فرمت فایل : word(قابل ویرایش)
تعداد صفحات:101
فهرست مطالب:
چکیده
فصل اول: آشنایی کلی با سازههای پارچهای
بخش اول: مواد کامپوزیتی و خصوصیات آنها 1
1-1- تاریخچه 1
2-1- مقدمه 2
3-1- کامپوزیتها چه هستند؟ 5
4-1- صنعت کامپوزیتها 8
1-4-1- کامپوزیتهای مصرفی 8
2-4-1- کامپوزیتهای صنعتی 9
3-4-1- کامپوزیتهای پیشرفته 9
5-1- ساختارهای تشکیل دهنده مواد مرکب 10
6-1- چرا کامپوزیتها متفاوتند؟ 11
7-1- کامپوزیتها از نقطه نظر دیگر 13
8-1- طبقه بندی کامپوزیتها 14
1-8-1- کامپوزیتهای الیافی (رشتهای) 15
2-8-1- کامپوزیتهای لایهای 16
3-8-1- کامپوزیتهای ذرهای 17
4-8-1- کامپوزیتهای پولکی 17
5-8-1- کامپوزیتهای پرشده 17
9-1- مزایای هشتگانه کامپوزیتها (پلاستیکهای تقویت شده با الیاف FRP) 19
1-9-1- انعطاف پذیری در طراحی 19
2-9-1- پایداری ابعاد 19
3-9-1- ساخت قطعات به شکل یکپارچه 19
4-9-1- مقاومت بالا 20
5-9-1- سبکی وزن 20
6-9-1- هزینه تجهیزات متوسط 20
7-9-1- هزینه پرداختکاری پایین 20
8-9-1- مقاومت در برابر خوردگی بالا 20
بخش دوم: مروری بر تحقیقات انجام شده قبلی 21
10-1- شبیه سازی سه بعدی زیرلایههای کامپوزیت بافته شده برای صفحه مدارهای چند لایهای 21
11-1- شبیهسازی تصادفی شکل گیری کامپوزیتهای بافته شده 21
12-1- روش میکرو سطح/ ماکرو سطح و مولتی سطح برای آنالیز ورقههای کامپوزیت پارچههای بافته شده 22
1-12-1- روش میکروسطح / ماکروسطح و مولتی سطح 24
13-1- روندهای نمونه برداری برای کامپوزیتهای بافته شده هشت وجهی سهبعدی 26
1-13-1- فرایند تولید برای کامپوزیتهای بافته شده سه بعدی 28
14-1- تست فریم تصویری تقویتهای کامپوزیت بافته شده با یک ثبت واتنش میدان کامل 29
15-1- مدلهای میکرو مکانیکی برای رفتار خمش کامپوزیت بافته شده 30
بخش سوم: سازههای پارچهای 32
16-1- سازههای پارچهای 32
17-1- خصوصیات مواد نساجی 34
18-1- پارچههای مورد استفاده در سازههای پارچهای 35
19-1- انواع سازههای پارچهای 35
20-1- مزیتهای سازههای پارچهای 37
21-1- انتخاب سازههای پارچهای 37
22-1- کاربردهای امروزه 38
فصل دوم: مقایسه خصوصیات مکانیکی پارچه کامپوزیتی با پارچه پیراهنی
بخش اول: روش انجام آزمایشات 42
1-2- مقدمه 42
2-2- معرفی مواد مورد آزمایش 42
1-2-2- پارچه کامپوزیتی (سازه پارچهای) 42
1-1-2-2- خصوصیات پارچه کامپوزیتی 42
2-2-2- پارچه پیراهنی 43
1-2-2-2- خصوصیات پارچه پیراهنی 43
3-2- اندازهگیری ضخامت با دستگاه 44
1-3-2- اندازهگیری ضخامت پارچه کامپوزیتی 44
2-3-2- اندازهگیری ضخامت پارچه پیراهنی 45
4-2- تعریف خواص مکانیکی 46
1-4-2- خاصیت کشسانی و قانون هوک 46
5-2- خواص مکانیکی پارچه 47
1-5-2- استحکام 47
2-5-2- مقاومت خمشی 47
3-5-2- قابلیت ازدیاد طول 48
6-2- طول خمشی 48
1-6-2- سختی خمشی 51
2-6-2- مدول خمشی 51
7-2- استحکام پارچه 52
1-7-2- مقدمه 52
2-7-2- خصوصیات موثر بر خواص استحکامی کششی پارچه 52
3-7-2- اندازهگیری استحکام پارچه 55
4-7-2- اندازهگیری استحکام پارچه با باریکهای از پارچه 56
بخش دوم: نتایج بدست آمده از آزمایشات 58
8-2- محاسبه سختی خمشی 58
1-8-2- سختی خمشی پارچه کامپوزیتی در جهت تار 58
2-8-2- سختی خمشی پارچه کامپوزیتی در جهت مورب ס45 58
3-8-2- سختی خمشی پارچه پیراهنی در جهت تار 59
4-8-2- سختی خمشی پارچه پیراهنی در جهت پود 59
5-8-2- سختی خمشی پارچه پیراهنی در جهت مورب ס45 60
9-2- محاسبه استحکام 61
1-9-2- اندازهگیری استحکام پارچه کامپوزیتی در جهت تار 61
2-9-2- اندازهگیری استحکام پارچه کامپوزیتی در جهت مورب ס45 62
3-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت تار 63
4-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت پود 64
5-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت مورب ס45 65
10-2- محاسبه سختی برشی 66
1-10-2- سختی برشی برای پارچه کامپوزیتی 66
2-10-2- سختی برشی برای پارچه پیراهنی 66
فصل سوم: نتیجهگیری
1-3- مقدمه 67
2-3- مقایسه خواص مکانیکی پارچه پیراهنی و پارچه کامپوزیتی 67
3-3- مقایسه خواص ظاهری پارچه پیراهنی و پارچه کامپوزیتی 68
4-3- نتایج 68
ضمائم 69
منابع و مآخذ
فهرست منابع فارسی 95
فهرست منابع غیرفارسی 96
فهرست جداول
1-2- جدول: اندازهگیری ضخامت پارچه کامپوزیتی 44
2-2- جدول: اندازهگیری ضخامت پارچه پیراهنی 45
3-2- جدول: دادههای آزمایش پارچه کامپوزیتی در جهت تار 61
4-2- جدول: نتایج آماری پارچه کامپوزیتی در جهت تار 61
5-2- جدول: دادههای آزمایش پارچه کامپوزیتی در جهت مورب (o45) 62
6-2- جدول: نتایج آماری پارچه کامپوزیتی در جهت مورب (o45) 62
7-2- جدول: دادههای آزمایش پارچه پیراهنی در جهت تار 63
8-2- جدول: نتایج آماری پارچه پیراهنی در جهت تار 63
9-2- جدول: دادههای آزمایش پارچه پیراهنی در جهت پود 64
10-2- جدول: نتایج آماری پارچه پیراهنی در جهت پود 64
11-2- جدول: دادههای آزمایش پارچه پیراهنی در جهت مورب (o45) 65
12-2- جدول: نتایج آماری پارچه پیراهنی در جهت مورب (o45) 65
1-3- جدول: مقایسه خواص مکانیکی پارچه پیراهنی و پارچه کامپوزیتی 67
2-3- جدول: مقایسه خواص ظاهری پارچه پیراهنی و پارچه کامپوزیتی 68
فهرست شکلها
1-1- شکل: کامپوزیت طبیعی 5
2-1- شکل: کاهگل (خشت) 7
3-1- شکل: واسطه ارتباط بین الیاف و ماتریس 11
4-1- شکل: تفاوت ساختاری بین کامپوزیتها و فلزات 12
5-1- شکل: شکل کلی انواع کامپوزیتها 15
6-1- شکل: طبقه بندی کامپوزیتها از دیدگاه دیگر 18
7-1- شکل: روش چند سطحی برای ساختمان های کامپوزیت پارچه بافته شده 25
8-1- شکل: ترمینال حج در عربستان سعودی 32
9-1- شکل: گنبد پارچهای در لندن 33
10-1- شکل: استادیوم ورزشی در کالیفرنیا 33
11-1- شکل: ساختار سازه پارچهای 34
12-1- شکل: چگونگی تشکیل سازه پارچهای 35
13-1- شکل: سازههای هوایی 36
14-1- شکل: سازههای کششی 36
15-1- شکل: سقف خانه 38
16-1- شکل: گنبد 39
17-1- شکل: سالنهای نمایش 39
18-1- شکل: استادیومهای ورزشی 40
19-1- شکل: پارکهای تفریحی 40
20-1- شکل: سالن نمایشگاه 41
1-2- شکل: منحنی تنش- کرنش یک ماده در منطقهای که رفتار کشسان از خود نشان میدهد 46
2-2- شکل: اصول اندازه گیری خمش پارچه 49
3-2- شکل: روش آزمایشگاهی بررسی خمش پارچه 50
4-2- شکل: اثر تاب بر استحکام نخ 53
5-2- شکل: دستگاه استحکام سنج کششی پارچه 57
چکیده:
از دیر هنگام استفاده از سازه های پارچه ای در زندگی بشر نقش اساسی داشته است. انسانها از سازه های پارچه ای (چادر) به عنوان سرپناه برای محافظ از سرما و برف و باران استفاده می کردند. اما سازه های پارچه های امروزی تغییرات فراوانی کرده است. سازه های پارچه در این مقاله در مورد آن بررسی انجام گرفته است از پارچه های کامپوزیتی ساخته شده و بیشتر در سقف های استودیوم، نمایشگاه و سایه بان¬ها استفاده می گردد. در صنعت نساجی پارچه های کامپوزیتی از ترکیب پلی استر و رزین وینیل و همچنین الیاف شیشه و رزین تفلن تولید می شوند.
امروزه الیاف، انواع پارچهها و دیگر مواد نساجی در ساختمانسازی جایگاه مناسبی پیدا کردهاند. زیرا نسبت به آجر و ملات، سبکتر و قابل انعطاف بوده و در زمان بسیار کمی بنا میشوند. همچنین توانایی پوشاندن سطح وسیعی را با بکار بردن کمترین مواد را دارند. در این پروژه علاوه بر معرفی و ضرورت سازههای پارچهای، خواص مکانیکی پارچه کامپوزیتی مورد استفاده در آنها بررسی میشود که نمونه پارچه کامپوزیتی مورد استفاده در سازه های پارچه ای که در این پروژه مورد بررسی شده از شرکت اطلس تهیه شده و تنها یک نمونه انتخاب و خواص آن اندازه گیری شده است. برای درک بهتر این خواص، مقایسهای بین این پارچه و پارچه مورد استفاده در پوشاک انجام گرفته که نمونه (پارچه پیراهنی) از کارخانه یزدباف تهیه گردیده و تنها یک نمونه مورد آزمایش قرار گرفته است که شامل مقایسه استحکام، سختی خمشی، سختی برشی و خواص ظاهری (جنس، وزن، تراکم و...) میباشد. نتایج بررسیها نشان میدهد که پارچه کامپوزیتی 4 برابر پارچه پیراهنی استحکام داشته و سختی خمشی آن در جهت تار 60 برابر و در جهت مورب 32 برابر پارچه پیراهنی میباشد و علاوه بر این 5 برابر پارچه پیراهنی وزن دارد.
کلمات کلیدی: پارچه کامپوزیتی- خواص مکانیکی- سازه پارچهای
بخش اول: مواد کامپوزیتی و خصوصیات آن
1-1- تاریخچه
ترکیب مواد برای ساختن یک ماده جدید با خواص بهتر از گذشته دور مطرح بوده است.استفاده کارگران از ساقه های بریده شده درختها، استفاده سامورائی های ژاپنی از فلزات چندلایه در ساخت شمشیر واستفاده هنرمندان از کاغذهای لایه لایه در اندازه های مختلف برای ساخت ابزار آلات هنری از نمونه های کاربردی ترکیب مواد از گذشته دور است. ]2[
مبدا و زمان مشخصی درباره استفاده از مواد مرکب در دست نیست، اما به گواهی تاریخ در مصر باستان از «کاهگل» برای ساخت بناها استفاده میشده است. همچنین در 8000 سال قبل از میلاد نیز فلسطینیها از نی و حصیر در ساخت آجر و از حرارت خورشید برای عمل آوردن آن استفاده میکردند. در 5000 سال قبل از میلاد در خاورمیانه از اولین ماده مرکب که در آن پلیمر به کار رفته بود، برای قیراندود کردن قایقها استفاده میشد. در 1500 سال قبل از میلاد نیز از چوبهای لایه لایه، با چسب طبیعی گیاهان و درختان و یا سریش و تخممرغ استفاده میگردید. با بسط و توسعه شیمی آلی در سال 1847 «برزیلوس» شیمیدان سوئدی اولین رزینها را تهیه کرد و در سال 1909 رزین با کالیت (رزین فنل فرمالدئید) بدست آمد. در سال 1930 دانشمندان به فکر استفاده از مواد تقویتکننده افتاده و مفهوم جدید مواد مرکب را پایهگذاری کردند. در سال 1942 پلی استر تقویت شده با شیشه، 1946 مواد مرکب با رزین اپاکسی، 1964 کامپوزیتهای تقویت شده با الیاف هیبریدکربن و شیشه، در سال 1975 مواد مرکب هیبریدی از الیاف
آرامیدی- گرافیت ساخته شده است. اخیراً نیز از علم ژنتیک برای رسیدن به تارهای مقاومت بالا در مواد مرکب استفاده میشود. ]4[
در این رابطه میتوان به الیاف ابریشمی اشاره نمود که از این طریق تهیه شدهاند که حدود پنج برابر لیفی فولادی با همان قطر مقاومت دارند. ضمن آنکه دانسیته کمتری نیز دارند. ]4[
قدمت اولین ماده کامپوزیتی با رفتار بالا و پیشرفته به قدمت بشر وحیات وی است: استخوان ها و بافت ماهیچه یک کامپوزیت لایه لایه چند جهتی هستند، تایر اتومبیل نیز یک کامپوزیت امروزی است .امروزه ،الیاف در داخل مواد برای ایجاد مقاومت وسفتی استفاده میشوند و گذشته از آن سازندگان از تقویت کنندگان مقاوم در مقابل حرارت برای پخت سریع کامپوزیتها ، بدون ایجاد تنش های داخلی بالادرآنها ، استفاده می کنند. ]2[
2-1- مقدمه
سازندگان، طراحان و مهندسین، کاربرد مواد کامپوزیت را جهت تولید محصولاتی با کیفیت بالا، بادوام و ارزان مفید تشخیص دادهاند. مواد کامپوزیت در محصولات زیادی در زندگی روزمره ما یافت میشوند، از اتومبیلهایی که بر آن سوار میشویم تا قایقها، چوبهای اسکی و گلف که در تعطیلات آخر هفته استفاده میکنیم. علاوه بر این، کامپوزیتها در بسیاری از کاربردهای صنعتی حساس، هوافضا و نظامی استفاده میشوند. ]4[
در بازاری که تقاضا برای محصول همواره در حال افزایش است، مواد کامپوزیت ثابت کردهاند که در کاهش هزینهها و افزایش کارآیی، میتوانند موثر باشند. کامپوزیتها، مشکلات را حل میکنند، سطح کارآیی را بالا میبرند و توسعه محصولات جدید را قادر میسازند. در ایالات متحده، ساخت کامپوزیتها، یک صنعت 25 میلیون دلاری در سال است و یکی از معدود صنایعی است که در آن نسبت به دیگر رقبای خارجی کمی پیشرفتهتر است. بیش از 3000 مرکز در ارتباط با ساخت قطعات و توزیع مواد کامپوزیت در آمریکا وجود دارند. این امکانات، بیش از 236000 نفر را به کار گمارده است. علاوه بر آن حدود 250.000 نفر در ارتباط با تجارت این صنعت شامل، تهیهکنندگان مواد، فروشندگان تجهیزات و دیگر پرسنل پشتیبانی کننده، مشغول به کار میباشند. ]4[
در حدود 90% کامپوزیتهای تولید شده، از الیاف شیشه و رزین پلی استر و وینیل استر استفاده میشود. 65% کامپوزیتها با استفاده از روش قالبگیری باز ساخته میشوند و 35% باقیمانده با استفاده از روشهای قالبگیری بسته یا پیوسته تولید می شوند. ]2[
کامپوزیتها به طور گستردهای به عنوان پلاستیکهای تقویت شده غالباً، الیاف تقویتکننده، فایبرگلاس (Fiber Glass) می باشند گرچه الیافی با استحکام بالا نظیر آرامید (Aramid) و کربن (Carbon) در کاربردهای پیشرفته به کار برده میشوند. ]2[
ماتریس پلیمری (Polymer Matrix) معمولاً شامل رزین ترموستی (Thermoset Resin) نظیر پلی استر، وینیل استر و رزینهای اپاکسی میباشد. رزینهای خاصی نظیر فنولیک،پلی اورهتان و سیلیکون برای کاربردهای ویژه استفاده می شوند. رزینهای مصرفی معمولاً در ضمن فرآیند قالب گیری، شبکهای شده و منسجم و جامد میگردند. این فرآیند به نام فرآیند شبکهای شدن معروف است. به علت انجام این فرآیند مقاومت شیمیایی، حرارتی و خواص فیزیکی و دوام سازهای کامپوزیت افزایش مییابد. به دلیل مزایای بی شمار کامپوزیتها کاربرد این مواد در بازارهایی نظیر حمل و نقل، ساختمان، سازههای دریایی، سازههای خیلی قوی، محصولات مصرفی، وسایل برقی، هواپیما و هوافضا، وسایل وتجهیزات تجاری روبه افزایش است. برخی از این مزایا به شرح زیر است:
1- استحکام بالا: مواد کامپوزیت برای نیازهای استحکامی خاص در یک کاربرد میتوانند طراحی شوند. مزیت بارز کامپوزیتها نسبت به سایر مواد، توانایی استفاده کردن از تعداد زیادی از ترکیبهای رزینها و تقویتکنندهها و بنابراین رسیدن به خواست مشتری از نظر خواص مکانیکی و فیزیکی سازه میباشد.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:38
خلاصه ۵
۱ – مقدمه ۷
۲ – راه حل مساله ۹
۳ – ساختار مصالح FRP 10
3-1- الیاف شیشه ۱۱
فایبرهای شیشه در چهار دسته طبقهبندی میشوند ۱۱
۳-۲- الیاف کربن ۱۱
الیاف کربن در دو دسته طبقهبندی میشوند ۱۱
۳-۳- الیاف آرامید ۱۲
۴- انواع محصولات FRP 12
5– میلههای کامپوزیتی FRP 14
6 – مشخصات اساسی محصولات کامپوزیتی FRP 15
6-1- مقاومت در مقابل خوردگی ۱۵
۶-۲- مقاومت ۱۶
۶-۳- مدول الاستیسیته ۱۶
۶-۴- وزن مخصوص ۱۶
۶-۵- عایق بودن ۱۷
۶-۶- خستگی ۱۷
۶-۷- خزش ۱۷
۶-۸ – چسبندگی با بتن ۱۸
۶-۹- خم شدن ۱۸
۶-۱۰- انبساط حرارتی ۱۸
۷- دوام کامپوزیتهای FRP 19
مکانیزمهایی که دوام کامپوزیتها را کنترل میکنند عبارتند از : ۱۹
۱) تغییرات شیمیایی یا فیزیکی ماتریس پلیمر ۱۹
۲) از دست رفتن چسبندگی بین فایبر و ماتریس ۱۹
۳) کاهش در مقاومت و سختی فایبر ۱۹
۷-۱- پیر شدگی فیزیکی ماتریس پلیمر ۲۰
۷-۲- تأثیر رطوبت ۲۱
الف- تأثیر رطوبت بر ماتریس پلیمری ۲۱
ب – تأثیر رطوبت بر فایبرها ۲۳
ج- رفتار عمومی کامپوزیتهای اشباع شده با آب ۲۳
۷-۳- تأثیرات حرارتی – رطوبتی ۲۴
۷-۴- محیط قلیایی ۲۵
۷-۵- تأثیر دمای پائین ۲۵
۷-۶- تأثیرات سیکلهای حرارتی در دمای پایین (یخزدن- ذوب شدن) ۲۷
۷-۷- تأثیر تشعشع امواج ماوراء بنفش (UV) 28
8- استفاده از مواد FRP به عنوان مسلح کنندة خارجی در سازهها ۲۹
مقاوم سازی سازههای بتن آرمه با مواد FRP 29
مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان.. ۳۰
۹ – خلاصه و نتیجه گیری ۳۴
۱۰- مراجع ۳۶
خلاصه
خوردگی قطعات فولادی در سازههای مجاور آب و نیز خوردگی میلگردهای فولادی در سازههای بتن آرمه ای که در معرض محیطهای خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی میشود. در محیطهای دریایی و مرطوب وقتی که یک سازة بتنآرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمکها، اسیدها و کلرورها قرار گیرد، میلگردها به دلیل آسیب دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار میآورد که به خرد شدن و ریختن آن منتهی میشود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمهای که به دلیل خوردگی میلگردها آسیب دیده است، میلیونها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر ویژهای جهت جلوگیری از خوردگی اجزاء فولادی و میلگردهای فولادی در بتن اتخاذ گردد که از جمله میتوان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است. از آنجا که کامپوزیتهای FRP (Fiber Reinforced Polymers/Plastics) بشدت در مقابل محیطهای قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گستردهای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بودهاند. چنین جایگزینی بخصوص در محیطهای خورنده نظیر محیطهای دریایی و ساحلی بسیار مناسب به نظر میرسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازههای مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.
1 – مقدمه
بسیاری از سازههای بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیبهای اساسی شدهاند. این مساله هزینههای زیادی را برای تعمیر، بازسازی و یا تعویض سازههای آسیب دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مسالة مهندسی، بلکه به عنوان یک مسالة اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازههای بتنی آسیبدیده میلیونها دلار خسارت در دنیا به دنبال داشته است. در امریکا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند ]2[. هزینة بازسازی و یا تعمیر سازههای پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینة تعمیر پلهای شاهراهها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیة سازههای بتن آرمة آسیبدیده در امریکا در اثر مسالة خوردگی میلگردها، پیشبینی شده که به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !
از مواردی که سازههای بتن آرمه به صورت سنتی مورد استفاده قرار میگرفته، کاربرد آن در مجاورت آب و نیز در محیطهای دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیشتنیده در کارهای دریایی به سال 1896 بر میگردد ]4[. دلیل عمدة این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتنریزی در جا و چه در بتن پیشتنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورندة اطراف سازههای ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیطهای ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلرید هستند.
در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجة حرارتهای بالا و نیز رطوبتهای بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید میشود. در مناطق ساحلی خلیج فارس، در تابستان درجة حرارت از 20 تا 50 درجة سانتیگراد تغییر میکند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجة سانتیگراد متغیر است. این در حالی است که رطوبت نسبی اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دیاکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقة دریایی خلیج فارس به عنوان یکی از مخربترین محیطها برای بتن در دنیا یاد شده است [6]. در چنین شرایط، ترکها و ریزترکهای متعددی در اثر انقباض و نیز تغییرات حرارتی و رطوبتی ایجاد شده، که این مساله به نوبة خود، نفوذ کلریدها و سولفاتهای مهاجم را به داخل بتن تشدید کرده، و شرایط مستعدی برای خوردگی فولاد فراهم میآورد [7-9]. به همین جهت بسیاری از سازههای بتن مسلح در نواحی ساحلی ایران نظیر سواحل بندرعباس، در کمتر از 5 سال از نظر سازهای غیر قابل استفاده گردیدهاند.
نظیر این مساله برای بسیاری از سازههای در مجاورت آب، که در محیط دریایی و ساحلی قرار ندارند نیز وجود دارد. پایههای پل، آبگیرها، سدها و کانالهای بتن آرمه نیز از این مورد مستثنی نبوده و اغلب به دلیل وجود یون سولفات و کلرید، از خوردگی فولاد رنج میبرند.
2 – راه حل مساله
تکنیکهایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است که از بین آنها میتوان به پوشش اپوکسی بر قطعات فولادی و میلگردها، تزریق پلیمر به سطوح بتنی و حفاظت کاتدیک میلگردها اشاره نمود. با این وجود هر یک از این تکنیکها فقط تا حدودی موفق بوده است [10]. برای حذف کامل مساله، توجه محققین به جانشین کردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده است.
مواد کامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP موادی بسیار مقاوم در مقابل محیطهای خورنده همچون محیطهای نمکی و قلیایی هستند. به همین دلیل امروزه کامپوزیتهای FRP، موضوع تحقیقات توسعهای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و کابلهای پیشتنیدگی شدهاند. چنین تحقیقاتی به خصوص برای سازههای در مجاورت آب و بالاخص در محیطهای دریایی و ساحلی، به شدت مورد توجه قرار گرفتهاند.
3 – ساختار مصالح FRP
مواد FRP از دو جزء اساسی تشکیل میشوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها که اصولاً الاستیک، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب میشوند. بسته به نوع فایبر، قطر آن در محدودة 5 تا 25 میکرون میباشد [11].
رزین اصولاً به عنوان یک محیط چسباننده عمل میکند، که فایبرها را در کنار یکدیگر نگاه میدارد. با این وجود، ماتریسهای با مقاومت کم به صورت چشمگیر بر خواص مکانیکی کامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمیگذارند. ماتریس (رزین) را میتوان از مخلوطهای ترموست و یا ترموپلاستیک انتخاب کرد. ماتریسهای ترموست با اعمال حرارت سخت شده و دیگر به حالت مایع یا روان در نمیآیند؛ در حالیکه رزینهای ترموپلاستیک را میتوان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزینهای ترموست میتوان از پلیاستر، وینیلاستر و اپوکسی، و به عنوان رزینهای ترموپلاستیک از پلیوینیل کلرید (PVC)، پلیاتیلن و پلی پروپیلن (PP)، نام برد [3].
فایبر ممکن است از شیشه، کربن، آرامید و یا وینیلون باشد که در اینصورت محصولات کامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP و VFRP شناخته میشود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.
این فایل در قالب ورد و قابل ویرایش در 55 صفحه می باشد.
سمینار کارشناسی ارشد سازه
سازههای باز شونده و جمع شونده
فهرست مطالب
فصل اول
1-1 مقدمه 1
1-2 تعریف سازههای فضایی باز شونده و جمع شونده 2
1-3 موارد کاربرد سازههای فضایی باز شونده و جمع شونده 2
1-3-1 موارد نیاز به سازههای باز شونده و جمع شونده 2
1-3-2 مزایای سازههای فضایی باز شونده و جمع شونده. 2
1-3-3 موارد استفاده 3
1-4 مکانیزمهای مختلف در سازههای باز شونده و جمع شونده 4
1-4-1 مکانیزمهای چتری 4
1-4-2 مکانیزم المانهای تا شونده مفصلی (زانویی) 5
1-4-3 مکانیزم المانهای قیچی سان 5
1-4-4 مکانیزم کشویی 5
1-4-5 سازههای باد شده با هوا 6
1-4-6 مکانیزم سازههای تا شونده صفحه ای 6
1-5 بافتار مختلف در سازههایی باز شونده و جمع شونده 6
1-5-1 سازههای خطی 7
1-5-2 شبکههای تخت 7
1-5-3 شبکههای بلوری 7
1-5-4 چلیک استوانه ای با نقش دو طرفه 8
1-5-5 چلیک استوانه ای با نقش سه طرفه 9
1-5-6 گنبدهای کروی با نقش دو طرفه 9
1-5-7 گنبدهای کروی با نقش سه طرفه 10
1-5-8 گنبدهای کروی با المانهای قیچی سان 3 لولایی 10
1-5-9 گنبدهای کروی ژئودزیک 11
1-5-10 سایر انواع سازههای باز شونده و جمع شونده 11
1-6 طرح گرهها و اتصالات و روشهای باز و بسته کردن سازه 11
1-7 تاریخچه سازههای فضا کار باز و جمع شونده 12
1-8 نمونههایی از سازههای جمع شونده و باز شونده از سراسر دنیا 12
2-1 طراحی هندسی سازه های فضایی بازشونده وجمع شونده 16
2-1-1 اصول کلی و روابط هندسی 16
2-1-2 طراحی هندسی در شبکههای فضایی تخت مشکل از واحدهای چند ضلعی منتظم 17
2-2 رفتار سازه های باز شونده و جمع شونده در مرحله باز و بسته شدن 23
2-2-1 بررسی پارامترهای هندسی موثر بر رفتار سازه در حین باز و بسته شدن 23
2-2-2 تغییرات کمیتهای سازه ای در حین جمع شدن سازه 26
2-2-3 پارامترهای موثر بر رفتار غیر خطی سازه در حین باز شدن 27
2-3 تحلیل و طراحی 32
2-3-1 روند آنالیز ماتریسی سازههای باز شونده و جمع شونده 32
2-3-2 روند طراحی سازههای باز شونده و جمع شونده 39
2-3-3 طرح المانهای کابل و میله 39
2-3-4 طرح المانهای قیچی سان 40
2-4 بهینه یابی سازه های بازشونده و جمع شونده 41
2-4-1 فرآیند طراحی بهینه 41
2-4-2 رابطه سازی مسائل بهینه یابی 41
2-4-3 رابطه سازی سازه فضا کار باز شونده و جمع شونده 42
2-4-4 متغیرهای از پیش تعیین شده 43
2-4-5 متغیرهای طراحی 43
2-4-6 تابع هدف 43
2-4-7 قیدهای طراحی 43
2-4-8 نمودار جریان بهینه یای وزن سازه تاشو 45
2-4-9 روشهای نو در بهینه سازی 45
2-4-9 روشهای نو در بهینه سازی 46
2-5 کارهای آتی و زمینههای تحقیق آینده 47
منابع 48
مقدمه
سازههای فضایی را میتوان به عنوان برگی بر گرفته از طبیعت دانست، فرمهای طبیعی از صلبیت فوق العاده ای برخوردارند واز حداقل مصالح برای حداکثر استفاده سازه ای بهره میگیرند ]1[ سبکی و نصب سریع، چند منظوره بودن، تنوع در شکل و طرح عدم نیاز به نیروی زیاد در مراحل نصب و برچیدن، سهولت حمل ونقل، قابلیت استفاده در ابعاد ودهانههای مختلف و ... از جمله عواملی میباشند که استفاده روز افزون این نوع سازهها را در دنیای علم و فن آوری توجیه پذیر میسازند ]2[ توسعه قابل توجه سازههای فضا کار مرهون تلاش و فعالیت مهندسان نخبه دنیا در اواخر قرن نوزدهم میباشد. ]3[
گر چه در ابتدا هدف از بکار گیری سازههای فضا کار بعنوان سازههایی موقت بود ولی در عمل از آنها به عنوان سازههایی دائمیاستفاده شد و به انواع مختلف و با مصالح متفاوت در کشورهای گوناگون طراحی و اجرا گردید.
احتیاج به سازههای متحرک که به طور ساده و سریع نصب گردد و قابل حمل و نصب مجدد در مکانهای مورد نیاز باشد باعث پیدایش سازههای فضا کار باز شونده و جمع شونده شد که با رشد روز افزون استفاده از این نوع سازهها بخصوص در کشورهای صنعتی توجه پژوهشگران و صنعت گران به این سازهها افزایش یافت. ]6[ در کشور ما هر سال زلزلههای مخرب و سیلهای وایرانگر عده ای از هموطنانمان را بی خانمان میکند، زلزله زدگان و سیل زدگان نیاز مبرم به سر پناه دارند در این میان استفاده از این سازهها میتواند کمک موثری در حفظ جان و مال این عزیزان داشته باشد، به غیر از این کاربردهای فراوان این نوع از سازههای فضایی تلاش روز افزون پژوهشگران و صنعت گران این مرز و بوم را میطلبد و امید آنست که آن چه در این سمینار ارائه میگردد، ذره ای هر چند کوچک در راه رشد و اعتلای کشور عزیزمان باشد.
1-2 تعریف سازههای فضایی باز شونده و جمع شونده
یک سازه باز و جمع شونده تشکیل شده است از قطعات پیش ساخته یا المانهایی که میتوانند باز و بسته شوند و در حالتهای از پیش تعیین شده قرار بگریند ضمن این که توانایی تحمل بار را نیز دارند. ]4[
1-3 موارد کاربرد سازههای فضایی باز شونده و جمع شونده
برای این که کاربردهای مختلف این نوع سازهها را بررسی کنیم ابتدا باید موارد نیاز و همچنین مزایای آنها در مقایسه با انواع سازهها مورد مطالعه قرار بگیرد و سپس کاربردهای مختلف آنها ذکر شود.
1-3-1 موارد نیاز به سازههای باز شونده و جمع شونده
سازههای باز شونده و جمع شونده زیر مجموعه ای از آن دسته از سازهها هستند که به سرعت و سهولت قابل نصب بوده و میتوان آنها را به راحتی برای استفاده مجدد جمع آوری کرد نیاز به چنین سازههایی از زمانهای قدیم وجود داشته است ]10[. یعنی از هنگامیکه قبایل چادر نشین برای یافتن مرتع و چراگاههای بهتر از جایی به جایی دیگر نقل مکان میکردند سازههای کوچک وسبک و متراکم شده ای مانند سیاه چادرها، خیمه سرخ پوستان و چادر کروی عشایر چنین نیازی را بر آورده میکردند، اکثر این سازهها با وصل کردن میلههای راست ساده در روی زمین به یکدیگر نصب شده و با پارچهها ی سخت پوشیده میشوند. باز کردن و نصب آنها برای ابعاد متوسط هر چند .وقت زیادی نمیگرفت اما به هر حال وقت گیر بود، مخصوصا در شرایط نامساعد آب وهوایی مشکل آفرین مینمود]12[
-1 مقدمه
سازههای فضایی را میتوان به عنوان برگی بر گرفته از طبیعت دانست، فرمهای طبیعی از صلبیت فوق العاده ای برخوردارند واز حداقل مصالح برای حداکثر استفاده سازه ای بهره میگیرند ]1[ سبکی و نصب سریع، چند منظوره بودن، تنوع در شکل و طرح عدم نیاز به نیروی زیاد در مراحل نصب و برچیدن، سهولت حمل ونقل، قابلیت استفاده در ابعاد ودهانههای مختلف و ... از جمله عواملی میباشند که استفاده روز افزون این نوع سازهها را در دنیای علم و فن آوری توجیه پذیر میسازند ]2[ توسعه قابل توجه سازههای فضا کار مرهون تلاش و فعالیت مهندسان نخبه دنیا در اواخر قرن نوزدهم میباشد. ]3[
گر چه در ابتدا هدف از بکار گیری سازههای فضا کار بعنوان سازههایی موقت بود ولی در عمل از آنها به عنوان سازههایی دائمیاستفاده شد و به انواع مختلف و با مصالح متفاوت در کشورهای گوناگون طراحی و اجرا گردید.
احتیاج به سازههای متحرک که به طور ساده و سریع نصب گردد و قابل حمل و نصب مجدد در مکانهای مورد نیاز باشد باعث پیدایش سازههای فضا کار باز شونده و جمع شونده شد که با رشد روز افزون استفاده از این نوع سازهها بخصوص در کشورهای صنعتی توجه پژوهشگران و صنعت گران به این سازهها افزایش یافت. ]6[ در کشور ما هر سال زلزلههای مخرب و سیلهای وایرانگر عده ای از هموطنانمان را بی خانمان میکند، زلزله زدگان و سیل زدگان نیاز مبرم به سر پناه دارند در این میان استفاده از این سازهها میتواند کمک موثری در حفظ جان و مال این عزیزان داشته باشد، به غیر از این کاربردهای فراوان این نوع از سازههای فضایی تلاش روز افزون پژوهشگران و صنعت گران این مرز و بوم را میطلبد و امید آنست که آن چه در این سمینار ارائه میگردد، ذره ای هر چند کوچک در راه رشد و اعتلای کشور عزیزمان باشد.
1-2 تعریف سازههای فضایی باز شونده و جمع شونده
یک سازه باز و جمع شونده تشکیل شده است از قطعات پیش ساخته یا المانهایی که میتوانند باز و بسته شوند و در حالتهای از پیش تعیین شده قرار بگریند ضمن این که توانایی تحمل بار را نیز دارند. ]4[
1-3 موارد کاربرد سازههای فضایی باز شونده و جمع شونده
برای این که کاربردهای مختلف این نوع سازهها را بررسی کنیم ابتدا باید موارد نیاز و همچنین مزایای آنها در مقایسه با انواع سازهها مورد مطالعه قرار بگیرد و سپس کاربردهای مختلف آنها ذکر شود.
1-3-1 موارد نیاز به سازههای باز شونده و جمع شونده
سازههای باز شونده و جمع شونده زیر مجموعه ای از آن دسته از سازهها هستند که به سرعت و سهولت قابل نصب بوده و میتوان آنها را به راحتی برای استفاده مجدد جمع آوری کرد نیاز به چنین سازههایی از زمانهای قدیم وجود داشته است ]10[. یعنی از هنگامیکه قبایل چادر نشین برای یافتن مرتع و چراگاههای بهتر از جایی به جایی دیگر نقل مکان میکردند سازههای کوچک وسبک و متراکم شده ای مانند سیاه چادرها، خیمه سرخ پوستان و چادر کروی عشایر چنین نیازی را بر آورده میکردند، اکثر این سازهها با وصل کردن میلههای راست ساده در روی زمین به یکدیگر نصب شده و با پارچهها ی سخت پوشیده میشوند. باز کردن و نصب آنها برای ابعاد متوسط هر چند .وقت زیادی نمیگرفت اما به هر حال وقت گیر بود، مخصوصا در شرایط نامساعد آب وهوایی مشکل آفرین مینمود]12[
تعداد صفحات : 96
فرمت فایل: word(قابل ویرایش)
فهرست مطالب:
چکیده
فصل اول: آشنایی کلی با سازههای پارچهای
بخش اول: مواد کامپوزیتی و خصوصیات آنها 1
1-1- تاریخچه 1
2-1- مقدمه 2
3-1- کامپوزیتها چه هستند؟ 5
4-1- صنعت کامپوزیتها 8
1-4-1- کامپوزیتهای مصرفی 8
2-4-1- کامپوزیتهای صنعتی 9
3-4-1- کامپوزیتهای پیشرفته 9
5-1- ساختارهای تشکیل دهنده مواد مرکب 10
6-1- چرا کامپوزیتها متفاوتند؟ 11
7-1- کامپوزیتها از نقطه نظر دیگر 13
8-1- طبقه بندی کامپوزیتها 14
1-8-1- کامپوزیتهای الیافی (رشتهای) 15
2-8-1- کامپوزیتهای لایهای 16
3-8-1- کامپوزیتهای ذرهای 17
4-8-1- کامپوزیتهای پولکی 17
5-8-1- کامپوزیتهای پرشده 17
9-1- مزایای هشتگانه کامپوزیتها (پلاستیکهای تقویت شده با الیاف FRP) 19
1-9-1- انعطاف پذیری در طراحی 19
2-9-1- پایداری ابعاد 19
3-9-1- ساخت قطعات به شکل یکپارچه 19
4-9-1- مقاومت بالا 20
5-9-1- سبکی وزن 20
6-9-1- هزینه تجهیزات متوسط 20
7-9-1- هزینه پرداختکاری پایین 20
8-9-1- مقاومت در برابر خوردگی بالا 20
بخش دوم: مروری بر تحقیقات انجام شده قبلی 21
10-1- شبیه سازی سه بعدی زیرلایههای کامپوزیت بافته شده برای صفحه مدارهای چند لایهای 21
11-1- شبیهسازی تصادفی شکل گیری کامپوزیتهای بافته شده 21
12-1- روش میکرو سطح/ ماکرو سطح و مولتی سطح برای آنالیز ورقههای کامپوزیت پارچههای بافته شده 22
1-12-1- روش میکروسطح / ماکروسطح و مولتی سطح 24
13-1- روندهای نمونه برداری برای کامپوزیتهای بافته شده هشت وجهی سهبعدی 26
1-13-1- فرایند تولید برای کامپوزیتهای بافته شده سه بعدی 28
14-1- تست فریم تصویری تقویتهای کامپوزیت بافته شده با یک ثبت واتنش میدان کامل 29
15-1- مدلهای میکرو مکانیکی برای رفتار خمش کامپوزیت بافته شده 30
بخش سوم: سازههای پارچهای 32
16-1- سازههای پارچهای 32
17-1- خصوصیات مواد نساجی 34
18-1- پارچههای مورد استفاده در سازههای پارچهای 35
19-1- انواع سازههای پارچهای 35
20-1- مزیتهای سازههای پارچهای 37
21-1- انتخاب سازههای پارچهای 37
22-1- کاربردهای امروزه 38
فصل دوم: مقایسه خصوصیات مکانیکی پارچه کامپوزیتی با پارچه پیراهنی
بخش اول: روش انجام آزمایشات 42
1-2- مقدمه 42
2-2- معرفی مواد مورد آزمایش 42
1-2-2- پارچه کامپوزیتی (سازه پارچهای) 42
1-1-2-2- خصوصیات پارچه کامپوزیتی 42
2-2-2- پارچه پیراهنی 43
1-2-2-2- خصوصیات پارچه پیراهنی 43
3-2- اندازهگیری ضخامت با دستگاه 44
1-3-2- اندازهگیری ضخامت پارچه کامپوزیتی 44
2-3-2- اندازهگیری ضخامت پارچه پیراهنی 45
4-2- تعریف خواص مکانیکی 46
1-4-2- خاصیت کشسانی و قانون هوک 46
5-2- خواص مکانیکی پارچه 47
1-5-2- استحکام 47
2-5-2- مقاومت خمشی 47
3-5-2- قابلیت ازدیاد طول 48
6-2- طول خمشی 48
1-6-2- سختی خمشی 51
2-6-2- مدول خمشی 51
7-2- استحکام پارچه 52
1-7-2- مقدمه 52
2-7-2- خصوصیات موثر بر خواص استحکامی کششی پارچه 52
3-7-2- اندازهگیری استحکام پارچه 55
4-7-2- اندازهگیری استحکام پارچه با باریکهای از پارچه 56
بخش دوم: نتایج بدست آمده از آزمایشات 58
8-2- محاسبه سختی خمشی 58
1-8-2- سختی خمشی پارچه کامپوزیتی در جهت تار 58
2-8-2- سختی خمشی پارچه کامپوزیتی در جهت مورب ס45 58
3-8-2- سختی خمشی پارچه پیراهنی در جهت تار 59
4-8-2- سختی خمشی پارچه پیراهنی در جهت پود 59
5-8-2- سختی خمشی پارچه پیراهنی در جهت مورب ס45 60
9-2- محاسبه استحکام 61
1-9-2- اندازهگیری استحکام پارچه کامپوزیتی در جهت تار 61
2-9-2- اندازهگیری استحکام پارچه کامپوزیتی در جهت مورب ס45 62
3-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت تار 63
4-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت پود 64
5-9-2- اندازهگیری استحکام پارچه پیراهنی در جهت مورب ס45 65
10-2- محاسبه سختی برشی 66
1-10-2- سختی برشی برای پارچه کامپوزیتی 66
2-10-2- سختی برشی برای پارچه پیراهنی 66
فصل سوم: نتیجهگیری
1-3- مقدمه 67
2-3- مقایسه خواص مکانیکی پارچه پیراهنی و پارچه کامپوزیتی 67
3-3- مقایسه خواص ظاهری پارچه پیراهنی و پارچه کامپوزیتی 68
4-3- نتایج 68
ضمائم 69
منابع و مآخذ
فهرست منابع فارسی 95
فهرست منابع غیرفارسی 96
چکیده
از دیر هنگام استفاده از سازه های پارچه ای در زندگی بشر نقش اساسی داشته است. انسانها از سازه های پارچه ای (چادر) به عنوان سرپناه برای محافظ از سرما و برف و باران استفاده می کردند. اما سازه های پارچه های امروزی تغییرات فراوانی کرده است. سازه های پارچه در این مقاله در مورد آن بررسی انجام گرفته است از پارچه های کامپوزیتی ساخته شده و بیشتر در سقف های استودیوم، نمایشگاه و سایه بان¬ها استفاده می گردد. در صنعت نساجی پارچه های کامپوزیتی از ترکیب پلی استر و رزین وینیل و همچنین الیاف شیشه و رزین تفلن تولید می شوند.
امروزه الیاف، انواع پارچهها و دیگر مواد نساجی در ساختمانسازی جایگاه مناسبی پیدا کردهاند. زیرا نسبت به آجر و ملات، سبکتر و قابل انعطاف بوده و در زمان بسیار کمی بنا میشوند. همچنین توانایی پوشاندن سطح وسیعی را با بکار بردن کمترین مواد را دارند. در این پروژه علاوه بر معرفی و ضرورت سازههای پارچهای، خواص مکانیکی پارچه کامپوزیتی مورد استفاده در آنها بررسی میشود که نمونه پارچه کامپوزیتی مورد استفاده در سازه های پارچه ای که در این پروژه مورد بررسی شده از شرکت اطلس تهیه شده و تنها یک نمونه انتخاب و خواص آن اندازه گیری شده است. برای درک بهتر این خواص، مقایسهای بین این پارچه و پارچه مورد استفاده در پوشاک انجام گرفته که نمونه (پارچه پیراهنی) از کارخانه یزدباف تهیه گردیده و تنها یک نمونه مورد آزمایش قرار گرفته است که شامل مقایسه استحکام، سختی خمشی، سختی برشی و خواص ظاهری (جنس، وزن، تراکم و...) میباشد. نتایج بررسیها نشان میدهد که پارچه کامپوزیتی 4 برابر پارچه پیراهنی استحکام داشته و سختی خمشی آن در جهت تار 60 برابر و در جهت مورب 32 برابر پارچه پیراهنی میباشد و علاوه بر این 5 برابر پارچه پیراهنی وزن دارد.
کلمات کلیدی: پارچه کامپوزیتی- خواص مکانیکی- سازه پارچهای