• مقاله با عنوان: بررسی آزمایشگاهی تاثیر پله ها بر دبی عبوری از سرریز نیلوفری و میزان افت انرژی در مدخل خروجی آن در حالت کنترل تاج
• نویسندگان: محسن صفریان ، ایرج سعیدپناه ، محمدهادی توانا
• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94
• فرمت فایل: PDF و شامل 8 صفحه می باشد.
چکیــــده:
اکثر مخازن ذخیره ی آب در نتیجه ی احداث یک سد بوجود آمده اند. برای عبور آبهای اضافی و سیلابها از سراب به پایاب سدها از سازهای به نام سرریز استفاده میشود. سرریزها یکی از سازههای مهم سدها میباشند. در بسیاری مواقع قرارگیری سرریز در امتداد یا عمود بر بدنه سد امکان پذیر نمیباشد و طراحان مجبور میشوند از سرریزی استفاده کنند که در مخزن قرار میگیرد. در این تحقیق با پلکانی نمودن سطح داخلی سرریز نیلوفری و ساخت سرریزهایی با قطرهای مختلف به بررسی آزمایشگاهی رفتار سرریز بر جریان عبوری از روی آن (میزان دبی عبوری و مقادیر تغییرات انرژی در مدخل خروجی) پرداخته شد. نتایجی که میتوان از انجام این تحقیق و تجزیه و تحلیل دادههای آن به دست آورد به این ترتیب بوده که پلکانی کردن رویهی داخلی سرریز باعث افزایش ضریب تخلیه سرریز در حالت کنترل تاج شد و تغییرات افت انرژی در مدخل خروجی در این حالت با افزایش همراه است.
________________________________
** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **
** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **
** درخواست مقالات کنفرانسها و همایشها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **
• مقاله با عنوان: تحلیل هیدرودینامیکی جریان آشفته در جریان عبوری از جام پرتابی مثلثی
• نویسندگان: سید حامی حجتی ، سعید محمدیون ، سید علی اکبر صالحی نیشابوری
• محل انتشار: هشتمین کنگره ملی مهندسی عمران - دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93
• محور: سازه های هیدرولیکی
• فرمت فایل: PDF و شامل 8 صفحه می باشد.
چکیــــده:
مستهلک کنندههای پرش اسکی یکی از سیستمهای مستهلک کننده انرژی است که در پایانه سرریزها استفاده میشوند. آشفتگی یکی از محدود کننده ترین عوامل در شبیه سازی عددی سیالات میباشد به طوریکه با ثابت فرض کردن ابعاد شبکه و روش گسسته سازی، فاکتور موثر در زمان محاسبات، مدل آشفتگی خواهد بود. هدف از انجام این پژوهش، استفاده از روش عددی در تحلیل جریان دو فازی و آشفته عبوری از جام پرتابی مثلثی به منظور مقایسه آن با نتایج آزمایشگاهی و بررسی عملکرد مدلهای مختلف آشفتگی برای این جریانات میباشد. به منظور دست یابی به اهداف مذکور با استفاده از نرم افزار فلوئنت، معادلات رینولدز درحالت دوبعدی وگذرا برای جریان عبوری از جام پرتابی مثلثی حل شدهاند. برای مدل کردن جریان آشفته از مدلهای مختلف آشفتگی k-ε و RSM و به منظور شبیه سازی جریان دوفازی از روش حجم سیال استفاده شده است. نتایج حاکی از آن است که مدل RSM نزدیکترین جواب را به مدل آزمایشگاهی پیش بینی میکند.
________________________________
** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **
** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **
** درخواست مقالات کنفرانسها و همایشها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **
توضیحات:
در پژوهشهای مربوط به خواص مواد نانوساختاری میکروسکوپ الکترونی یکی از مهمترین و پرکاربردترین دستگاههایی است که مورد استفاده قرار میگیرد. در اغلب مطالعات انجامشده روی خواص مواد نانوساختاری برای تعیین اندازه و شکل آنها از میکروسکوپ الکترونی عبوری(Transmission Electron Microscopy) که به اختصاربه آن TEM می گویند،استفاده شده است. این روش اندازه و شکل ذرات را با دقت حدود چند دهم نانومتر به دست میدهد که به نوع ماده و دستگاه مورد استفاده بستگی دارد. امروزه در بررسی خواص مواد نانوساختاری از میکروسکوپ الکترونی عبوری با وضوح بالا (High-Resolution) استفاده میشود. علاوه بر تعیین شکل و اندازه ذرات به وسیله میکروسکوپ الکترونی عبوری با استفاده از پراش الکترون و سایر سازوکارهای موجود در برخورد الکترون با ماده برخی ویژگیهای دیگر مواد نانوساختاری مانند ساختار بلوری و ترکیب شیمیای را می توان بدست آورد.
فهرست مطالب:
تفنگ الکترونی
اصول کار میکروسکوپ الکترونی عبوری
آمادهسازی نمونه
مزایاومعایب میکروسکوپ الکترونی عبوری
کاربرد های میکروسکوپ الکترونی عبوری
این مقاله در قالب فایل Word و در 7 صفحه ارائه شده است.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:54
مقدمه:
پیدایش میکروسکوپهای الکترونی عبوری (TEM) به صورت تجاری به سال 1940 بازمیگردد، اما از سال 1950 به بعد بود که کاربردهای گستردهای در بررسی فلزات پیدا نمودند. مهمترین عامل کاهنده در کاربرد TEM مطالعه فلزات در آن سالها به مشکلات تهیه نمونه مربوط میشد. اما امروزه با توجه به روشهای گوناگون تهیه نمونه فلزات، این نوع میکروسکوپها جایگاه خاصی را در میان متخصصین مواد و متالوژی برای خود ایجاد نموده و باعث بروز نقطه عطف بسیاری از پژوهشها و تحقیقات گشته، به آنها سرعت فراوانی دادهاند. امروزه میکروسکوپ الکترونی عبوری امکان مطالعه موارد متنوعی در مواد گوناگون نظیر ویژگیهای ریزساختاری مواد، صفحات و جهات بلوری، نابجاییها، دوقلوییها، عیوب انباشتگی، رسوبها، آخالها، مکانیزمهای جوانهزنی، رشدو انجماد، انواع فازها و تحولات فازی، بازیابی و تبلور مجدد، خستگی، شکست، خوردگی و … را فراهم آوردهاست. در کل قابلیتهای امروزی TEM را میتوان مرهون چهار پیشرفت زیر دانست که دوتای آنها در ساختمان دستگاه و دوتای دیگر در نحوه تهیه نمونه حاصل شدهاند:
- استفاده از چند عدسی جمعکننده
- پراش الکترونی سطح انتخابی
- نازککردن نمونهها برای تهیه نمونههای شفاف در برابر الکترونها
- تهیه نمونه به روش ماسکبرداری
در بررسی مواد، میکروسکوپ الکترونی عبوری دارای سه مزیت اصلی ذیل است:
1- قابلیت دسترسی به بزرگنماییهای بسیار بالا (حتی بیش از یک میلیون برابر) به دلیل بهکارگیری انرژی بالی الکترونها و در نتیجه طول موج کمتر پرتوها.
2- قابلیت مشاهد ساختمان داخلی فلزات و آلیاژها به دلیل قدرت عبور الکترونهای پر انرژی از نمونه نازک.
3- قابلیت بررسی سطوح انتخابی نمونه به دلیل وجود حالت بررسی با پراش الکترونها.
مقایسه TEM با OM
به طوور کلی میکروسکوپ الکترونی عبوری (TEM) مشابه میکروسکوپ نوری (OM) است با این تفاوت که در آن به جای نور با طول موج حدود Å 5000 از الکترونهایی با طول موج حدود Å 05/0 برای روشن کردن نمونه استفاده میشود. این امر به میکروسکوپ امکان میدهد که از نظر تئوری دارای قدرت تفکیک 105 با بهتر از میکروسکوپ نوری گردد. اما در عمل به علت محدودیتهای مربوط به طراحی عدسیها و روشهای نمونهگیری، قدرت تفکیک تنها به Å 2 میرسد که به نسبتی در حدود 1000 مرتبه از قدرت تفکیک میکروسکوپ نوری بهتر است. در کارهای روزمره قدرت تفکیک TEM حدود Å 10 است. قدرت تفکیک زیاد میکروسکوپ عبوری در مقایسه با میکروسکوپ نوردی امکان کاربرد آن برای بررسی رزساختار فلزات را فراهم میسازد. زیرا امکان مشاهدة اجزای نمونه تا ابعاد اتمی را میسر مینماید.
این قدرت تفکیک مسلماً بدون زحمت و صرف وقت قابل دستیابی نیست، اما بههر حال در دسترس متالورژیستها قرار دارد. بزرگنمایی زیاد نیز برای استفاده کامل از قدرت تفکیک میکروسکوپ ضروری است. با وجود این حتی با بزرگنماییهای حدود 1000 نیز نتایج TEM به مراتب روشنتر از نتایج میکروسکوپ نوری است. پرتوی روشنکننده در TEM الکترون و در OM، امواج نوری مرکب است. یک عدسی الکترونی ساده قادر است بزرگنمایی را حدود 50 تا 200 برابر افزایش دهد.
اجزای میکروسکوپ الکترونی عبوری TEM Parts
در شکل اجزای اصلی یک میکروسکوپ الکترونی عبوری نشان داده شدهاست. این طرح بنا به مورد کاربرد، به منظور بهکارگیری انواع اثرات متقابل الکترون و نمونه اصلاح یا ترمیمشده و به تجهیزات کمکی و ویژه مجهز میگردد. همانطور که مشاهده میشود از اجزای اصلی یک دستگاه TEM، میتوان تفنگ الکترونی، عدسی جمعکننده، ردیفکننده پرتو، نگهدارنده نمونه، عدسی شیئی، عدسی تصویری، سیستمهای ازبین برنده آلودگی، پرده فلورسنت و دوربین عکاسی را برشمرد. کل سیستم در خلاء حداقل 4-10 تور قرار دارد تا مسیر آزاد طولانی برای الکترونها موجود باشد. در شکل (3) نیز مسیر حرکت پرتوهای الکترونی نشان داده شدهاست.
تفنگ الکترونی Electron Gun
سیستم روشنکننده در TEM شامل یک تفنگ الکترونی است که از یک رشته (فیلامنت) گرم (عمدتاً از جنس تنگستن) متصل به پتاسیم الکتریکی بالا که با یک محفظه قطبی به نام استوانه و هنلت (Wehnelt ) احاطه میشود، تشکیل شدهاست. پایینتر از این قسمت یک آند متصل به زمین قرار گرفته که در وسط آن سوراخی برای عبور الکترونها به طرف پایین ستون تعبیه شدهاست. ولتاژهای شتابدهنده بهکار رفته در دو گروه عمده قرار میگیرند. میکروسکوپهای معمولی از ولتاژهای 20 تا 120 کیلووات استفاده مینمایند. تعداد ولتاژ انتخابشده در این فاصله معین بوده و معمولاً با گامهای 20 کیلوولتی است. در گروه دیگری از میکروسکوپها (مرسوم به میکروسکوپهای ولتاژ بالا) از ولتاژهای 200 تا 1000 کیلوولت نیز استفاده میشود.
شایان ذکر است که تمام انواع ذکرشده بهصورت تجاری در دسترس بوده و قیمت متناسب با ولتاژ شتابدهنده تعیین میگردد. جریان کلی تفنگ الکترونی در حدود A m 100 است. اما تنها کسری آن موجب تشکیل تصویر نهایی شده و بقیه آن توسط دریچههای گوناگون ستون میکروسکوپ جذب میگردد. هنگامیکه به بزرگنمایی بالاتری نیاز است، از تفنگ الکترونی قویتری استفاده میشود. عدسی Lens در میکروسکوپهای الکترونی از عدسیهای خاصی استفاده میشود. عمده این عدسیها در دو گروه عدسیهای مغناطیسی (سیمپیچ مغناطیسی با هسته آهنی) و عدسیهای الکترواستاتیکی طبقهبندی شدهاند. عدسیهای نوع دوم دارای مزیت یکنواختی زمینه هستند ولی با این وجود بیشتر از اعوجاج حوزه الکتریکی در اثر آلودگی تأثیر میپذیرند. به همین جهت تاکنون نتوانستهاند جای عدسیهای مغناطیسی را بگیرند.
بهخاطر محدودیتهای موجود در طراحی، عدسیهای میکروسکوپ TEM روزنههایی به مراتب کوچکتر از روزنههای عدسیهای شیشهای میکروسکوپ را تشکیل میدهد. یک عدسی شیئی مغناطیسی نمونه با فاصله کانونی mm5/2 (m 2500) و روزنه شیئی m 50 دارای نیمزاویة پذیرش(Acceptance Half-Angle) در حدود 3- 10×5 رادیان است، در حالیکه نیمزاویة پذیرش برای یک عدسی شیئی نوری خوب حدود رادیان (°60) میباشد. بازده کم عدسی الکترونی تا حدی توسط عمق نفوذ بیشتر حوزه آن و عمق تمرکز بالا جبران میشود.
اکثر میکروسکوپهای TEM پیشرفته دارای 4 تا 6 عدسی میباشند. عدسی جمعکننده پرتوی الکترونی را روی نمونه متمرکز مینماید. عدسی شیئی اولین تصویر بزرگشده را ایجاد میکند. این تصویر مجدداً توسط عدسی تصویری بزرگشده و تصویر نهایی را که معمولاً قابل رویت است روی صفحة فلورسنت تشکیل میدهد. برای ثبت تصویر، صفحة فلورسنت برداشته شده و بهجای آن یک صفحة فتوگرافیک یا فیلم قرار دادهمیشود. تمام آنچه که یک میکروسکوپ نوری قادر به تفکیک آن میباشد با بزرگنمایی 500 قابل مشاهده است. بزرگنمایی بالاتر مشاهدة جزییات را آسانتر میکند اما قدرت تفکیک را افزایش نمیدهد. برای استفاده کامل از قدرت تفکیک میکروسکوپ الکترونی، بزرگنمایی تا 200000 یا بیشتر مورد نیاز است. این بزرگنماییها با استفاده از دو عدسی بدست نمیآیند. بنابراین از بزرگنمایی سه مرحلهای استفاده میشود. برای اینکار یک عدسی میانی در بین عدسیهای شیئی و تصویری قرار میدهند.
برای عدسی شیئی معمولاً از یک بزرگنمایی ثابت استفاده میشود که مقدار آن متناسب با موقعیت نمونه و فاصله کانونی است. عدسی تصویری نیز دارای بزرگنماییهای مشخصی میباشد. بزرگنماییهای بین این حدود را میتوان با تنظیم شدت جریان در عدسی میانی بدست آورد. مقدار لازم بزرگنمایی بسته به نوع نمونه است، اما مرسوم آن است که برای تسهیل مقایسه تصاویر در بررسی یک نمونه از تعداد معینی بزرگنمایی ثابت استفاده گردد. بهعنوان مثال در ماسکبرداری صورتگرفته از نمونههای فولادی، بزرگنماییهای ثابت 2000، 5000، 10000 و 25000 را بهکار میبرند. همچنین صفحات فتوگرافیک را میتوان تا 5 بار بدون هیچگونه اشکالی بزرگ کرد.