گزارش کاراموزی کارگاه ذوب فلزات مدرن
در زیر به مختصری ازعناوین و چکیده آنچه شما در این فایل دریافت می کنید اشاره شده است :
فهرست مطالب
عنوان صفحه
مقدمه 1
انواع روشهای قالبگیری در کارگاه 2
مدل سازی 5
انواع و اقسام غلتکها و رینگها 8
کارگاههای خاص 10
تجهیزات کارگاه ریخته گری 12
مجتمع آزمایشگاهی و آزمایشگاههای مواد 18
قالبگیری زمینی 24
قالبگیری CO2 26
ماهیچه سازی 27
برخی از مشخصه های سنماتیت 33
عوامل موثر در انتخاب کوره 35
آزمایشهای آزمایشگاهی چدن 36
تئوری ریخته گری فولادها 42
فولادهای کم کربن 44
کارگاه ذوب فلزات مدرن
مقدمه
شرکت قالب سازی فیکس در سال 1375 تاسیس گردیده و این شرکت در جاده قدیم کرج بلوار فتح - جوشن 3 کوچه چهار شرقی قرار دارد .
کارگاه 3500 متر می باشد که شامل یک سوله بزرگ و در کنار آن یک ساختمان دو طبقه که شامل دفتر کارگاه محل قرار گرفتن دستگاهها می باشد . در پشت سوله یک محوطه می باشد که در آن انواع کوره ها از جمله کوره زمینی - دوار - کوپل قرار دارد . بیشتر تولیدات این کارگاه شامل سفارشات چدن - چدن نشکن و آلومینیوم می باشد . البته مس ،روی و برنج و برنز و غیره نیز هست ولی کمتر از این سفارشات را دارند . عمده سفارشات تولیدات این کارگاه شامل کارتر روغن کمپرسورهای 250 لیتری ، لوازم دستگاه آپارت گیری و پنچر گیری و سیلندر ماشین های سنگین و غیره که اینها برای ریخته گری آلومینیوم و همچنین چدن ریزی برای انواع و اقسام قطعات ماشین آلات سنگین می باشند .
روش کار دراین کارگاه به صورت قالبگیری سنتی می باشد و لوازمی که برای قالبگیری سنتی استفاده می شوند شامل :
1- جعبه ماهیچه
2- درجه و زیر درجه
3- قاشک
4- سیخ هوا
5- کوبه
6- خط کش فلزی یا کاردک
7- الک
8- پودر تالک
9- ماسه سیلیسی و غیره
انواع روشهای قالبگیری در کارگاه :
1- روش CO2 برای ماهیچه سازی : 1- چسب سیلیکات سدیم 2- گاز CO2 و غیره
2- روش قالبگیری گچی (دوغابی ) : بعد از ریخته گری قطعات آنها را با ساتفاده از عملیات داخل کارگاه آماده فروش می رسانند .(1- کندن راهگاه و سیخ هوا 2- سوراخ کردن محل هایی که باید سوراخ شوند 3- پرداخت کاری بر روی قطع 4- رنگ کردن بعضی از قطعات (مخصوصاً قطعات آپارات ) 5- بسته بندی کردن و غیره )
نکته : فایلی که دریافت میکنید جدیدترین و کاملترین نسخه از گزارش کارآموزی می باشد.
این فایل کاملا اصلاح شده و شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد و با فرمت ( word ) در اختیار شما قرار می گیرد.
(فایل قابل ویرایش است )
تعداد صفحات : 55
گزارش کارآموزی ذوب فلزات مدرن
در زیر به مختصری ازعناوین و چکیده آنچه شما در این فایل دریافت می کنید اشاره شده است :
فهرست مطالب
عنوان
مقدمه
انواع روشهای قالبگیری در کارگاه
مدل سازی
انواع و اقسام غلتکها و رینگها
کارگاههای خاص
تجهیزات کارگاه ریخته گری
مجتمع آزمایشگاهی و آزمایشگاههای مواد
قالبگیری زمینی
قالبگیری CO2
ماهیچه سازی
برخی از مشخصه های سنماتیت
عوامل موثر در انتخاب کوره
آزمایشهای آزمایشگاهی چدن
تئوری ریخته گری فولادها
فولادهای کم کربن
مقدمه
کارگاه ذوب فلزات مدرن در سال1342 تاسیس گردیده این کارگاه واقع در نزدیکی ایستگاه وردآورد جاده مخصوص کرج می باشد .
کارگاه 5 هکتار می باشد که شامل یک سوله بزرگ و در کنار آن یک ساختمان دو طبقه که شامل دفتر کارگاه محل قرار گرفتن دستگاهها می باشد . در پشت سوله یک محوطه می باشد که در آن انواع کوره ها از جمله کوره زمینی - دوار - کوپل قرار دارد . بیشتر تولیدات این کارگاه شامل سفارشات چدن - چدن نشکن و آلومینیوم می باشد . البته مس ،روی و برنج و برنز و غیره نیز هست ولی کمتر از این سفارشات را دارند . عمده سفارشات تولیدات این کارگاه شامل کارتر روغن کمپرسورهای 250 لیتری ، لوازم دستگاه آپارت گیری و پنچر گیری و سیلندر ماشین های سنگین و غیره که اینها برای ریخته گری آلومینیوم و همچنین چدن ریزی برای انواع و اقسام قطعات ماشین آلات سنگین می باشند .
روش کار دراین کارگاه به صورت قالبگیری سنتی می باشد و لوازمی که برای قالبگیری سنتی استفاده می شوند شامل :
1- جعبه ماهیچه
2- درجه و زیر درجه
3- قاشک
4- سیخ هوا
5- کوبه
6- خط کش فلزی یا کاردک
7- الک
8- پودر تالک
9- ماسه سیلیسی و غیره
انواع روشهای قالبگیری در کارگاه :
1- روش CO2 برای ماهیچه سازی : 1- چسب سیلیکات سدیم 2- گاز CO2 و غیره
2- روش قالبگیری گچی (دوغابی ) : بعد از ریخته گری قطعات آنها را با ساتفاده از عملیات داخل کارگاه آماده فروش می رسانند .(1- کندن راهگاه و سیخ هوا 2- سوراخ کردن محل هایی که باید سوراخ شوند 3- پرداخت کاری بر روی قطع 4- رنگ کردن بعضی از قطعات (مخصوصاً قطعات آپارات ) 5- بسته بندی کردن و غیره )
لوازم و وسایل برقی که در کارگاه موجود می باشد :
1- مخلوط کن که برای مخلوطکردن ماسه و چسب و آب و غیره انجام می گیرد .
2- دستگاه آسیاب که برای جدا سازی ناخالصی ها از ماسه انجام می گیرد .
3- دستگاه برش 4- کمپرسور هوا 5- دستگاه تراش کاری 6- دریل 7- دستگاه جوشکاری (ترانسفورماتور )
فایلی که دریافت میکنید جدیدترین و کاملترین نسخه موجود از گزارش کارآموزی می باشد.
این فایل شامل : صفحه نخست ، فهرست مطالب و متن اصلی می باشد که با فرمت ( word ) در اختیار شما قرار می گیرد.
(فایل قابل ویرایش است )
تعداد صفحات : 40
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:158
فهرست مطالب:
چکیده 4
فصل اول:خواص و کاربرد فلزات نقره،سرب و روی 6
مقدمه 7
کاهش سمیت 8
1-2-اندازهگیری فلزات سنگین 10
1-3-روشهای حذف فلزات سنگین از آبها و فاضلاب 11
1-3-1-روشهای شیمیایی حذف فلزات سنگین 11
1-3-2-روشهای فیزیکی حذف فلزات سنگین 12
1-3-3-روشهای بیولوژیکی حذف فلزات سنگین 12
1-4-نقره 13
1-4-1-معرفی 13
1-4-2-تاریخچه 15
1-4-3-منابع 16
1-4-4-خواص فیزیکی و شیمیایی عنصر نقره 18
26/1Å : شعاع یونی 19
الکترونگاتیوی:93/1 19
حالت اکسیداسیون: 1 19
3/11Kj/molگرمای فروپاشی : 19
58/250Kj/mol :گرمای تبخیر 19
0000000159/0Ohm. mمقاومت الکتریکی : 19
شکل الکترونی: s14d105 19
1-4-5-ترکیبات نقره 21
1-4-6-کمپلکسهای نقره 22
1-4-7-کاربردها 23
1-4-8-تاثیرات نقره بر محیط زیست و سلامتی انسان 25
1-4-9-ایزوتوپ 27
نیمه عمر ایزوتوپها به صورت زیر میباشد: 27
1-5-سرب 30
1-5-1-معرفی 30
1-5-2-تاریخچـــــــه 31
1-5-3-منابع 32
1-5-4-خواص فیزیکی و شیمیایی عنصر سرب 34
نام: Lead 34
علامت اختصاری: Pb 34
شماره: 82 34
گروه شیمیایی: فلز ضعیف 34
گروه: 6 34
تناوب: IVA 34
بلوک: بلوک p 34
جرمحجمی: kg/m3 11340 34
سختی: 5/1 موهس 34
رنگ: سفید متمایل به آبی 34
1-5-5-گونههای آلاینده سرب 36
1-5-5-2- Pb4+ 37
1-5-6-ترکیبات آلی سرب 37
میشود. 38
1-5-7-کاربردها 38
1-5-11-تأثیرات سرب روی انسان 44
1-5-14-ایزوتوپهــــــــــــا 46
1-6-1-معرفی 48
1-6-2-تاریخچه 48
1-6-3-منابع 50
1-6-4-خصوصیات فیزیکی و شیمیایی روی 51
عدداتمی: 30 51
جرماتمی: 409/65 51
نقطهذوب: °C 73/419 51
نقطهجوش: °C 907 51
شعاعاتمی: Å 53/1 51
ظرفیت: 2 51
رنگ: سفید مایل به آبی 51
حالت استاندارد: جامد 51
نام گروه: 12 51
انرژی یونیزاسیون: Kj/mol 394/9 51
شکل الکترونی: 1s22s2p63s23 p63d 104s2 51
شعاعیونی: Å 74/0 51
الکترونگاتیوی: 65/1 51
حالت اکسیداسیون:2 51
دانسیته: 13/7 51
گرمای فروپاشی: Kj/mol 322/7 51
گرمای تبخیر: Kj/mol 3/115 52
مقاومت الکتریکی: Ohm m 00000005964/0 52
گرمای ویژه:J/g oK 39/0 52
دوره تناوبی: 4 52
شماره سطح انرژی: 4 52
اولین انرژی: 2 52
دومین انرژی: 8 52
سومین انرژی: 18 52
چهارمین انرژی: 2 52
1-6-5-ترکیبات 53
1-6-6-کاربردها 55
1-6-7- اثرات روی بر روی سلامتی انسان و محیط زیست 58
1-6-8-ایزوتوپها 59
فصل دوم:مزوپورهاوکاربردهای آنها 61
2-1-نانوتکنولوژی و نانومواد 61
2-2-ترکیبات نانومتخلخل 67
2-4-تاریخچه 74
2-5-ترکیبات نانومتخلخل مزوپوری 79
2-6-ترکیبات مزوپوری SBA-15 80
2-6-1-ساختار حفره SBA-15 81
2-7-سیستمهای ناهمگن و بسترها 81
2-8-نانودندریمرها 82
2-8-1-ساختمان و نحوه سنتز نانودندریمرها 83
2-8-2-دندریمر پلیآمید و آمین PAMAM 84
2-8-3-سمیت و زیستسازگاری دندریمرها 85
2-9-سنتز و مکانیسم تشکیل مزوپورها 85
2-9-1-مکانیسم کلی 86
2-9-2-استفاده از قالب کوپلیمرهای غیر یونی در تهیه مواد مزوپور 87
2-9-3-تثبیت کمپلکسهای فلزات واسطه درون مزوپورها 94
2-9-4-مکانیزم قالبگیری کریستال مایع(LCT) یا تجمع میلههای سیلیکاتی 96
2-9-5-مکانیسم چروک خوردن لایه سیلیکاتی 97
2-9-6-مکانیسم جفت شدن دانسیته بار 98
2-9-8-مکانیسم بلور مایع سیلیکاتروپیک(SLC) 100
2-9-9-مسیر سنتز و مورفولوژی ذرات SBA-15 102
2-10-کاربردهای مزوپورها 104
2-10-1-نقش کاتالیزوری 104
2-10-2-کشتی در بطری 104
2-10-3-جذب و جداسازی 105
2-11-کلیات جذباتمی 106
2-11-1-اصول 108
2-11-2-تجهیزات و دستگاهها در جذباتمی شعله 109
2-11-3-منبع تابش 111
2-11-4-اتمکنندهها در جذباتمی 112
2-11-5-مراحل و فرایندهای تشکیل اتم در شعله 114
2-11-6-تکفام سازها یاانتخابگرهای طولموج (MMED) 117
2-11-7-آشکارسازها 119
2-11-8-مزاحمتها در AAS 122
فصل سوم:بخش تجربی 126
3-1-مقدمه 127
3-2-مواد و دستگاههای مورد نیاز 127
3-2-1-تهیه محلولها و استانداردها 127
3-3-بررسی میزان جذب فلزات سنگین مختلف توسط جاذب 128
3-4-استخراج و بازیابی نمونه 129
3-5-بررسی پارامترهای موثر بر استخراج و بازیابی 129
3-6-بررسی اثر مقدار جاذب 130
3-7-بررسی زمان استخراج 132
3-9-بررسی مقدار و نوع محلول بازیابی کننده 136
3-10-تعیین ظرفیت جاذب برای جذب Pb2+ وZn2+ وAg+ 136
3-11-کاربرد جاذب برای پیش تغلیظ 137
3-12-گستره خطی نمودار کالیبراسیون 137
3-13-فاکتور تغلیظ 138
3-14-حد تشخیص (LOD) 139
3-15-بررسی دقت روش 142
3-16-بررسی مزاحمتها 143
3-17-حذف Pb2+ و Zn2+ و Ag+ در نمونههای پساب 144
فصل چهارم:بحث و نتیجهگیری 146
فهرست منابع 150
چکیده
با گسترش صنعت و پیشرفت صنایع، خطر آلودگی فلزات سنگین در طبیعت، روز به روز در حال افزایش است. از آن جهت که امروزه پاکسازی و تصفیه فاضلابها و آبهای طبیعی از فلزات سنگین سمی و استفاده مجدد از پسابها برای مصارف صنعتی و کشاورزی مورد توجه فراوان قرار گرفته است و به لحاظ آنکه روشهای معمول حذف فلزات سنگین نظیر تهنشینی، الکترولیز، جذب سطحی توسط کربن فعال، فرایند تبخیر و بستر سیال ماسهای کارایی لازم را نداشته و هزینه بالایی دارد، استفاده از مواد و روشهای ارزانقیمت و پربازده جزء اولویتهای واحدهای صنعتی بشمار میآید. یکی از روشهایی که امروزه بکار میرود تبادل یونی است. در تبادل یونی، یک ماده جامد طبیعی یا سنتز شده که توانایی ویژهای در تبادل کاتیونهای خود با فلزات دیگر از جمله عناصر سنگین دارد مورد استفاده قرار میگیرد. امروزه بدین منظور از زئولیتها که دارای حجم حفره کمتر و بازدهی کمتری میباشند، استفاده میشود. تحقیقات اخیر نشان میدهد که موادی مشابه با نام مزوپور با حجم حفره بزرگتر و راندمان بالاتر میتواند جایگزین مناسبی برای زئولیتها باشد.
مزوپور عاملدار شدهSBA-15 یک ماده منظم است که دارای آرایش کانالهای ششوجهی دو بعدی با قاعده، سطح ویژه زیاد، سایز حفره یکسان (قطر 7 تا 10 نانومتر) و سطح قابل کنترل میباشد. در این تحقیق، توانایی SBA-15 عاملدارشده با گروههای دندریمری پلیآمید و آمینی G1 به عنوان یک فاز جامد استخراجکننده برای حذف یونهای Pb2+ و Zn2+ از آب و پساب بررسی شد. از اسپکتروفتومتری جذباتمی شعلهای برای تعین غلظت یونها در محلول زیر صافی و محلول بازیابی استفاده شد. اثر چندین متغیر همچون مقدار جاذب، زمان واکنش، pH و اثر یونهای مزاحم در استخراج و بازیابی یونهای مذکور بررسی شد. در ادامه بر روی پارامترهای موثر بر نحوه عملکرد جاذب SBA-15 همچون فاکتور تغلیظ، ظرفیت جاذب، حد تشخیص و دقت روش، منحنی کالیبراسیون بررسیهایی صورت گرفت و در پایان نیز تمامی نتایج حاصله از آزمایشات بر روی یک نمونه حقیقی اعمال و نتایج قابل قبولی بدست آمد.
فصل اول
خواص و کاربرد فلزات
نقره،سرب و روی
1-1- مقدمه
حضور مقادیر هر چند ناچیز فلزات سنگین در آب از قبیل نیکل، مس، سرب، کادمیوم باعث بروز اثرات زیستمحیطی فراوانی خواهد شد که پیشگیری از آنها امری کاملاً بدیهی مینماید. فلزات سنگین که با توجه به توسعه شهرنشینی و صنایع و افزایش میزان فاضلاب و پساب، تولید گردیده است، عمدتاً از طریق دفع نادرست و غیربهداشتی فاضلاب شهری و پساب صنعتی وارد محیط زیست میگردد. وجود فلزات سنگین مانند سرب، جیوه، روی، نیکل، کرم، کادمیوم و غیره در غلظت بیش از استاندارد در آب شرب باعث عوارض مختلف نظیر مسمومیت، حساسیت شدید، ضایعات کروموزومی، عقب افتادگی ذهنی، فراموشی، پارکینسن، سنگکلیه، نرمی استخوان و انواع سرطان از جمله سرطان پروستات میگردد. یکی از کارشناسان محیط زیست، آلودگی محیط خصوصاً آب با فلزات سنگین را به عنوان بزرگترین گناهی که بشر در طبیعت انجام میدهد ارزیابی نموده است(12).
در کتب و مراجع گوناگون، تعاریف و تفسیرهای مختلفی از فلزات سنگین بعمل آمده است. علت اطلاق لفظ سنگین، وزنمخصوص بالاتر از 6 گرم بر سانتیمترمکعب میباشد که این فلزات دارا هستند. این فلزات دارای نقاط ذوب و جوش بسیار متفاوت میباشند بطوریکه در این گروه جیوه (Hg) پایینترین نقطهجوش یعنی 78/38- درجه سانتیگراد و مولیبدن (Mo) بالاترین نقطهجوش معادل 4612 درجه سانتیگراد را دارا میباشد. اکسید فلزات سنگین، در جدول تناوبی، هر چه به طرف گازهای نادر پیش برویم، در طبیعت پایدارتر است. حضور برخی از این عناصر از نظر تغذیه حائز اهمیت میباشد در حالیکه در شرایط مشابه حضور برخی از آنها در بافت زنده مضر است. نیاز پستانداران به روی و مس به مراتب بیشتر از ید و سلنیوم میباشد. فلزات سنگین نظیر آهن، روی و مس برای تعداد زیادی از آنزیمهای فلزی در حکم یک کانون فعال هستند. با وجود اینکه این فلزات در غلظتهای پایین در بدن یافت میشوند ولی اثر فوقالعادهای در بدن دارند. فلزات سنگین نظیر نقره(Ag)، کادمیوم(Cd)، قلع(Sn)، جیوه(Hg)، سرب(Pb) و همچنین فلزاتی که خاصیت الکترونگاتیویته زیادی دارند مانند مس، نیکل و کبالت میل ترکیبی شدیدی با گروههای آمین و سولفیدریل(SH) دارند. آنزیمها به وسیله این فلزات متلاشی شده و قدرت آنزیمی خود را از دست میدهند. بعلاوه فلزات در عمل سوختوساز بدن وارد شده و عمل متابولیزم را مختل مینمایند. درجه سمی بودن فلزات سنگین را، از روی الکترونگاتیویته آنها میتوان طبقهبندی نمود که این ترتیب با پایداری کمپلکسهای مشتق شده از این فلزات هماهنگی میکند. طبقهبندی این فلزات بر حسب سمی بودن از چپ به راست به صورت زیر می باشد:
Hg-Cu- Sn- Pb- Ni- Co- Cd- Fe- Zn- Mn- Mg- Ca- Sr
کاهش سمیت
بطور کلی در جدول تناوبی به آن تعداد از عناصر که وزناتمی بالائی داشته و در درجه حرارت اتاق خاصیت فلزی دارند فلز سنگین اطلاق میشود.از آنجائی که تعاریف مختلفی برای این عناصر ذکر شده و در این طبقه عناصر مختلفی قرار داده شدهاند باید تنها از اصطلاح فلزات و یا شبهفلزات استفاده نمود. بر اساس این تعاریف فلزات مس تا بیسموت در جدول تناوبی که دانستیته بیشتر از 4 دارند به عنوان فلزات سنگین تعریف شدهاند. بعبارت دیگر در جدول تناوبی به فلزات گروه 3 تا 16 در تناوب چهارم و چهارم به بعد فلزات سنگین میگویند.
بر اساس تعریف دیگر فلزات سنگین اصولاًً به دو دسته از عناصر فلزی اطلاق میشوند که دارای وزن مخصوص بزرگتر از 6 گرم بر سانتیمترمکعب و وزناتمی بیشتر از 50 گرم باشند. وجود بعضی از آنها در مقادیر جزئی در جیره غذایی انسان و سایر موجودات لازم است بهمین دلیل به آنها عناصر ضروری گفته میشود. مقدار این عناصر در غلظتهای بیش از حد مجاز عوارض گوناگونی هم برای انسان و هم برای سایر موجودات ایجاد کرده، ضمن آنکه آلودگی و خطرات زیستمحیطی را بهمراه دارد(5). برخی از این عناصر نه تنها برای حیات بیولوژیکی ضروری نیستند بلکه خاصیت سمی هم دارند. ارگانیسمهای زنده به مقادیر بسیار کمی از فلزات سنگین برای ادامه رشد و بقاء نیاز دارند که به اصطلاح به آنها قلزات نادر میگویند مثل آهن، کبالات، مس، منیزیم، مولیبدن، وانادیم، استرنیم و روی و اگر از آن حداقل مورد نیاز و ضروری، افزایش یابند باعث اخلال در رشد میگردند. سایر فلزات سنگین مانند جیوه، سرب و کادمیم عناصر حیاتی نبوده و اثرات سودمندی بر حیات ارگانیسمهای زنده ندارند.
در مبحث حفاظت محیط زیست، بهداشت و سلامت انسانها فلزاتی مانند سرب، جیوه، مس، کادمیوم، نیکل، کروم و غیره جزء گروه فلزات سنگین بوده که این عناصر و بسیاری از ترکیبات آنها به لحاظ اثرات سوء و زیانبارشان بر سلامت انسان و محیطزیست از سموم پرخطر پیرامون ما محسوب میگردند. این سموم در هوای تنفسی، آب آشامیدنی، مصالح ساختمانی، لوازم آشپزخانه و حتی البسه موجود میباشند. یکی از اساسیترین مسائل در ارتباط با فلزات سنگین عدم متابولیزه شدن آنها در بدن میباشد. در واقع فلزات سنگین پس از ورود به بدن دیگر از بدن دفع نشده بلکه در بافتهائی مثل چربی، عضلات، استخوانها و مفاصل رسوب کرده و انباشته میگردند که همین امر موجب بروز بیماریها و عوارض متعددی در بدن میشود. فلزات سنگین همچنین جایگزین دیگر املاح و موادمعدنی مورد نیاز در بدن میگردند(1و5).
این عناصر در واکنشهای بیولوژیک و سلولهای موجودات زنده وارد شده و ایجاد مزاحمت میکنند و یا ممکن است باعث ممانعت برخی واکنشهای بیوشیمیایی سلولها و همچنین باعث کاهش راندمان تصفیه و در موارد حاد باعث توقف فعالیتهای بیولوژیکی سیستمهای تصفیهای شوند(10).
منابع آلاینده محیط زیست در ارتباط با فلزات سنگین عبارتند از: صنایع فلزی، ریختهگری، آبکاری، رنگسازی، باطریسازی، دباغی، نساجی، کاغذسازی و سایر صنایع مشابه که با دفع عناصری چون سرب، نقره، جیوه، نیکل، کرم، مس، کادمیوم و غیره در محیط زیست باعث آلودگی میشوند. فلزات سنگین از اجزاء بیوسفر(کره زیستی) هستند و به طور طبیعی در خاک و گیاهان نیز یافت میشوند(13).
1-2-اندازهگیری فلزات سنگین
با توجه به اینکه فلزات سنگین از جمله آلایندههای زیستمحیطی هستند که مواجهه انسان با آنان از طریق آب و مواد غذایی مسمومیتهای مزمن و بعضاً حاد و خطرناکی را ایجاد میکند، لذا شناسایی و اندازهگیری مقادیر آنها در آب و موادغذایی حائز اهمیت بالایی میباشد. روشهای متعددی برای شناسایی و تعیین مقدار فلزات سنگین وجود دارد که در این رابطه میتوان به جذباتمی، نشراتمی، کروماتوگرافی، ولتامتری، پولاروگرافی و روشهای الکترواسپکتروسکپی، الکتروشیمی و موارد دیگر اشاره نمود.
1-3-روشهای حذف فلزات سنگین از آبها و فاضلاب
بطور کلی روشهای حذف فلزات سنگین عبارتند از:
• روشهای شیمیایی حذف فلزات سنگین
• روشهای فیزیکی حذف فلزات سنگین
• روشهای بیولوژیکی حذف فلزات سنگین
1-3-1-روشهای شیمیایی حذف فلزات سنگین
از روشهای حذف فلزات سنگین میتوان رسوبدهی شیمیایی، اکسیداسیون و احیاء و تبادل یونی را نام برد. اکثر فلزات سنگین در شرایط اسیدی محلول میباشند و تحت شرایط معینی از pH قلیایی به صورت رسوب درمیآیند و میتوان آنها را با تهنشینی یا صاف کردن از پساب جدا نمود. pH بهینه برای تشکیل رسوب به عوامل متعددی از قبیل نوع فلز، نوع رسوب تشکیل شده و حضور مواد کمپلکس دهنده بستگی دارد. علاوه بر این، حلالیت هیدروکسیدهای مختلف متفاوت است. ترکیب شیمیایی فلزات سنگین رسوبدهنده معمولاً به صورت هیدروکسید میباشد که از طریق افزودن آهک یا سود به آنها و با تنظیم pH آنها در حدی که حداقل حلالیت را دارند، صورت میگیرد. همچنین فلزات سنگین ممکن است از فاضلابهای صنعتی به صورت سولفید و در برخی موارد به صورت کربنات مانند کربناتسدیم یافت شوند(13). برخی فلزات برای رسوبدهی نیاز به اکسیداسیون و احیا داشته تا شرایط لازم را برای رسوبدهی بدست آورند. مثل ضرورت احیاء کرم سهظرفیتی به کرم ششظرفیتی قبل از رسوبدهی. برای تشکیل سولفیدهای فلزی میتوان از سولفیدسدیم یا گاز سولفیدهیدروژن استفاده کرد. در عمل ملاحظات اقتصادی و فنی تعیینکننده نوع ماده مناسب رسوبدهنده میباشند.
1-3-2-روشهای فیزیکی حذف فلزات سنگین
روشهای فیزیکی شامل جذبسطحی، اسمز معکوس، تبخیر و موارد دیگر میباشد. جذبسطحی با کربن فعال بیشتر در جهت جذب مواد آلی از فاضلاب بکار رفتهاست، اما حذف فلزات سنگین توسط این ماده در حال پیشرفت است. جهت بکار گرفتن این روش، لازم است که فرایندهای تهنشینی و فیلتراسیون، بمنظور حذف فلزات قابل تهنشینی، انجام پذیرد.
1-3-3-روشهای بیولوژیکی حذف فلزات سنگین
گونههایی از میکروارگانیسمها دارای خاصیت جذب برخی از فلزات سنگین میباشند. از این خاصیت جهت کنترل و بازیافت فلزات سنگین بخصوص در غلظتهای پایین استفاده میشود. بدین صورت میکروارگانیسمها با توجه به فاکتورهای تغلیظ میتوانند غلظت فلزات را در بدن خود به هزاران برابر مقدار موجود در محیط برسانند. ظرفیت طبیعی میکروارگانیسمها در مورد تجمع یونهای فلزی و ذرات از محیط مایع اصطلاحاً جذب بیولوژیکی خوانده میشود. برای جذب فلزات توسط میکروارگانیسمهای زنده یا مرده مکانیسمهای متعددی مورد استفاده قرار میگیرد که عبارتند از:
• خوردن ذرات یا به دام انداختن آنها با کمک خلاء ژله یا تاژکهای خارج سلولی
• جابجایی فعال و تبادل یونی
• ایجاد کمپلکس
• جذب سطحی
• تهنشین کردن مواد معدنی
همچنین بواسطه فعالیت بیولوژیکی گروهی از باکتریها بنام باکتریهای احیاکننده سولفات در فاضلابهای دارای فلزات سنگین که حاوی سولفات و سایر مواد معدنی سولفوره بوده و یا به صورت دستی به آن اضافه میگردند، سولفات و یا سایر ترکیبات سولفوره در اثر فعالیت بیولوژیکی تبدیل به سولفید شده و به صورت شیمیایی با فلزات سنگین ترکیب شده رسوب نامحلول سولفیدفلزی تشکیل داده و از محیط حذف میشوند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:76
فهرست مطالب:
۱-۱-تعریف خوردگی ۵
۲-۱- محیط های خورنده ۵
۳-۱- فولادهای کم آلیاژی ۶
۱-۳-۱- اثرات افزودنی های میکروآلیاژ کننده ۶
۲-۳-۱- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده ۷
۱-۲-۳-۱- فولادهای میکروآلیاژ شده وانادیوم ۸
۲-۲-۳-۱- فولادهای میکروآلیاژ شده نیوبیوم ۱۰
۳-۲-۳-۱- فولادهای میکروآلیاژ شده نیوبیوم – وانادیوم ۱۱
۴-۲-۳-۱- فولادهای میکروآلیاژ شده مولیبدن – نیوبیوم ۱۲
۵-۲-۳-۱- فولادهای میکرو آلیاژ شده ی وانادیوم – نیتروژن ۱۳
۶-۲-۳-۱- فولادهای میکروآلیاژ شده ی تیتانیوم ۱۳
۷-۲-۳-۱- فولادهای میکروآلیاژ شده ی تیتانیوم – نیوبیوم ۱۵
۱-۲- خوردگی فولاد در بتن ۱۹
۲-۲- روش های نمایان شدن خوردگی ۲۰
۱-۲-۲-پتانسیل خوردگی ۲۰
۲-۲-۲- سرعت خوردگی ماکروسل ۲۱
۳-۲-۲- مقاومت پلاریزاسیون ۲۲
۲-۳-۲- آزمون Bench – Scale 23
4-2- روش کار آزمایش ۲۳
۵-۲- فولاد تقویت شده ۲۴
۶-۲- آزمون ارزیابی سریع ۲۵
۱-۶-۲-شرح آزمایش ۲۵
۱-۱-۶-۲- آزمون پتانسیل خوردگی ۲۵
۲-۱-۶-۲-آزمون پتانسیل خوردگی ۲۶
۲-۶-۲- خاصیت نمونه های آزمایش ۲۸
۳-۶-۲- برنامه آزمایش ۲۸
۷-۲- آزمایشات Bench – Scale 29
1-7-2- روش آزمایشات ۲۹
۱-۱-۷-۲-Southern Exposure 29
2-1-7-2-نمونه Cracked beam 30
3-1-7-2-نمونه ASTM G109 30
4-1-7-2- روش کار آزمایش های Southern Exposure و Cracked Beam 31
5-1-7-2- روش آزمایش ASTM G109 31
2-7-2- آماده سازی نمونه های آزمایش ۳۱
۳-۷-۲- موادهای مورد نیاز ۳۳
۹-۲-آزمایشات ارزیابی سرعت ۳۴
۱-۹-۲-آزمایش پتانسیل خوردگی ۳۴
۲-۹-۲-آزمایش خوردگی ماکروسل ۳۹
۱۰-۲- آزمایشات Bench- Scale 44
2-10-2)آزمایش های Cracked- beam 54
3-10-2)آزمایش های ASTM G109 59
4-10-2-مشاهده و نمایش نمونه ها ۶۲
۱۱-۲- آزمایش های مکانیکی ۶۶
۱- نتایج ۷۰
۲- پیشنهاد ۷۲
منابع ۷۳
فصل اول
مقدمه
1-1-تعریف خوردگی
خوردگی را تخریب یا فاسد شدن یک ماده در اثر واکنش با محیطی که در آن قراردارد تعریف می کنند و بعضی ها اصرار دارند که این تعریف بایستی محدود به فلزات باشد . ولی بایستی برای حل این مسئله هم فلزات و هم غیر فلزات را در نظر بگیریم .
مثلاًتخریب رنگ و لاستیک بوسیله نور خورشید یا مواد شیمیایی ، خورده شدن جدارة کوره فولاد سازی ، و خوره شدن یک فلز جامد بوسیله مذاب یک فلز دیگر و حتی خورد شدن فولادی که در داخل تیرهای بتنی برق قرار دارد تماماً خوردگی نامیده می شوند.
2-1- محیط های خورنده :
عملاًکلیه محیط ها خورنده هستند،لکن شدت خورندگی آنها متفاوت است . مثالهایی در این مورد عبارتند از : هوا ، رطوبت آبهای تازه ، مقطر،نمکدار و معدنی . اتمسفرهای روستائی، شهری،صنعتی ، بخار و گازهای دیگر مثل کلر- آمونیاک –سولفور هیدروژن ، دی اکسید گوگرد وگازهای سوختنی، اسیدهای معدنی مثل اسید کلریدریک، سولفوریک و نیتریک، اسیدهایآلی مثل اسید نفتیک، استیک و فرمیک، قلیائی ها ، خاکها ، طلاها، روغنهای نباتی و نفتی و انواع و اقسام محصولات غذائی، بطور کل مواد «معدنی » خورنده تر از مواد «آلی » می باشند. مثلاًخوردگی در صنایع نفت بیشتر در اثر کلرور سدیم ، گوگرد ، اسید سولفوریک و کلریدریک و آب است تا بخاطر روغن ، نفت و بنزین .کاربرد درجه حرارتهای فشارهای بالا در صنایع شیمیایی باعث امکان پذیر شدن فرآیندهای جدید با بهبود فرآیندها قدیمی شده است ، به عنوان مثال ( راندمان بالاتر ) سرعت تولید بیشتر ، یا تقلیل قیمت تمام شده . این مطلب همچنین در مورد تولید انرژی از جمله انرژی هستهای ، صنایع فضائی و تعداد بسیار زیادی از روشها و فرآیندها صادق است . درجه حرارتها و فشارهای بالاتر معمولاً باعث ایجاد شرایط خوردگی شدیدتر می گردند بسیاری از فرآیندها و عملیات متداول امروزه بدون استفاده از مواد مقاوم در برابر خوردگی غیر ممکن یاغیر اقتصادی می باشند.
زنگ لفظی است که برای آلیاژهای آهنی به کار برده می شود. زنگ از اکسیدهای آهن تشکیل شده و معمولاًاکسید نیتریک هیدراته است . موقعی که در یک آگهی تجاری ادعا می شود که یک آلیاژ غیر آهنی زنگ نمی زند ، ادعایی بیش نیست و لکن بدان معنی نسبت که آن فلز خورده نخواهد شد
3-1- فولادهای کم آلیاژی:
فولادهای کربنی با یک یا چند عنصر کرم ، نیکل ، مس ، مولیبدن ، فسفر وانادیم، به مقادیر چند درصد یا کمتر از فولاد کم آلیاژی می نامند. مقادیر بالا از عناصر الیاژی معمولاً برای خواص مکانیکی و سختی پذیری است . از نقطه نظر مقاومت در برابر خوردگی محدودة تا ماکزیمم 2 درصد بیشتر مورد توجه است . در این محدوده استحکام فولادها بالاتر از فولادهای ساده کربنی بوده ولی مهمترین خاصیت آنها مقاومت خیلی بهتر در برابر خوردگی آتمسفری است .گاهی اوقات در محیط های آبی نیز این فولادها دارای مزایائی می باشند
1-3-1- اثرات افزودنی های میکروآلیاژ کننده :
این بخش بر روی فولادهای پرلیت – فریت میکروآلیاژ شده تاکید کرده است ، که از افزودنی های عناصر آلیاژ کننده مثل نیوبیوم و وانادیوم برای بالا بردن کربن و یا محتواهای منگنز استفاده می کند ( و به این ترتیب توانایی حمل بار بالا می رود ) بررسی های گسترده در طول دهه 1960 بر روی اثرات نیوبیوم و وانادیوم روی خصوصیات مواد یا مصالح درجه ساختمانی باعث کشف این موضوع گردید که مقادیر کم نیوبیوم، وانادیوم هر کدام (10/0% ) فولادهای استاندارد کربن – منگنز را بدون تداخل با بعمل آوری بعدی مستحکم و قوی می سازند مقدار کربن نیز می تواند کم شود تا هم قابلیت جوش را بالا ببرد و هم چقرمگی را ، چون اثرات مقاومت دهندگی نیوبیوم و وانادیوم بخاطر کاهش در استحکام ناشی از کاهش در مقدار کربن جبران می شوند .
خصوصیات مکانیکی فولادهای کم آلیاژ دارای استحکام بالای میکرو آلیاژ شده ، فقط در صورت افزایش عناصر میکرو آلیاژ کننده حاصل می شوند . لازمه ی وجود آستنیت که به اثرات پیچیده طرح آلیاژ و تکنیک های نورد کاری بستگی دارد ، نیز یک فاکتور مهم در تصفیه دانه ای فولادهای کم آلیاژ دارای استحکام بالای نورد گرم است . تصفیه دانه ای در صورت وجود آستنیت با روش های نورد کاری کنترل شده ، باعث چقرمگی بالا و استحکامهای تسلیم زیاد در رنج 345 تا 620 مگا پاسکال(ksi 90 تا 50) می شود. ]1[
این توسعه فرآیندهای نوردکاری کنترل شده همراه با طرح آلیاژ، سطوح استحکام تسلیم بالایی را تولید کرده است که با پایین آمدن تدریجی مقدار کربن توام می باشد بسیاری از فولادهای کم آلیاژ دارای استحکام بالا میکروآلیاژ شده اختصاصی ، مقادیر کربن به کمی 60/0% و یا حتی کمتر دارند ، با این حال هنوز می توانند استحکام تسلیم حدود 485 مگا پاسکال (ksi 70) را توسعه داده و ایجاد نمایند . استحکام تسلیم بالا ، با اثرات ترکیبی اندازه دانه ریز ایجاد شده و در طول نورد کاری گرم کنترل شده و استحکام دهندگی رسوب حاصل می شود که این خصوصیت ناشی از حضور وانادیوم ، نیوبیوم و تیتانیوم است .
2-3-1- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده عبارتند از :
1-2-3-1-فولادهای میکروآلیاژ شده وانادیوم
2-2-3-1-فولادهای میکروآلیاژ شده نیوبیوم
3-2-3-1-فولادهای میکروآلیاژ شده وانادیوم – نیوبیوم
4-2-3-1- فولادهای مولیبدن – نیوبیوم
5-2-3-1-فولادهای میکروآلیاژ شده وانادیوم – نیتروژن
6-2-3-1-فولادهای میکروآلیاژ شده تیتانیوم
7-2-3-1-فولادهای میکروآلیاژ شده نیوبیوم – تیتانیوم
8-2-3-1-فولادهای میکروآلیاژ شده تیتانیوم – وانادیوم
این فولادها ممکن است شامل عناصر دیگری هم باشند تا مقاومت خوردگی بالایی داشته باشند و مقاومت محلول جامد را بالا برده و قابلیت سخت کاری زیادی را در بر بگیرند(اگر محصولات تغییر شکل غیر از فریت – پرلیت بهینه باشند) ]1[.
1-2-3-1- فولادهای میکروآلیاژ شده وانادیوم :
تهیه و توسعه فولادهای حاوی وانادیوم مدت کوتاهی پس از تهیه فولادهای هوازدگی رخ می دهد و محصولات نورد شده صاف با بیش از 10/0% وانادیوم بطور وسیعی در شرایط نورد گرم بکار می روند فولادهای حاوی وانادیوم نیز در شرایط نورد کنترل شده ، نرمال شده و یا کوئنچ و تمپر شده بکار می روند .
وانادیوم با تشکیل ذرات رسوب ریز ( با قطر 5 الی 100 نانومتر ) V (CN) در فریت در طول سرد سازی پس از نورد گرم به قوی ساختن کمک می کند . این رسوبات وانادیوم ، که به پایداری رسوبات نیوبیوم نیستند ، محلول در همه دماهای عادی نورد کاری هستند که برای ایجاد فریت دانه ریز مفید می باشند (بخش فولادهای میکروآلیاژ شده نیوبیوم در این تحقیق را مشاهده نمایید) قوی ساختن به وسیله وانادیوم ، بین 5تا 15 مگا پاسکال ( ksi 2 و 7/0 ) در هر 01/0 ترکیب شیمیایی وانادیوم است و این حد متوسط به مقدار کربن و سرعت سرد سازی حاصل از نورد گرم بستگی دارد ( و بنابراین به ضخامت مقطع نیز بستگی دارد ) سرعت سرد سازی که با دمای نورد گرم
و ضخامت مقطع معین می شود برروی قوی ساختن سطح رسوب در فولاد 15/0% وانادیوم تاثیر می گذارد که در شکل 1-1 نشان داده شده است .
شکل (1-1)- اثر میزان سرد کاری روی افزایش استحکام تسلیم ناشی از قوی ساختن رسوب در یک فولاد 15/0 درصد وانادیوم ]1[
در سرعت های سرد سازی بالا بیشتر ذرات (CN) V در محلول باقی می ماند و بنابراین بخش کوچکتری از ذرات (CN) V رسوب کرده و قوی ساختن نیز کاهش می یابد در مورد یک ضخامت مقطع داده شده و محیط سرد سازی ، سرعت های سرد سازی می توانند با افزایش یا کاهش دما قبل ازسرد سازی به ترتیب افزایش یافته و یا کاهش یابند. افزایش دما باعث بزرگتر شدن اندازه دانه ای آستنیت می شود در حالیکه کاهش دمای نورد کاری را دشوار تر می سازد .
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:70
فهرست مطالب:
عنوان صفحه
فصل اول : فلزات آمورف و آمورف کامپوزیتی 1
1-1 مقدمه 2
2-1 فلزات آمورف 6
1-2-1 خواص آلیاژهای آمورف 9
2-2-1عمده نقطه ضعف مکانیکی مواد آمورف 12
3-1 مکانیزم های تغییر شکل در فلزات آمورف 12
1-3-1 تشکیل حجم آزاد 13
2-3-1 افزایش دمای موضعی 18
فصل دوم : شکست در فلزات آمورف 23
1-2 شباهت های شکست فلزات آمورف با فلزات کریستالی 24
1-1-2 اثر فشار هیدرواستاتیک روی جریان تنش 24
فصل سوم : کامپوزیت کردن جهت بالا بردن پلاستیسیته 25
1-3 راهکارهایی برای افزایش پلاستیسیته در آلیاژهای یکپارچه 26
2-3 فلزات آمورف کامپوزیتی 27
1-2-3 مکانیزم تغییرات و افزایش پلاستیسیته توسط ذرات کامپوزیت 28
3-3 بهبود پلاستیسیته با استفاده از ذرات تقویت کننده فاز دوم 31
4-3 بررسی باندهای برشی توسط TEM در یک کامپوزیت BMGs 35
1-4-3 انتشار باندهای برشی در کل قطعه 39
5-3 انواع مختلف فلزات آمورف کامپوزیتی 41
1-5-3 کامپوزیتهای ذره ای 42
2-5-3 کامپیوزیتهای In-situ 42
6-3 ذرات خارجی تقویت کننده در فلزات شیشه ای توده 42
1-6-3 کامپوزیت حاوی ذرات خارجی تقویت کننده ، تولید به روش تقویتBMG 43
2-6-3 تولید کامپوزیت BMG حاوی ذرات خارجی تقویت کننده با استفاده از فرایند ذوب 44
7-3 فرم In situ کامپوزیت های BMG 45
1-7-3 فرم کاربید In situ در فلزات شیشه ای پایه Zr 46
8-3 تشکیل و ساختارها 47
9-3 مکانیزم تشکیل فاز آمورف نانو ساختار شده 50
10-3 خواص مکانیکی و رفتار تغییر شکلی آلیاژ های آمورف نانوساختار شده توده 51
11-3 تشکیل و خواص مکانیکی آلیاژ های آمورف خوشه دار توده 54
12-3 مقایسه کامپوزیت های ذره ای و In situ 56
فصل چهارم :عوامل موثر در ایجاد داکتیلیته بیشتر در مواد آمورف 60
1-4 کریستالیزاسیون 61
1-1-4 اثر بیش از حد کریستالیزاسیون 61
2-4 آنیلینگ 62
منابع و مآخذ 64
فهرست تصاویر
عنوان صفحه
تصاویر فصل اول
شکل 1-1: دیاگرام ارتباط بین تغییرات حجم با دما از حالت مذاب تا لحظه گذر از دمای شیشه ای شدن،Tg 3
شکل 1-2 : دیاگرام ظرفیت گرمایی فلزات شیشه ای در دمایTg 3
شکل 3-1: منحنی تنش کرنش فلز شیشه ای 6
شکل 1-4: تصویریک آلیاژ آمورف (Ni55Pd5Nb20Ti15Zr5) در TEM 7
شکل 1-5 : ارتباط بین و Hc 10
شکل 1-6 : مقایسه جنس چرخ دنده ها در خصوص مقاومت به سایش 11
شکل 1-7 : نشان دهنده پروسه حجم آزاد به وسیله معادله Spaepen 15
شکل1-8 : نمودار تنش برشی نرمال در برابر کرنش برشی 16
شکل 1-9 : نمودار کرنش برشی در یک باند نسبت به کرنش برشی نهایی 17
شکل 1-10 : نمونه تست خمش و روکش کاری قلع برای بررسی باندهای برش نزدیک شکاف 20
شکل1-11: نشان دهنده باندهای برشی نزدیک شکاف در نمونه تست خمش روکش داده شده به وسیله قلع 21
شکل1-12: نشان دهنده حرارت موضعی و ذوب روکش به صورت مهره های کروی
در باندهای برشی 22
تصاویر فصل سوم
شکل 1-3 : مکانیزم ممکن برای افزایش دانسیته باند برشی در فلزات شیشه ای 23
شکل 2-3 : شکل میدان تنش بین سوراخ ها، در طول فشردن یک فلز متخلخل کشدار 24
شکل3-3: اثر ذرات گرافیت تقویت¬کننده دریک فلز شیشه¬ای پایه Zr برروی دانسیته باند برش درهمسایگی آن 34
شکل4-3 : میکروگرافی TEM از ساختار قلز کامپوزیتی مشخصه پراش در دهانه صفحه[110] در منطقه محور فاز β است 36
شکل 5-3 : مناطق روشن ، تصویر باندهای برشی است. (a) , (b) تصویر یک منطقه یکسان با زاویه عکسبرداری متفاوت است 37
شکل6-3 : عکس TEM از محل بدون شکل فاز β 39
شکل7-3 : ترکیب برخی ازخواص فلزات با کامپوزیت¬کردن فلزات 41
شکل8-3 : منحنی های DSC آلیاژ های آمورف Zr-Al-Ti-Ni-Cu و Zr-Al-Cu-Pd 49
شکل9-3 : میکروگراف الکترون میدان روشن و الگو های پراش الکترونی آلیاژ های امورف پایه Zr آنیل شده در دمایی درست زیر واکنش اول گرمازا 49
شکل10-3: شکل فرایند تشکیل فاز نانو بلورین Zr2(Cu,Pd) احاطه شده با فازآمورف 50
شکل11-3: تغییرات Sf ، E و Hv با Vf ترکیبات برای آلیاژ-های آمورف ریختگی توده
Zr-Al-Ni-Cu-Pd 51
شکل12-3 : ظاهر سطح شکست کششی آلیاژ امورف ریختگی توده 52
شکل 13-3: شکل شماتیکی از حالت شکست کششی برای آلیاژ های آمورف نانوبلورینه شده که خواص مکانیکی بهبود یافته ای را نشان میدهد 52
شکل 14-3: منحنی های تنش کرنش فشاری میله های استوانه ای در حالت مخلوط فاز های آمورف و نانو بلورین بلافاصله بعد از ریخته گری 53
شکل 15-3 : سطح خارجی میله آمورف نانوبلور شده تحت طویل شدگی 5/2% پلاستیکی 54
شکل 16-3 : الگوی پراش کوچک زاویه¬ اشعه ایکس آلیاژ خوشه ای شده آمورف و اطلاعات آلیاژهای آمورف و نانو بلورین پایه Zr 55
شکل 17-3 : منحنی های تنش- کرنش خمشی آلیاژ آمورف خوشه ای 56
شکل 18-3 : نتیجه تست فشار نمونه های گوناگون از فلزات شیشه ای کامپوزیتی با ئرات کامپوزیتی مختلف 57
شکل19-3 : نتایج تست فشار فلز شیشه ای Vit1 کامپوزیتی به روش W wire 58
تصاویر فصل چهارم
شکل 1-4 : رابطه بین استحکام شکست و افزایش درصد کریستالیزاسیون 62
فصل اول
فلزات آمورف و آمورف کامپوزیتی
1-1 مقدمه
طبق آزمایشات مستقل از دما و فشار متغیر، از نظر ترمودینامیکی، مواد سه حالت اصلی : مایع، جامد، گاز دارند.
تعیین کنندة هر یک از این حالات درجة آزادی بین اتمها و قید و بند آنها به یکدیگر است و یک مرحله تحول بین هر حالت وجود دارد. تعریف شیشه : یک مایع شیشه ای یا جامد بدون کریستال است که مشخصه های ویسکوزیته و ساختار آن نشان دهندة هم جامد و هم مایع است. به عبارت دیگر شیشه یک جامد در دمای اتاق است زیرا ویسکوزیته آن بیش از حد توازن یعنی 6/14 10 است و از طرف دیگر هنوز یک مایع است زیرا ساختار اتمها و مولکولهای آن یک ساختار بی نظم و شبیه مایع است . جامد از فاز کریستالی به وجود آمده است و یک کریستال از یک نظم دورهای بین اتمها پیروی می کند اما مایع دارای چنین نظمی نیست و یک نظم تصادفی بین اتمها بدون تناوب و دوره خاصی را دارد.
بنابراین می گوییم، شیشه جامد و آمورفی است که اتمهای ساختار آن مانند مایع است. مهمترین مشخصه یک شیشه علاوه بر ساختار آن، پدیده تحول و به وجود آمدن آن است.
تحول و به وجود آمدن شیشه در یک Tg ایجاد میشود،مذاب تا زیر دمای انجماد سرد میشود و تا زمانیکه دما کاهش می یابد ویسکوزیته نیز به صورت پیوسته زیاد میشود (شکل 1-1).
شکل 1-1 : دیاگرام ارتباط بین تغییرات حجم با دما از حالت مذاب تا لحظه گذر از دمای شیشه ای شدن،Tg
شکل 1-2 : دیاگرام ظرفیت گرمایی Zr41.2Ti13.8Cu12.5Ni10Be22.5
نقاط ناپیوسته Cp فلزات شیشه ای است که از دما Tg تابعیت می کنند .
در (شکل 1-1) مشاهده می شود که تغییر حجم نیز تابعی از دما است . در کریستاله شدن، در طول سرد کردن ، ناگهان با یک افت شدید حجم رو به رو می شویم اما در تحول آمورف شدن تغییر ناگهانی حجم نداریم و تغییر حجم به صورت پیوسته صورت میگیرد که این روند در متغیرهای ترمودینامیکی مانند آنتروپی و آنتالپی نیز وجود دارد.
اگر چه متغیرهای ترمودینامیکی در ابتدا با دما به صورت پیوسته رابطه دارند اما در Tg با یک افزایش شیب و تغییر ناگهانی روبرو هستند. تغییر ناگهانی ظرفیت گرمایی و انبساط گرمایی در (شکل1-2) نشان داده شده است.
تحول شیشه ای شدن در یک بازه دمایی مشخص انجام می گیرد و بیان میکند که در Tg، یک شیب تند و تغییر ناگهانی (Cp پرش می کند) در منحنی گرمایی DSC انجام می دهد.
سرعت کوئیچ لازم برای ساختن جامد آمورف از یک فلز خالص حدوداً K/S 1015 است که رسیدن به این سرعت سرد کردن در محیط آزمایشگاه غیر ممکن است. که برای کم کردن این سرعت فلزات خالص را به صورت آلیاژی کرده و مورد استفاده قرارمی دهند.
در ابتدا لنز شیشه ای توسط Klemer و Willens و Duwez در دانشگاه Caltech در سال 1960 با تکنیک کوئیچ تفنگی که سرعت سرد کردنی معادلK/S 107 تولید می کرد، ساخته شد. اما هنوز این سرعت سرد کردن برای تشکیل فلزهای های شیشه ای توده ، خیلی زیاد بود.
در سال 1980-1990 دو تحقیق گروهی در دانشگاه Tohoku و Caltech انجام شد Inoue نمونه های گوناگونی از آلیاژها را مورد بررسی قرار داد که با سرعت بحرانی بین به آمورف تبدیل می شدند.
johnson, pecker در دانشگاه Caltech (Zr41.2Ti13Cu12.5Ni10Be22.5) را ساخته که بوده و قطعه ای به قطر Cm 5 را با روش ریخته گری معمولی ساختند.
Lin و john Son یک BMG پایه مس جدیدی کشف کردند (Cu77Ti34Zr11Ni8 Vitreloy 101 ) و پایه Zr Zr57Nb5Cu15.4Ni12.6 Al10; vitreloy 106 ) و vitreloy 105 Zr52.5Ti5Cu17.7Ni14.6 Al10 ) با یک CCR 10 K/S بود.
از زمان کشف viterloy 1 تا حالا، بهترین شکل آلیاژی BMG ، Vitreloy 106 می باشد که از بهترین شکل آلیاژهای بدون (Non. Be.BMG) Be است.
شکل BMG بستری مناسب جهت جستجوی خواص مکانیکی گوناگون، رفتار ترکیبات گوناگون، جریان Criteria ، شکست و خستگی و همچنین در ترمودینامیک سرعت ایجاد کرده است.
ساختار مواد و حد الاستیک بالای BMG و همچنین استحکام کششی زیاد (2Gpa) و تافنس خوب ( 20-55 Mpa.m1/2) را ارائه کرده است. (شکل 4-1) کشش را بین مواد مختلف و BMG نشان می دهد.