمین دیگر در این اصلاح همکاری داشت و تقویم جلالی که بدینگونه بوجود آمد از بعضی تقویم های مشابه که در اروپا بوجود آمد دقیقتر و شاید علمی تر بود.خواجه نصیر طوسی قطع نظر از تحریر اقلیدس و مطالعات راجع به مثلثات که آن را از گرو نجوم بیرون آورد و مستقل ساخت.در کتاب تذکره، هیئت بطلیموسی را به شدت انتقاد نمود و خود نظریات بدیعی پیشنهاد داد.اثبات و طرح عیوب

سیستم بطلیموس به ضرورت اظهار طرح تازه ای که بعدها بوسیله ی کوپرنیک عرضه شد، کمک کرد.

کوتاه در مورد مایاها

در میان بناهای باشکوه " مایا "ها در " په لنگ " و شهر" چیکن ایتزا " نقوش حجاری شده بسیاری بر تخت سنگها و دیوارها بچشم میخورد – اما سرامد تمام انها تابوت حجاری شده ای است, که بسیاری از باستان شناسان و دانشمندان علوم فضائی را به تعجب و تحسین وادار کرده است – این تابوت در سال 1952 توسط تیم کاوشگران پرفسور " البرتو روزلهالیر " بعد از گذشت 2 سال تلاش بی وقفه بدست امد . در کنار این تابوت انواع لوح های سنگی که وزن بعضی از انها بیش از 5 تن میباشد , بهمراه یک ماسک سنگی که با ظرافت بینظری ساخته شده است، بدست امد.پرفسور " ریماند کارتایر " باستان شناس نامی جهان که سالهای بسیاری صرف تحقیق و بررسی تمدنهای امریکای لاتین و بخصوص تمدن شگفت انگیز " مایا "ها کرده است, بعد از یک کار طاقت فرسا توانست رمز کتیبه ها و همچنین تابوت حجاری شده را پیدا کرده و انرا ترجمه نماید. کار پرفسور " ریماند کارتایر " چون طوفان سهمگینی بود که بر اندیشه دانشمندان امروزی ما تازیانه می زد – خبر بسیار حیرت انگیز و شگفت اور بود – مایاها هزاران سال پیش, از نیروی الکترو مغناطیس زمین با خبر بودند .

انها درک عمیقی از سیستم خورشیدی و پرتوهای حرارتی ان داشته اند . سئوالی که دانشمندان از خود میپرسیدند این بود : چگونه .؟!! مایاها از کجا به این دانش عظیم دست پیدا کرده بودند.؟ این سئوالی است که دانش امروز جوابی برای ان ندارد . متاسفانه بخش عظیمی از کتیبه ها "مایا"ها نابود شده است – اما همان اندک مدارک, دال بر دانشی می کنند که دانش امروز قادر به درک ان نیست .

وزن سنگهای بکار رفته در این بنای اسرار امیز هر کدام بیش از 25 تن میباشد – که بصورت باور نکردنی صیقل داده شده است - در اطراف این قعله اسرار امیز هیچ مدخل یا ورودی کشف نشده است. ایا " اینکا"ها بخود انهمه زحمت طاقت فرسا میدادند که یک بنای بی درب بسازند.؟!! یا انها میدانستند چگونه از این دیوارهای غول پیکر عبور کنند؟! همانطور که در بالا اشاره شد، توضیحات مفصلی از "اینکا"ها و "مایا"ها بارها بیان شده است و همانگونه که میدانید این قوم اسرار امیز خبرگان علوم ریاضیات – نجوم و ستاره شناسی بودند – "مایا"ها از چرخ استفاده نمیکردند – اما جاده های پهن و یکدست انها باستان شناسان را به این فکر انداخت که انها چه نیازی به این جاده های پهن داشتند؟! محاسبات بسیار دقیق ریاضی – ستاره شناسی و نجوم بینظیر از "مایا"ها تمدنی ساخته که بقول پرفسور "اریک فن دانکین" "مایاها" ربوتیک ترین تمدن جهان هستند.!! تمام زندگی و دانش انها از روی تقویم و برنامه شکل میگرفته است. تمام بناهای باشکوه از روی برنامه و تقویم مایائی ساخته شده است.!! چه کس این تقویم را در اختیار انها قرار داده است.؟!! سئوالی که هنوز پاسخی به ان داده نشده! در یک افسانه مایائی بنام "پوپول وه " اینچنین میگوید : خدایان قادر به شناختن و دانستن همه چیز بودند, کیهان و چهار جهت اصلی – قطب های زمین و همچنین گرد بودن شکل زمین را میدانسته اند.!! چگونه اجداد "مایا"ها از گرد بودن زمین باخبر بودند؟!

حال به بحث محاسبات ریاضی مایاها در نجوم میپردازیم:

انان نه تنها صاحب یک تقویم افسانه ای بودند بلکه محاسبات باور نکردنی هم انجام داده اند که تا امروز چون یک معما حل نشده است . انان می دانستند که سال زهره 584 روز است و مدت سال زمینی را هم در حدود 2410و 365 روز محاسبه کرده اند ( محاسبه دقیق امروزی عدد 2422و 365 است) – محاسبات مایائی به 64 میلیون سال پیش برمیگردد .نوشته های دیگر در جزئیاتی بحث میکند که قریب به 400 میلیون سال قدمت دارد . این فرمولهای مشهور زهره ای را- تنها میتوان با یک کامپیوتر امروزی محاسبه کرد . به هر تقدیر بسیار مشگل است که منشاء این حقایق را از مردمانی جنگل نشین که بسیاری انها را وحشی میدانند بدانیم . فرمول مشهور نجومی "مایا"ها از قرار زیر است : تزولکین 260, سال زمینی 365 و سال زهره ای 584 روز است . این اعداد ظاهرا حاصل یک تقسیم ساده عجیب را, پنهان نگاه میدارند . اما 365 مساوی حاصل ضرب 73 در 5 و584 مساوی حاصل ضرب 73 در 8 است . 960 37 = 73 × 2 × 260 = 73 × 2 × 13 × 20 ماه 960 37 = 73 × 5 × 104= 73 × 5 × 13 × 8 خورشید960 37 = 73 × 8 × 65 = 73 × 8× 13× 5 زهره به عبارت دیگر تمام این ادوار بعد از 37960 روز با هم تقارون پیدا می کنند . اساطیر مایائی مدعی است که بعد از این ,خدایان به محل استراحتگاه بزرگ خود باز خواهند گشت . براستی این محاسبات پیچیده – شگفت انگیز نیست .؟!! در مدت 8 سال زمینی – زهره 13 بار به دور خورشید میگردد و این محاسبات را "مایا"ها به شکل بینظیری انجام داده اند

رابطه ریاضی فاصله سیارات تا خورشیدسال 1766 میلادی، یوهان تیتوس منجم آلمانی توانست رابطه ساده ای بیابد که با استفاده از آن می شد فاصله سیارات از خورشید را بدست آورد. چند سال بعد نیز دیگر منجم هموطن او، یوهان الرت بُد، این رابطه را مستقلا" دوباره کشف کرد.البته این رابطه را هر دو از طریق بازی با اعداد بدست آوردند و بدست آوری آن رابطه پایه علمی نداشت. امروزه این رابطه به رابطه تیتوس_بُد مشهور است. این رابطه بدین صورت است:

فاصله سیاره از خورشید(بر حسب فاصله متوسط زمین از خورشید)=0.4+)0.3*n(• n=1,2,4,8,.....• اعداد بدست آمدهبا دقت خوبیبا فاصله واقعی سیارات هم خوانی داشت:برای فاصله 2.8 برابر فاصله زمین از خورشید در آن زمان سیاره ای یافت نشده بود. بسیاری از اخترشناسان عقیده داشتند که سیاره ای کوچک در این فاصله بین مریخ و مشتری وجود دارد که کشف نشده است. جستجوی منظم نوار دایرِةالبروج برای یافت این سیاره مفقود از اواخر قرن هجدهم شروع شد و سرانجام در اولین روز قرن نوزدهم، یک منجم ایتالیایی به نام جوزپه پیاتزی، موفق شد جسم کوچکی را در حدود این فاصله از خورشید بیابد که آن را سِرِس نامید. بعد از آن نیز اجرام دیگری با همین فاصله از خورشید کشف شدند. اخترشناسان آن دوران این نظریه را پیش کشیدند که در آن فاصله از خورشید، بجای یک سیاره، تعداد زیادی سیارک وجود دارد که با کشف تعدادزیادی از این سیاکها در سالهای بعد این نظریه تایید شد.در حقیقت رابطه تیتوس_بُد محرک اصلی کشف سیارکها بود.

سالها بعد نیز سیاره اورانوس کشف شد که فاصله اش با فاصله پیشبینی شده توسط رابطه تیتوس_بُد نیز می خواند!(19.6 بنابر رابطه و 19.9 بنابر اندازه گیری). اما فاصله سیارات بعدی نپتون و پلوتو در این رابطه صدق نمی کنند. امروزه نظریه ای که به نظریه واهلش دینامیکی(Dynamical Relaxation) موسوم است توضیحی برای این رابطه یافته است. بنا به این نظریه، سیارات نخست در مدارات متفاوت تکوین یافتند؛ اما سپس به مداراتی منتقل شدند که نیروهای اغتشاشی گرانشی دیگر سیارات را به حداقل برسانند. نتیجه این کار از نظر ریاضی به روابطی شبیه رابطه تیتوس_بُد منجر می شود.

سیارات:عطارد    زهره     زمین    مریخ    ؟؟؟؟    مشتری    زحلجواب رابطه تیتوس-بد:               0.4       0.7       1.0     1.6      2.8      5.2       10

فاصله واقعی از خورشید :         0.39      0.72      1.0 


دانلود با لینک مستقیم


ریاضیات و نجوم