فرمت فایل : word(قابل ویرایش)
تعداد صفحات:24
فهرست مطالب:
خلاصه :
1- مقدمه
1-1- معرفی ها
2-1- نسبت دهی لیاقت و ماندگاری واگرایی
3-1- توضیح صورت مسئله
2- بهینه سازی چند هدفه
2-1- توضیح در مورد فرمولبندی مسئله
2-2- الگوریتم ژنتیکی قرار دادی ما تابع لیاقت وزنی استاتیک
3-2- الگوریتم ژنتیکی سازگاری یافته با تابع لیاقت وزنی قانونمند
3- نتایج و بحث
خلاصه :
این مقاله یک الگوریتم ژنتیکی سازگار (AGA) را همراه با تابع لیاقت دینامیکی، برای مسائل چند هدفه (MOPs) در محیط دینامیکی تشریح می کند. به منظور دیدن اجرای الگوریتم، این روش برای دو نوع از مسائل MOPs بکار گرفته شده است. اولا این روش برای پیدا کردن آرایش نیروهای نظامی برای شبیه سازی رزمی بکار گرفته شده است. این مقاله در مورد چهار تابع هدف بحث می کند که باید بهینه شوند و یک واسطه فازی را ارئه می دهد که طرح جامعی را از چهار تابع هدف می سازد. دومین واسطه فازی برای کنترل نرخ عملکردهای تقاطع (Crossover) و جهش (Mutation) بکار گرفته می شود که بر اساس خواص آماری لیاقت (Fitness) جامع می باشد.
علاوه بر مسئله آرایش نیروهای نظامی یک مثال ساده از بهینه سازی چند هدفه که توسط فرینا و همکارانش گشته نیز ارائه شده است و توسط این الگوریتم پیشنهادی حل شده است. نتایج بدست آمده در اینجا نشان می دهد که الگوریتم ژنتیکی افزایش یافته، نسبت به الگوریتم ژنتیکی معمولی، عملکرد بهتری در مورد همگرائی دارد.
کلمات کلیدی:
الگوریتم ژنتیکی سازگار یافته ، منطق فازی ، آرایش نیروهای نظامی ، شبیه سازی رزمی و بهینه سازی چند هدفه .
بدیهی است که حالتهای متعددی برای مسائل عملی بهینه سازی وجود دارد که در ابتدا، بهینه سازی چندین اندازه گیری اجرا (MOP) یا محک ، غیر قابل اجتناب است و این اندازه گیری ها ممکن است که با هم تداخل هم داشته باشند. مسائل مربوط به MOPsمی توانند استاتیکی یا دینامیکی باشند. مهمترین موضوع در حل این گونه از مسائل عبارت از مشخص کردن توابع هدف طراحی، برای اینکه خوبی (Goodness) یک حل مشخص بر آورد شود. در مسائل MOPs بجای یک حل بهینه ، یک مجموعه از حل های بهینه ( مجموعه بهینه پارتو )، بسته به وجود چند تابع هدف، رخ می دهد. بدون تنزل یکی از جوابها ، هیچ بهبودی برای هر یک از حلهای بهینه پارتو وجود ندارد. هیچ حل پارتو نمی تواند از حل دیگری بهتر باشد مگر اطلاعات بیشتری را در اختیار داشته باشیم . برای اینکه انتخاب نهایی بهتری داشته باشیم ، بهترین راه این است که تا جایی که ممکن است حلهای مختلف بهینه پارتو را بدست آوریم.
در بعضی از کاربردهای جهانی نظیر حمل ونقل باربا روباتها ، مشخص کردن مدل و طراحی کنترل کننده ها ، مسائل محیطی و نیازهای MOPs بصورت دینامیکی تغییر می کنند و برای اینگونه کاربردها ، بهینه سازی چند هدفه وابسته به زمان، نیاز است . در این گونه از مسائل ، توابع هدف مربوطه و قیود و پارامترهای مسئله یا همه اینها، ممکن است لحظه به لحظه تغییر کنند. این گونه از مسائل MOPs دینامیکی نامیده می شوند. در این حالتها ، بهینه سازی تابع باید در بازه های زمانی خیلی محدود شده انجام پذیرد.