یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود پایان نامه درباره لیزر

اختصاصی از یارا فایل دانلود پایان نامه درباره لیزر دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه درباره لیزر


دانلود پایان نامه درباره لیزر

 مطالب این پست : دانلود پایان نامه درباره لیزر  

   با فرمت ورد  word  ( دانلود متن کامل پایان نامه  )

 

 

 

پیش گفتار

امروزه تقریباً همه لیزر و موارد کاربرد آن را می دانند . در تمام دنیا و به ویزه در کشور با استفاده از لیزر و مشتقات آن به طور شگفت انگیزی افزایش داشته است .
هم چنین لیزر در پژوهش های علمی و برای محدوده وسیعی از دستگاههای علمی موارد مصرف پیدا کرده است . برتری لیزر در این است که از منبعی برای نور و تابش های کنترل شده تک فام و پرتوان تولید می کند . تابش لیزر با پهنای نور طیف های باریک توان تمرکزیابی می شود . چندین برابر درخشانتر از خورشید است .
لیزر کشفی علمی می باشد که به عنوان یک تکنولوژی در زندگی مدرن جا افتاده است . لیزرها به مقدار زیاد در تولیدات صنعتی ، ارتباطات نقشه برداری و چاپ مورد استفاده قرار می گیرند .

 

فصل اول
لیزر چیست ؟
ریشه لغوی
کلمه لیزر (LASER) از حروف ابتدای عبارت “تقویت نور بوسیله گسیل القایی تابش” (Light Amplification By Stimulated Emission of Radiation) در لاتین ساخته شده است که معمولاً در طول موجهای مادون قرمز نزدیک ، مرئی و ماورای بنفش طیف الکترومغناطیس می‌باشد. به گسیلهای لیزر گونه طول موجهای بلندتر ناحیه میکروویو “میزر” (MASER) گفته می‌شود. لیزر اصولاً به منبع نور همدوس و تکرنگ گفته می‌شود.

تاریخچه لیزر
  پیشنهاد استفاده از گسیل القایی از یک سیستم با جمعیت معکوس برای تقویت امواج میکروویو بطور مستقل بوسیله وبر (Weber) ، جوردون (Gor، don) زیگر (Zeiger) ، تاونز (Townes) ، باسو (Basov) و پروخورو (Prokhorov) داده شد. اولین استفاده عملی از چنین تقویت کننده‌هایی توسط گروه جوردون ، زیگر و تاونز در دانشگاه کالیفرنیا انجام شد. این گروه نام میزر (MASER) را که از ابتدای حروف “Microwave Amplification by Stimulated Emission of Radiation” تشکیل شده بود برای آن برگزیدند.
اولین میزر با استفاده از گذار میکروویو در مولکولهای آمونیاک (NH3) ساخته شد. در سال 1958 اولین بار پیشنهاد فعالیت میزر در فرکانسهای نوری در مقاله‌ای توسط اسکاولو (Schawlow) و تاونز داده شد. در سال 1960 یعنی کمتر از دو سال دیگر ، میلمن (Mailman) موفق به ساخت لیزر پالسی یاقوت شد. این لیزر پیوسته کار (CW) که لیزر گازی هلیوم نئون بود، در سال 1961 توسط علی جوان ایرانی ساخته شد. در سال 1962 نیز پیشنهاد لیزرهای نیمه ‌هادی مطرح گردید.

سیر تحولی و رشد  
اختراع لیزر به سال 1958 با نشر مقالات علمی در رابطه با میزر اشعه مادون قرمز و نوری بر می‌گردد. نشر مقالات مذکور سبب افزایش تحقیقات علمی توسط دانشمندان در سر تا سر جهان گردید. در بخش ارتباطات نیز کارشناسان توانایی لیزر را که جایگزین ارسال یا مخابره الکتریکی شود، تأیید نمودند. اما اینکه چگونه پالسها را مخابره نمایند، مشکلات زیادی را بوجود آورد. در سال 1960 دانشمندان پالس نور را مخابره نمودند، سپس از لیزر استفاده کردند. لیزر ، نور خیلی زیادی را تولید نمود که بیش از میلیونها بار روشنتر از نور خورشید بود. متأسفانه پرتو لیزر می‌تواند خیلی تحت تأثیر شرایط جوی مثل بارندگی ، مه ، ابرهای کم ارتفاع ، چیزهای موجود در آزمایشهای مربوط به هوا از قبیل پرندگان قرار گیرد.
دانشمندان نیز طرحهای جدیدی را جهت حمایت نور از برخورد با موانع را پیشنهاد نمودند. قبل از اینکه لیزر بتواند سیگنالهای تلفن را ارسال دارد. اختراع مهم دیگر موجبر فیبر نوری بود که شرکتهای مخابراتی برای ارسال صدا ، اطلاعات و تصویر از آن استفاده می‌کنند. امروزه ارتباطات الکترونیکی بر پایه فوتونها استوار می‌باشد. تکنولوژی تسهیم طول موج یا رنگهای مختلف نوری برای ارسال تریلیون بیت فیبر نوری استفاده می‌کند.
سبعد از اینکه لیزر دی اکسید کربن در سال 1964 اختراع شد کاربرد لیزر در زمینه‌های پزشکی خیلی توسعه یافت و برای جراحان این امکان را فراهم نمود تا بجای استفاده از چاقوهای جراحی از فوتون استفاده نمایند.
گزیده‌ای از سخنان  علی جوان در مورد اختراع لیزر
در دنیای علمی و علوم ، این مثل همیشه گفته می‌شود که وقتی که زمان برای یک اختراع یا یک کشف درست شده و شما آنرا انجام ندهید، کس دیگری انجام خواهد داد. این مثل تا حد زیادی حقیقت دارد، اما همیشه اینطور نیست. بعضی وقتها آدمها یک فکر خوب را از دست می‌دهند. وقتی که نوبت برسد به لیزر ، لیزر گازی ، می‌توانست در سال 1930 اختراع شده باشد، نه پس از سی سال در سال 1960 که من آنرا اختراع کردم. اگر شما به تاریخ علم نگاه کرده باشید، مخصوصا به فیزیکدانان اروپایی ، آنها به اختراع لیزر در سالهای 1937 و 1938 خیلی نزدیک شده بودند.

دانشمندان در حال مطالعه بر روی اتمها بودند، که چگونه امواج نوری را بیرون بدهند (تقویت نور در گازها بوسیله گسیل القائی پرتوافکنی) و آنها به اختراع لیزر خیلی نزدیک شده بودند. از نوشتجات آنها شما می‌توانید ببینید که آنها به راه درست رفته بودند، اما بعدا راه را اشتباه رفته و از مسیر اصلی منحرف شدند. اگر من در همان سالها بودم مطمعنا آنرا اختراع می‌کردم، مبالغه نمی‌کنم و می‌دانم که آنرا انجام می‌داد.
 

لیزر از دید فیزیک

مشخصات اصلی لیزر
الف- طول مـــوج (wave length):
 فاصله بین دو نقطه یکسان موج می باشد که مشخص کننده رنگ موج است. با تعیین رنگ، انرژی و طول موج می توان یک موج را نسبت به دیگر موج ها سنجید. به عنوان مثال طول موج های کوتاه در طیف مرئی در ناحیه بین آبی و فوق بنفش قرار می گیرد در حالیکه رنگ قرمز دارای طول موج های بلندتری می باشد. فاصله بین این قله های موج آن چنان کوچک است که واحد آن را نانومتر (ده به توان منفی نه ) یا میکرون (ده به توان منفی شش ) قرار داده اند.
تشعشع الکترومغناطیسی طیف طولانی از طول موج های بلند رادیویی تا طول موج های کوتاه اشعه ایکس را شامل می شود.
ب- فرکانس (Frequency): فرکانس موج تعداد موج های عبور کرده از یک نقطه در یک فاصله زمانی مشخص می باشد . واحد آن سیکل بر ثانیه یا هرتز Hz می باشد. فرکانس و طول موج به سرعت موج وابسته اند.
طول موج های بلند تر از قبیل نور قرمز در فرکانس های پایین تراز نور آبی قرار دارند ولی فرکانس در کل خیلی بالا است ( ده به توان چهارده هرتز ).
ب – سرعت (Velocity) : سرعت موج تعیین کننده تندی عبور موج از یک محیط مشخص
می باشد. به عنوان مثال سرعت عبور نور در خلاء سیصد هزار کیلو متر در ثانیه می باشد. سرعت در محیط هایی مثل شیشه یا آب کاهش می یابد.
ت- دامنه (Amplitude ) : دامنه یا شدت موج با ارتفاع یا بلندی (height ) میدان الکتریکی یامغناطیسی مشخص میشود

بر هم کنش نور با ماده (interaction of light with matter )
از آنجا که نور دارای میدان الکتریکی و مغناطیسی می باشد این میدانها با ماده بر هم کنش نشان
می دهند . میدان مهم میدان الکتریکی است چون با الکترونهــای کوچک که در ترکیبات مواد شرکت دارند بر هم کنش دارد. این الکترونها همصدا وهماهنگ باموج نور وارده نوسان
می نماینــــد و می توانند تأثیر یا تغییر در عبور نور از میان یک ماده به چند طریق انجام دهند
1-    پخش کردن (Scsttering ) موج نور از مسیر اصلی منحرف میشود.
2-    انعکاس (Reflection ) موج به داخل محیطی خارج از ماده برمیگردد.
3-    انتقال (Transmission ) موج از ماده با کمترین تغییر شدت عبور می نماید.
4- جذب (Absorption ) مهمترین پروسه در خیلی جاها جذب می باشد که انرژی موج نور در ماده باقی می ماند. مقدار زیادی از انرژی باعث ایجاد حرارت و تغییر در خواص ماده
می شود.

تولیدنور Generation of light
چندین فرآیند تعیین کننده طیف نور باعث ایجاد تشعشع الکترومغناطیس می شوند.
Image
شکل 1 (عکس در فایل دانلودی موجود است)

طیف تشعشع: طیف نوری که از یک جسم ساطع می شود شامل رنگها یا نوارهای رنگی جدا از هم
می باشد.این از طبیعت تولید نور برمیخیزد و نشانه آن است که انرژی نورانی ساطع شده از آن جسم دارای مقداری مشخص میباشد.
انرژی تمام سیستمها کوانتایی می باشد که این انرژی می تواند در بسته های جدا از هم جذب یا آزاد شود.انرژی سیستم پس از آنکه انرژی جذب آن سیستم شود افزایش می یابد و در مرحله بعدی آن انرژی آزاد می شود. مدتی که این انرژی آزاد می شود راندوم یا اتفاقی بوده که نشر خودبخودی نامیده می شود.

انرژی را می توان توسط جریان الکتریکی، نور از منبع خارجی، واکنش شیمیایی یا گونه های دیگربه سیستم وارد نمود. بهر حال مشخص شده است که یک موج وارده که دارای انرژی معینی است می تواتد آزاد شدن موجها را ازسیستم بر انگیخته تحریک کند و باعث آزاد نمودن دو موج شود. به این حالت نشر بر انگیخته می گویند.این موج ها خواص مهمی دارند.
1- همدوس (Coherent ) : موجها به صورت هماهنگ هستند.
2- تک رنگ (Monochromatic ) : موجها دارای رنگ یکسانی هستند.
3- شدت بالا (High Intensity ): اگر ما به مقدار کافی از این نورهای همدوس (Coherent ) تولید کنیم شدت آن بسیار بالاتر از منابع نور غیر همدوس است.
4- واگرایی کم (Low divergence ) : لیزر را در مقایسه با نور غیر همدوس بوسیله لنزتا قطرهای خیلی کمتری می توان باریک نمود.
5- طبیعت ضربانی (Pulsed nature ) : چون انرژی ورودی را در لیزر می توان کنترل نمود انرژی خروجی نیز به دنبال آن تغییر می یابد. بنا بر این اگر برانگیختگی لیزر با پالسهای کوچک انجام شود لیزر با پالسهای کوچک تولید خواهد شد. این خاصیت خیلی مهم است.
Image.

قانون توان و انرژی
شدت نور لیزر به حدی است که می تواند باعث تبخیر مواد و ایجاد تغییرات غیر قابل برگشت شود. اشعه لیزر می تواند به نقطه هایی با اندازه های مختلف تنظیم (فوکوس ) شود و به همین صورت تولید شدت های مختلف نور را می کند.
حفره لیزر : ( Cavity)یک حفره لیزر با مجموعه ای از آینه ها تعریف می شود که امواج نور را در محیط لیزر به جلو و عقب می فرستد. آینه عقب معمولأ کاملأ منعکس می کند در حالیکه آینه جلو به مقدار کمی از نور لیزر اجازه عبور می دهد. آینه ها باید دقیقاً تنظیم شده و بطور مطمئنی بسته شوند.
توان یا پاور دنسیتی(power density )یک تشعشع ، توان نور لیزر بر واحد سطح با واحد وات بر سانتی متر مربع ( Watt/ Cm2 ) است.
مساحت نقطه نور و توان لیزر مشخص کننده Power density می باشد.
انرژی : معرف کل انرژی نور می باشد و واحد آن ژول است . یک ژول برابر با یک وات برای مدت یک ثانیه می باشد. قدرت لیزر با انرژی تقسیم بر زمان ( یا طول مدت یک پالس ) رابطه دارد. Fluence سرعت انتقال انرژی را تعیین می کند. به عنوان مثال ، 100 ژول را می توان در 1 ثانیه با 100 وات و یا در 100 ثانیه با 1 وات منتقل نمود.
 اندازه نقطه لیزر یکی از دو فاکتور کنترل power density می باشد.اندازه نقطه با موارد زیر مشخص می شود.
نوع لیزر از روی حفره لیزر ( laser cavity ) مشخص می شود و نشان دهنده توزیع توان لیزر در یک نقطه می باشد. واگرایی اشعه(Beam Divergence) اپتیکی و بردار اشعه خارجی تر بیان میشود
شکل 3.

Image(عکس در فایل دانلودی موجود است)

زاویه با رادیان اندازه گیری می شود (رادیان = 180 درجه ) . واگرایی اشعه 1 میلی رادیان معادل است باافزایش در قطر یک اشعه به اندازه یک میلی متر در فاصله یک .

نحوه ایجاد پرتو لیزر
اولین شرط ایجاد لیزر ، داشتن ماده یا محیطی است که بتواند انرژی را در خود ذخیره کند. نمونه‌هایی از این مواد عبارتند از: بلورهایی مثل یاقوت ، ایتریوم ، آلومینیوم گارنت یا گازهایی مثل CO2 و He – Ne و … و مایعاتی مانند رنگهای رودآمین – 6G می‌‌باشد. انیشتین در سال 1916 نشان داد که گسیل القایی نور را می‌توان از یک اتم برانگیخته بدست آورد.
شچنانچه اتم و یا مولکول در تراز بالاتر E2 واقع شود و فوتونی با فرکانس‌ v با اتم برانگیخته وارد برهمکنش شود. بطوری که hv = E2 _ E1 باشد، در این صورت احتمال معینی وجود خواهد داشت که اتم به تراز پایینتر بیافتد. در نتیجه ، دو فوتون حاصل می‌‌شود، فوتون القا کننده و القا شونده ، که هر دو همفاز هستند.در عین حال ، اگر اتمهایی به تعداد N2 در تراز E1 باشند، می‌توانند با جذب فوتونهای فوق ، برانگیخته شده و به تراز انرژی E2 برسند.
چنانچه هدف به دست آوردن تابش همدوس باشد، باید سعی شود که N2 >> N2 گردد، به عبارت دیگر ، تجمع معکوس رخ دهد. فرآیندی که طی آن تجمع معکوس صورت می‌‌گیرد، دمش می‌نامند. وقتی یک سیستم دو ترازی با محیط اطراف خود در حال تعادل گرمایی باشد، جمعیت تراز انرژی بالاتر Nj کمتر از جمعیت تراز Ni خواهد بود. با استفاده از فرآیند اشباع شدن می‌توان Ni را با Nj مساوی گردانید. بطوری که مقدار جذب به صفر تنزل یابد.
چنانچه بتوان مقدار Nj را بیشتر از Ni نمود، اکثر اتمهای سیستم که به حالت برانگیخته می‌‌روند، تمایل خواهند داشت که به حالت انرژی کمتر برگردند. بدیهی است که این تمایل به وسیله کوانتای تابش فرودی تشدید می‌گردد.
بدین معنی که سیستم نه تنها فوتون فرودی را جذب نمی‌کند بلکه فوتون فرودی باعث برانگیختگی سیستم برانگیخته شده که با سقوط به حالت پایینتر دو کوانتا انرژی تابشی از دست می‌دهد (فوتون مربوط به اتم برانگیخته به همراه فوتون فرودی). تمام این فرآیندها تابش لیزر را بوجود می‌آورند.
قرار دادن محیط تولید لیزر در یک مشدد نوری با انتهای آینه‌ای که تابش را در محیط تولید لیزر به جلو و عقب می‌فرستد، سبب تراکم تابش سطوح بالا در تشدید کننده بوسیله ادامه گسیل القایی می‌شود. سپس تابش لیزر از طریق آینه‌ای نیمه شفاف ، از یک انتهای کاواک به بیرون گسیل می‌شود.

Image (عکس در فایل دانلودی موجود است)

تفاوت پرتو لیزر با نور معمولی
پرتو لیزر دارای چهار خاصیت مهم است که عبارتند از: شدت زیاد ، مستقیم بودن ، تکفامی‌و همدوسی. لیزرها در اشکال گوناگون وجود دارند. ممکن است تصور شود که پرتو لیزر همانند اشعه ایکس ، گاما ، ماورا بنفش (UV) و مادون قرمز (IR) ، جایگاهی معین در طیف الکترومغناطیسی را داراست، حال آنکه این پرتو می‌تواند هر کدام از فرکانسهای محدوده طیف نامبرده را در برگیرد، با این تفاوت که دارای مشخصاتی از قبیل تکفامی ، همدوسی و شدت زیاد است.
اینکه چگونه می‌توان پرتو لیزری با فرکانسهای دلخواه را تولید نمود، کار دشواری است که عملا با آن روبرو هستیم. مشکل دیرپا در تابش لیزری ، فقدان پوشش گسترده طول موجی در آن است. به دلیل اینکه لیزرها به‌خودی ‌خود فاقد قابلیت تنظیم طول موج هستند، پوشش کل طیف نورانی نیاز به ابزارهای متعدد و جداگانه دارد.

نمونه‌هایی از لیزرهای متداول
⦁    لیزرهای متدوال مادون قرمز (IR (2 _ 10μm: لیزر مونو اکسید کربن (CO) ، لیزر دی اکسید کربن (CO2) و بلورهای هالیدهای قلیایی تابشی در طول موج 1.06 میکرومتر تولید کرده و لیزرهای الکساندریت یا دیودهای مخابراتی قابل تنظیم در IR نزدیک هستند.(طول موج2000)
لیزرهای محدوده نامرئی (400 _ 700nm): لیزرهای آرگون _ کریپتون و لیزر هلیوم _ نئون، لیزرهای رنگی و لیزر تیتانیوم_یاقوت کبود.
لیزرهای محدوده ماورای بنفش (200 _ 400nm): لیزرهای اگزایمر (لیزر هالید گاز نادر) ، نیتروژن ، لیزر رنگی با فرکانس دو برابر شده.

 طبقه بندی لیزر در حالت کلی
لیزر پیوسته کار ، لیزر پالسی

هولوگرام
1 -هولوگرام یک تصویر سه بعدی است که با استفاده از لیزر ایجاد می شود . نور دستگاه لیزر به دو پرتو می شکند . یکی از پرتوها با انعکاس از روی یک آینه از روی شی به صفحه عکاسی
می تابد . پرتو دیگر به وسیله آینه دیگری بدون برخورد به شی به صفحه عکاسی فرستاده
می شود . صفحه عکاسی در جایی قرار داده می شود که دو پرتو تلاقی می کنند . سپس صفحه عکاسی ظاهر می شود و ، در صورتی که به طریق صحیح به آن نور تابانده شود ، هولوگرام را پدیدار می کند.
چگونگی ایجاد این دو دسته تا حدود زیادی بستگی به ساختار درونی محیط تولید لیزر ، مکانیزم ایجاد لیزر و پارامترهای دیگر دارد که بررسی آنها خارج از این مقوله است. از لحاظ کاربردی ، لیزر‌های پالسی با مدت پالس 12-10 ثانیه در دسترس هستند. چنین لیزرهایی در جهت پژوهش در فرایندهایی که در گازها و مایعات ، با سرعتهای بسیار بسیار سریع رخ می‌‌دهد، بکار برده می‌شوند.

Image

با استفاده از لیزر ، می توان تصویری ایجاد کرد که هر گاه به طریق
صحیح به آن نور تابانده شود ،سه بعدی به نظر می رسد.

  لیزرها سه قسمت اصلی دارند:

۱-پمپ انرژی یا چشمه انرژی: که ممکن است این پمپ اپتیکی یا شیمیایی و یاحتی یک لیزر دیگر باشد.
۲- ماده پایه وزفعال که نام گذاری لیزر بواسطه ماده فعال صورت میگیرد
۳- مشدد کننده اپتیکی : شامل دو اینه بازتابنده کلی و جزئی می باشد

طرز کار یک لیزر یاقوتی:
پمپ انرژی در این لیزر از نوع اپتیکی میباشد ویک لامپ مارپیچی تخلیه است(flash tube) که بدور کریستال یاقوت مدادی شکلی پیچیده شده(ruby) کریستال یاقوت ناخالص است و ماده فعال ان اکسید برم و ماده پایه ان اکسید الومینم است.
بعد از فعال شدن این پمپ انرژی کریستال یا قوت نور باران می شودو بعضی از اتمها رادر اثرجذب القایی-stimulated absorption برانگیخته کرده وبه ترازهای بالاتر می برد.
پدیده جذب القایی: اتم برانگیخته = اتم+فوتون
با ادامه تشعشع پمپ تعداد اتمهای برانگیخته بیشتر از اتمهای با انرژی کم میشود به اصطلاح وارونی جمعیت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتمهای برانگیخته توان نگهداری انرژی زیادتر را نداشته وبه تراز با انرژی کم بر میگردند وانرژی اضافی را به صورت فوتون ازاد می کنند که به این فرایند گسیل خودبخودی گفته می شود ولی از انجایی که پمپ اپتیکی مرتب به اتمها فوتون می تاباند پدیده دیگری زودتر اتفاق می افتد که به ان گسیل القایی-stimulated emission گفته می شود .وقتی یک فوتون به اتم برانگیخته بتابد ان را تحریک کرده و زودتر به حالت پایه خود بر می گرداند.
گسیل القایی: اتم+دو فوتون = اتم برانگیخته+ فوتون
این فوتونها دوباره بعضی از اتمها را بر انگیخته میکنند و واکنش زنجیر وار تکرار می شود.
بخشی از نور ها درون کریستال به حرکت در می ایند که توسط مشددهای اپتیکی درون کریستال برگرداننده می شوند واین نورها در همان راستای نور اولیه هستد بتدرج با افزایش شدت نور لحظه ای می رسد که نور لیزر از جفتگر خروجی با روشنایی زیاد بطور مستقیم خارج می شود

Image(عکس در فایل دانلودی موجود است)
لیزر CO2 لیزرهای گازی نوع خاصی از لیزر است که در آن گازی داخل یک لوله ی شفاف مثل لامپ مهتابی می رود. عبور جریان از این لوله باعث رفت و آمد ِ فوتون می شود. اولین نوع ِ این لیزرها هلیم نئون بود. یعنی همین لیزرهای خانگی و مدارس. این لیزر ِ ایمن توسط یک ایرانی در مؤسسه ی بل به نام دکتر علی جوان اختراع شد. نوع دیگر لیزر لیزر CO2 است. البته در محفظه ی آن هلیوم و مقداری نیتروژن هم هست. کاز نیتروژن انرژی ِ الکترودها را ذخیره می کند. پس از برخورد مولکولهای نیتروژن به مولکول CO2 این انرژی انتقال می یابد. مولکولهای CO2 برانگیخته می شوند. گاز هلیوم به انتقال ِ انرژی کمک می کند. همچنین کمک می کند تا مولکولهای دی اکسید کربن زودتر به ترازهای انرژی عادی یا حالت عادی خود برگردند. این لیزرها بازده خوبی دارند.

اسکن میکروسکوپی لیزری هم کانون
اسکن میکروسکوپی لیزری هم کانون ابزاری مفید برای بازسازی سه بعدی و بدست آوردن تصاویر سه بعدی با کیفیت بالاست. خصوصیت کلیدی میکروسکوپی هم کانون توانایی آن در ایجاد تصاویر بدون کدورت از نمونه ها ی ضخیم در عمقهای مختلف است. اصول این نوع خاص از میکروسکوپی توسط ماروین مینسکی در سال1953 کامل شد اما هنوز سی سال دیگر زمان لازم بود تا لیزر بتواند بعنوان یک منبع نور نقطه‌ای برای میکروسکوپی هم کانون و بعنوان روشی استاندارد در اواخر دههٔ 1980 مورد استفاده قرار بگیرد.
لیزردرمانینماییازلیزرگازیدکترعلیجوانمجلهآوریل 1971.

در اسکن میکروسکوپی لیزری هم کانون یک پرتو لیزری از روزنهٔ منبع نوری گذشته و سپس توسط عدسی های شیئی به حجم کانونی کوچکی بر روی یک نمونهٔ فلورسانت متمرکز می‌شود. سپس مخلوطی از نور فلورسانت تابیده شده و لیزر بازتابیده شده از نقطهٔ مورد تابش قرار گرفته توسط عدسی های شیئی جمع آوری می‌شود. یک جدا کنندهٔ طیفی مخلوط نور را با گذر انتخابی نور لیزری و بازتاباندن نور فلورسانت به دستگاه جداساز از هم مجزا می‌کند. پس از گذر این نور، نور فلورسانت توسط یک وسیلهٔ جدا کنندهٔ نور( لولهٔ تشدید کنندهٔ نور و یا دیود بهمن نوری) باعث تغییر سیگنال نوری به یک سیگنال الکترونیکی شده که در مرحلهٔ بعد این سیگنال الکتریکی توسط رایانه قرائت می‌شود.
همانطور که در شکل میبینید روزنهٔ جداساز از ورود نور به اصطلاح تنظیم نشده یعنی نور فلورسانسی که از سطح کانونی عدسی های شیئی منشاء گرفته ممانعت به عمل می‌‌آورد. پرتوهای نوری از زیرسطح کانونی قبل از رسیدن به جداساز متمرکز می‌گردند و بخش عمده‌ای از آنها بواسطهٔ متمرکز نبودن بر روزنهٔ جداساز حذف می‌گردند و بقیهٔ پرتو ها به جداساز میرسند. در این روش بخش خارج از کانون قسمت بالا و پایین به میزان زیادی کاهش میابد که نهایتا باعث تشکیل تصویری واضح تر نسبت به روش های میکروسکپی سنتی می‌گردد. نور جداسازی شده‌ای که از بخش نورانی نمونه منشاء گرفته در تصویر حاصله بشکل یک نقطه نمایش داده می‌شود. بنابراین تصویر نهایی ردیف به ردیف و نقطه به نقطه تشکیل می‌گردد و درخشش نهایی تصویر حاصله با شدت نور جداسازی شدهٔ فلورسانت مطابقت خواهد داشت. پرتو سرتاسر نمونه را بشکل صفحه‌های افقی و با استفاده از آینه‌های نوسانگر خود مهار شونده اسکن می‌کند. این روش اسکن( پویش) کردن معمولا امکان ایجاد واکنشهای نهفتهٔ کمتری دارد و با کم شدن سرعت آن نسبت قابل قبول تری از سیگنال به خطا را نتیجه می‌دهد و نهایتا تباین و کیفیت بالاتری نتیجه می‌دهد. اطلاعات لازم را می‌توان با صفحه‌های کانونی متعدد و با تغییر سطح میکروسکوپ به سمت بالا و پایین بدست آورد. رایانه می‌تواند یک تصویر سه بعدی از نمونه را بوسیلهٔ سری ردن تعداد زیادی از تصاویر دو بعدی متوالی ایجاد کند.
بعلاوه میکروسکوپی کانونی پیشرفت زیادی را در کیفیت نهایی و ظرفیت برش نوری سری مناسب فراهم کرده که این امر حتی در نمونه‌های زندهٔ با حداقل آماده سازی قابل مشاهده است. با توجه به اینکه این روش وابسته به فلورسانس است، نمونه ها معمولا بایستی با رنگهای فلورسانس رنگ آمیزی شوند. با اینحال بایستی توجه کرد که غلظت مواد خارجی به حدی کم باشد که بر روی ساز و کار طبیعی زیستی تاثیر منفی نگذارد. برخی ابزار ها حتی قادر به ردیابی یک ملکول خاص فلورسانس نیز میباشند. همچنین روشهای ترنس ژنیک می‌توانند ارگانیسمهایی را بوجود بیاورند که خودشان ملکول فلورسانس تولید کنند.(مثل پرونئینهای سبز فلورسانت(

ارتقاء کیفیت با بکارگیری اصول هم کانونی  
وقتی روش مورد استفادهٔ ما روش میکروسکوپی لیزری هم کانون باشد روشی که برای توصیف تفکیک پذیری مورد استفاده قرار میگیرد بسادگی قابل مقایسه با دیگر روشهای اسکن همچون اسکن میکروسکوپی تونلی می‌باشد. این روش با اسکن نوک اتمی بر روی سطح هادی انجام می‌شود و همراه با تونلهای مجزاییست که هر جزء سطح را پایش می‌کند. اگر نوک اتمی کند شود، یعنی اگر شامل جند اتم شود کیفیت تصویر حاصله کاهش میابد.
در روش LSCM یک نمونه یفلورسانت توسط یک منبع نقطه‌ای لیزر مورد تابش قرار گرفته و کیفیت تصویر هر کدام از اجزا با شدت تابش فلورسانت حاصله متناسب خواهد بود. در اینجا اندازهٔ نوک اسکن کننده که برای کیفیت پایانی بسیار حیاتی است توسط حد انکسار سیستم نوری تعیین می‌گردد. این حالت موید این حقیقت است که تصویر منبع نقطه‌ای لیزر اسکن کننده یک نقطهٔ بی نهایت کوچک نیست بلکه از یک الگوی سه بعدی انکساری تبعیت می‌کند. اندازهٔ الگوی انکسار و اندازهٔ کانونی توسط اندازهٔ روزنهٔ عدسی های شیئی سیستم و طول موج لیزر مورد استفاده تعیین می‌گردد. این حالت را می‌توان بسادگی در حد تفکیک میکروسکوپهای نوری قدیمی مشاهده کرد که به اصطلاح به آن تابندگی گسترده می‌گویند. با اینهمه این مشکل با تکنیکهای تابندگی نور به اندازهٔ کوچکی که در هر زمان جداسازی می‌شود قابل بر طرف کردن است. با اینهمه این بسیار مهم است که حجم موثر نور تولیدی معمولا کمتر از حجم تابندگیست یعنی الگوی انکسار تولید نور قابل جداسازی دقیق تر و البته کوچکتر از الگوی انکسار تابندگیست. این به آن معناست که حد تفکیک میکروسکوپهای هم کانون نه تنها به احتمال تابندگی بستگی دارد بلکه به احتمال ایجاد فوتونهای قابل جداسازی نیز وابسته اند. بسته به خصوصیات فلوئورسانس رنگهای بکاررفته پیشرفتهای محدودی می‌تواند در کیفیت جانبی میکروسکوپهای سنتی بوجود آید. با اینهمه با استفاده از فرایند تولید نور با احتمال کمتر وقوع ایجاد اثرات ثانویه، با تمرکز بر نقطهٔ محدود با بالاترین کیفیت ممکن می‌توان به ارتقاء کیفیت جانبی به اندازه‌ای قابل توجه امید وار بود. متاسفانه احتمال تولید فوفتونهای قابل جداسازی اثر نامطلوبی بر نسبت سیگنال به خطا دارد. این مشکل را می‌توان بوسیلهٔ استفاده از فوتو دیتکتورهای بیشتر و یا با افزایش شدت منبع نقطه‌ای لیزر تابیده شده جبران کرد. افزایش شدت این خطرات باعث بی رنگ شدن و یا آسیب به نمونهٔ مورد نظر می‌شود خصوصا اگر آزمایشاتی برای مقایسهٔ درخشش فلورسانس مورد نیاز باشد.

لیزرها بر اساس طول موج و حداکثر توان خروجیشان در رده‌های زیر طبقه بندی می‌گردند:
دستهٔ اول: اساسا بی خطر؛ هیچگونه احتمالی برای آسیب رساندن به چشم در این گروه وجود ندارد. این امر می‌تواند بدلیل توان خروجی محدود آنها( که حتی در تماسهای طولانی هم خطری را متوجه چشم شخص نمیکنند) باشد و یا به این دلیل باشد که محصور بودن آنها و عدم تماس در شرایط طبیعی کار بطور کلی احتمال خطر تماس را از بین میبرد مثل حالتی که در دستگاه‌های خواندن سی دی وجود دارد.
دستهٔ دوم: واکنش طبیعی یسته شدن چشمها از آسیب جلوگیری خواهد کرد و توان خروجی آنها حدود 1mW می‌باشد.
دستهٔ سوم اولیه: لیزرهایی که در این دسته قرار میگیرند بواسطهٔ بکار گرفته شدن در ابزاری که ممکن است باریکهٔ نور را تغییر دهند خطرناک در نظر گرفته میشوند. توان خروجی آنها
 1-5mW می‌باشد. اغلب لیزرهای نقطه‌ای در این گروه قرار دارند.
دستهٔ سوم ثانویه: این دسته زمانی خطرناک محسوب میشوند که باریکه نور مربوط به لیزر مستقیما بدرون چشم تابیده ویا منعکس شود. این گروه مربوط به لیزرهایی می‌شود که قدرتی حدود 5-500mW دارند. انعکاسهایی که با پراکنده شدن باریکهٔ نوری همراه باشند بعنوان یک خطر جدی در نظر گرفته نمیشوند.
دستهٔ چهارم: لیزرهای این دسته بینهایت خطرناکند. حتی اگر انعکاس پراکنده شدهٔ آنها هم به پوست و یا چشم تابیده شود هم می‌تواند خطرناک باشد. لیزرهایی که توان بیش از 500mW و یا توانایی تولی امواج نوری داشته باشند در این دسته قرار میگیرند. اگرچه که شدت نور خروجی آنها ممکن است تنها چند برابر نور درخشان خورشید باشد ولی بایستی توجه داشت که این نور مستقیما بر نقطهٔ بسیار کوچکی متمرکز می‌گردد.
نیروهایی که برای لیزرهای بالا ذکر شد انواع معمول توانها میباشند. دسته بندی ما مستقل از طول موج و موجی و یا پیوسته بودن لیزر می‌باشد و تنها بر ایمنی تاکید دارد.


دانلود با لینک مستقیم

مقاله آنالیز طراحی و برنامه های کاربردی لیزر بال بار برای دقت کالیبراسیون ماشین های چند محور( همراه فایل اصلی مقاله به زبان انگ

اختصاصی از یارا فایل مقاله آنالیز طراحی و برنامه های کاربردی لیزر بال بار برای دقت کالیبراسیون ماشین های چند محور( همراه فایل اصلی مقاله به زبان انگلیسی) دانلود با لینک مستقیم و پرسرعت .

مقاله آنالیز طراحی و برنامه های کاربردی لیزر بال بار برای دقت کالیبراسیون ماشین های چند محور( همراه فایل اصلی مقاله به زبان انگلیسی)


مقاله آنالیز طراحی و برنامه های کاربردی لیزر بال بار برای دقت کالیبراسیون ماشین های چند محور( همراه فایل اصلی مقاله به زبان انگلیسی)

 

 

 

 



فرمت فایل : word(قابل ویرایش)- فایل زبان اصلی PDF

تعداد صفحات:25

چکیده :

روش­های معمول برای اندازه­ گیری خطای حجمی از مختصات دکارتی ماشین ابزار با استفاده از یک گام سنج یا تداخل سنج لیزر وقت گیر است. برای ماشینهای چند محور که اسپیندل مستواند نوسان کند, کالیبراسیون خطای حجمی حتی سختتر است.

در این تحقیق یک لیزر بال بار سه بعدی جدید (3D-LBB) برای راه­اندازی و اندازه­گیری سریع موقعیت ابزار نسبت به میز کار در هر نقطه کاری از ماشین چند محور توسعه داده شده است.دستگاه شامل استفاده از یک لیزر بال بار و دو انکودر لیزری دورانی برای تشخیص مسیر هدف در سیستم مختصات کروی است. طراحی ابزار مورد بحث است و ویژگی­های خطا برای ارتقاء دقت دستگاه تجزیه و تحلیل شده­اند.برنامه­های کاربردی برای اندازه­گیری خطای حجمی یک روبات و دو نوع از ماشین ابزار ,قابلیت دقت بالای لیزر بال بار سه بعدی را نشان می­دهد.

معرفی

تکنیک انجام تست دقت ماشین ابزار CNC می­تواند در خیلی از استاندارد­ها مانندISO230 یا ASME B5.54(1993) یافت شود.اکثر ابزار­های اندازه­گیری خطی موجود تک بعدی هستند. مانند تداخل سنج لیزر یا گام سنج. برای تست دایره­ای در حرکت دو بعدی به طور مشخص در ISO230-4(1998) آمده است.بعضی ابزار­ها مانند دابل بال بار (DBB) توسط(Bryan1982) و (Burdekin و jwye 1992) ودر آخرین لیزر ­بال ­بار

(LBB) توسط (Ziegert و Mize , Schmitz و Ziegert 2000 ) توسعه داده شدند. اگرچه این ابزار ها قادر به اندازه­گیری خطای دو محور هستند اما آنها هنوز تنها به یک بعد حساس هستند.

برای اندازه­گیری خطای حجمی ماشین ابزار,روشهای زیادی برای تشخیص 21 خطای جزئی وجود داردو سپس از روش ماتریس انتقال همگن (HTM) یا روش آنالیز حرکتی (Soons,Theuws,و Schellenkens 1992) برای خطاهای فضایی در حالت خاموشی خط (OFF-LINE) استفاده می­کنند.وانگ , در سال 2000 مطابق استاندارد ASME B5.54 برای اندازه­گیری خطای حجمی به طور مستقیم عمل کرد. استاندارد یک لیزر داپلر تغییر مکان سنج (LDDM) و یک آینه تخت بزرگ برای اندازه­گیری چهار قطر بدنه و ارزیابی خطای حجمی با استفاده از روش برداری را بکار می­گیرد.استاندارد صرفه جویی در زمان است اما تنها برای سختی ماشین­های cnc نوع سریالی معتبر است.

ماشین ابزار های شش محور برای انعطاف پذیری در پنج محور حرکتی توجه بیشتری را جلب می­کنند

(Patel و Ehman 1997). به هر حال با توجه به نوسان اسپیندل در جهات Pitch و yaw بیشتر سنسورها نیازمند به ایجاد امکان اندازه­گیری حرکت حجمی هستند. (Parenti و Gregorio 1999) . به هر حال در عمل این تجهیزات برای اجرا در صنعت خیلی گران قیمت هستند . تا کنون بعضی سیستم های ردیابی لیزری خوب (LTSs) طراحی شده در سیستم مختصات کروی وجود دارد که مستقیما می­تواند خطای حرکت سه بعدی را تشخیص دهد. (API 2002) . این سیستم در یک مسیر فعال در حال کار باید اجرا شود که نیاز به سنسور بازخورد و سرو کنترل برای ردیابی زمان واقعی هدف در حال حرکت دارد.این سیستم­ها نیاز به سیستم­های کنترل خیلی سریع و در نتیجه هزینه خیلی زیاد دارند.

 

یک طراحی جدید که مزایای LBB و LTSs را ادغام می­کند در این تحقیق برای اندازه­گیری سه بعدی اجسام در حال حرکت در زمان واقعی آمده است . این سیستم لیزر بال بار سه بعدی (3D-LBB) نام گذاری شده که بر اساس اصل مختصات کروی شامل تنها یک دستگاه اندازه­گیری خطی لیزری دقیق و دو انکودر چرخشی لیزری دقیق در حلقه پایه با یک بال بار قابل تغییر طول می­باشد. در این صورت یک چنین سیستمی می­تواند با یک کلگی مغناطیسی توسط هر هدف در حال حرکت سه بعدی تغییر طول دهد و حرکت آزادانه در فضا داشته باشد .این سنسورها به طور همزمان موقعیت گوی را ضبط کرده و تبدیل به مختصات دکارتی در زمان واقعی می­کنند.سیستم توسط یک تداخل سنج لیزری HP کالیبره می­شود که دقت سیستم می­تواند جبران شده باشد و به درجه بالاتری ارتقاء یابد. از آنجائیکه این سیستم در حالت غیر فعال در فضای سه بعدی اجرا شده, هزینه ارزان است.

 


دانلود با لینک مستقیم

پایان نامه بررسی تأثیر تابش اشعه لیزر کم توان بر وزوز و شاخصه‌های آزمون الکتروکوکلئوگرافی و آزمون گسیلهای صوتی گوش(همراه با تصا

اختصاصی از یارا فایل پایان نامه بررسی تأثیر تابش اشعه لیزر کم توان بر وزوز و شاخصه‌های آزمون الکتروکوکلئوگرافی و آزمون گسیلهای صوتی گوش(همراه با تصاویر) دانلود با لینک مستقیم و پرسرعت .

پایان نامه بررسی تأثیر تابش اشعه لیزر کم توان بر وزوز و شاخصه‌های آزمون الکتروکوکلئوگرافی و آزمون گسیلهای صوتی گوش(همراه با تصاویر)


پایان نامه بررسی تأثیر تابش اشعه لیزر کم توان بر وزوز و شاخصه‌های آزمون الکتروکوکلئوگرافی و آزمون گسیلهای صوتی گوش(همراه با تصاویر)

 

 

 

 

 

 

 

 

 

پایان نامه جهت اخذ درجه کارشناسی ارشد در رشته شنوایی شناسی


فرمت:word(قابل ویرایش)

تعداد صفحات:60

فهرست مطالب:

چکیده: ۴
متدو روشها: ۵
نتایج: ۷
بحث: ۸
فصل اول ۱۰
۱-۱-  موضوع و اهمیت آن: ۱۱
۲-۱- متغیرهای اصلی یا لغات کلیدی در مطالعه و تعاریف آنها: ۱۳
لیزر کم توان ( Low level laser  ). ۱۳
وزوز گوش (Tinnitus): 13
آکوستیک تروما (Acoustic-trauma): 14
تطابق بلندی (Loudness Matching of Tinnitus): 14
تطابق زیر و بمی وزوز (Pitch Matching of tinnitus) 14
معیار قیاسی _ دیداری (Visual Analog Scale) 15
(Ecoch G) الکترو کوکلئوگرافی: ۱۵
آستانه CAP: 16
دامنه (Amplitude): 16
نهفتگی (latency): 16
پرتوهای خودبخود صوتی گوش (oto acoustic emission) 17
پرتوهای صوتی اعوجاجی گوش (DPOAE) 17
۳-۱- اهداف بررسی : ۱۷
۱-۳-۱- اهداف ویژه : ۱۸
۲-۳-۱- فرضیه یا سوالات مهم: ۱۹
۴-۱- رعایت نکات اخلاقی: ۱۹
فصل دوم ۲۱
زمینه پژوهش ۲۱
۱-۲- لیزر چیست؟ ۲۲
۲-۲- مشخصات زمانی لیزر: ۲۲
۳-۲- کاربرد پزشکی لیزر: ۲۳
۴-۲- اثرات بیوانرژتیک یا القای بیولوژیک: ۲۹
۵-۲- مکانیسهای فعال سازی ( اکتیواسیون ) نوری ۲۹
۶-۲- وزوز: ۳۱
۷-۲- مروری بر مطالعات و آمار موجود: ۳۲
فصل سوم ۳۷
۱-۳- روند اجرای کار: ۳۸
۱-۱-۳-  ادیومتری تون خالص: ۳۹
۲-۱-۳- ادیومتری ایمیتانس: ۳۹
۳-۱-۳- آزمون الکتروکوکلئوگرافی : ۴۰
۴-۱-۳- آزمون گسیلهای صوتی اعوجاجی گوش (DPOAE) 41
۲-۳- تابش اشعه لیزر کم توان : ۴۳
۳-۳- چگونگی جمع‌آوری داده‌ها: ۴۵
فصل چهارم ۴۷
یافته های حاصل از پژوهش ۴۷
۱-۴- توزیع سنی: ۴۸
۲-۴- نتایج ارزیابیهای شنوایی: ۴۸
۳-۴- عوامل زمینه ای وزوز: ۴۹
۱-۳-۴- محل درک وزوز : ۴۹
۳-۳-۴- ساعات آگاهی از وزوز: ۴۹
۴-۳-۴- آزمون تطابق بلندی وزوز: ۴۹
۵-۳-۴- بررسی شدت وزوز بر حسب شاخص دیداری – قیاسی(VAS) : 50
۶-۳-۴- بررسی میزان آزاردهندگی وزوز بر حسب شاخص دیداری- قیاسی(VAS) : 50
۴-۴- تغییرات مربوط به شاخصه‌های آزمون Ecoch : 51
۱-۴-۴- تغییر آستانه پتانسیل عمل مرکب: ۵۱
۲-۴-۴- تغییرات دامنه پتانسیل عمل مرکب (CAP) : 51
۳-۴-۴- تغییرات نهفتگی پتانسیل عمل مرکب (CAP) : 51
۵-۴- تغییرات مربوط به آزمون DPOAE : 51
فصل پنجم ۵۳
۱-۵- نتایج کلی بررسی: ۵۴
۲-۵- بحث : ۵۴
۳-۵- اشکالات و محدودیت های مطالعه: ۵۸
۴-۵- ارائه پیشنهادها برای تحقیقات بعدی: ۵۸
فرم موافقت نامه آگاهانه ۶۰
پرسشنامه ۶۲
 

چکیده:

در پژوهش حاضر، تأثیر تابش اشعه لیزر کم توان بر وزوز بیماران دارای سابقه ضربه صوتی حاد و یا مزمن را بررسی نمودیم. و نیز شاخصه‌های آزمونهای الکتروکوکلئوگرافی و آزمون گسیلهای صوتی ناشی از اعوجاج را نیز قبل و بعد از تابش اشعه لیزر، ثبت و بررسی نمودیم. بیماران حدود ۱۲ جلسه تحت درمان با لیزر کم توان m.w 200 به مدت حدود ۴۲ دقیقه  قرار می‌گرفتند و این روند درمان ۲ مرتبه در هفته و به مدت ۱۲ جلسه صورت گرفت. طول موج لیزر مورد استفاده n.m 830 بود. ارزیابیهای ادیومتری تون خالص و ادیومتری ایمیتانس و ارزیابی وزوز شامل تطابق بلندی و تعیین زیر و بمی وزوز، میزان بلندی ذهنی وزوز بر حسب معیار قیاسی- دیداری و میزان آزاردهندگی ذهنی وزوز بر حسب معیار قیاسی- دیداری و آزمون الکتروکوکلئوگرافی و گسیلهای صوتی ناشی از اعوجاج نیز قبل  و بعد از دوره لیزر درمانی ثبت و بررسی گردید. تطابق بلندی وزوز با  تغییرات آماری معناداری را در قبل و بعد از تابش اشعه لیزر کم توان نشان داد. میزان بلندی ذهنی و آزار دهندگی ذهنی نیز کاهش یافت و لی بدلیل محدود بودن تعداد نمونه‌گیری این اختلاف معنادار نبود.

مقدمه:

وزوز درک صدا یا نویز بدون حضور یک منبع خارجی واقعی می‌باشد که این عارضه همراه با انواع گوناگون کم شنوایی می‌باشد وزوز اغلب با کم شنوایی ناشی از نویز همراه می‌باشد. مطالعات اپیدمیولویک نشان داده‌اند که حدود ۱۷% از جمعیت وزوز دارند در حالیکه تنها فقط ۵/۰ الی ۶/۱ % به طور شدیدی تحت تأثیر قرار می‌گیرند. در میان افراد با آسیب شنوایی حدود ۶۷% از وزوز رنج می‌برند (Zenker.F 2004)

در این پژوهش، تأثیر اشعه لیزر کم توان را بر وزوز و شاخصه‌های آزمون الکتروکوکلئوگرافی و آزمون گسیلهای صوتی ناشی از اعوجاج را بررسی نمودیم. اشعه لیزر کم توان، یک روش غیر تهاجمی بدون عوارض جانبی می‌باشد که به جهت پایین بودن توان خروجی لیزر و نیز طول موج منحصر به فرد آن، میزان جذب آن از طریق پوست کاهش یافته و عمق نفوذ پرتو در بافت افزایش می‌یابد. اشعه لیزر کم توان باعث فعالیت ATP سازی در سلولها می‌گردد.

 


دانلود با لینک مستقیم

دانلود مقاله لیزر

اختصاصی از یارا فایل دانلود مقاله لیزر دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله لیزر


دانلود مقاله لیزر

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:85

مقدمه:

لیزر این نور شگفت از نظر ماهیت هیچ تفاوتی با نور عادی ندارد و خواص فیزیکی لیزر ، آنرا از نورهای ایجاد شده از سایر منابع متمایز می‌سازد. از نخستین روزهای تکنولوژی لیزر ، به خواص مشخصه آن پی برده شد. و ما بصورتی گزینشی به این خواص از ماهیت فرآیند لیزر می‌پردازیم که خود این خواص بستری عظیم برای کاربردهای وسیع این پدیده ، در علوم مختلف بخصوص صنعت و پزشکی و ... ایجاد کرده است. به جرأت می‌توان گفت پیشرفت میزر علوم بدون تکنولوژی لیزر امکان پذیر نیست. شاید مهترین بخش فیزیک اتمی بحث مربوط به فیزیک لیزر باشد.

اصطلاح لیزر (Laser) از حروف اول کلمات انگلیسی به معنی تقویت نور توسط نشر القایی تابش درست شده است. از آنجا که این وسیله مبتنی بر همان اصول میزر (بجای نور لیزر ، میکروموج استفاده شده) است، تا مدتی به آن  نیز اطلاق می‌شود، ولی نام آن به سرعت به لیزر که عبارتی ساده‌تر تبدیل شد. نور حاصل از لیزر ، همان نور معمولی است، تنها چیزی که نور لیزری را از نورهای معمولی متمایز می‌سازد هماهنگی ایجاد شده در نور لیزری می‌باشد. و این هماهنگی ویژگیهای خاص و کاربردهای مختلف آنرا در زمینه‌های بسیاری توجیه می‌کند.

می دانید که با دادن انرژی به الکترونهای یک اتم می توان آنها را به مدارهای بالاتری برد. (حتماً با این تصویر کلاسیک که الکترون ها مدارهایی با انرژی مشخصی به دور هسته وجود دارند، آشنایید.) اما این خانه جدید برای الکترونها خیلی وضعیت پایداری ندارد و الکترونها ترجیح می دهند با پس دادن انرژی به مدار اصلی خودشان برگردند. این انرژی به صورت یک فوتون با فرکانس مشخص آزاد می شود. یعنی یک واحد انرژی ... اما می دانید که نور از همین فوتونها ساخته می شود. پس اگر با تعداد زیادی از اتمها به طور هم زمان این کار را انجام دهیم، می توانیم پرتو نوری تک فرکانس ایجاد کنیم. علاوه بر اینکه با روشهایی و دقت هایی می توان پرتوهای هم فاز تولید کرد. زیاد نمی خواهیم راجع به لیزر و ویژگیهای آن توضیح دهیم اما همین مهم است که بدانیم که این پدیده اساس تولید پرتوهای لیزر است. کلمه لیزر که انگلیسی آن "LASER" است مخفف عبارت:" شدت بخشی نور با استفاده از انتشار تحریک شده تابش است.

اما سوال مهم این است که برای داشتن لیزر با ویژگیهای خاص از اتمهای چه موادی، در چه شرایطی (غلظت، دما، فشار، ......) می توان استفاده کرد.

پاسخ بیشتر این سوالات در آزمایشگاه به دست می آیند، پس فیزیک لیزر جزو مباحث تجربی فیزیک جای می گیرد.در ایران نیز مراکزی چون مرکز تحقیقات لیزر، سازمان انرژی اتمی و ... مهمترین مراکزی هستند که پذیرای فیزیکدانان اتمی و لیزر هستند.

آنچه که سبب می شود پرتو لیزر از نورهای دیگر متمایز شود در حقیقت ویژگیهای منحصر بفرد آن است که در هیچ منبع نوری دیگر یافت نمی شود. چهار ویژگی عمده لیزر عبارتند از: 1- همدوسی، 2- تک رنگی، 3- واگرایی کم   4- موازی بودن پرت


نگاه اجمالی

لیزر کشفی علمی می‌باشد که به عنوان یک تکنولوژی در زندگی مدرن جا افتاده است. لیزرها به مقدار زیاد در تولیدات صنعتی ، ارتباطات ، نقشه ‌برداری و چاپ مورد استفاده قرار می‌‌گیرند. همچنین لیزر در پژوهشهای علمی و برای محدوده وسیعی از دستگاههای علمی‌، موارد مصرف پیدا کرده است. برتری لیزر در این است که از منبعی برای نور و تابشهای کنترل شده ، تکفام و پرتوان تولید می‌کند. تابش لیزر ، با پهنای نوار طیفی باریک و توان تمرکزیابی شدید ، چندین برابر درخشانتر از نور خورشید است.

 

دیدکلی

از هنگام بوجود آمدن لیزر به علت دارا بودن محسنات خلوص فرکانسی، پهنای باند و سیع ، راستاوری خوب و غیره ، بررسی موارد کاربرد آن به عنوان حامل در مخابرات و در نتیجه بکار گیری محاسن فوق تا کنون ادامه داشته است. در ابتدا گفته می‌شد به علت اینکه فرکانسها صدها هزار برابر می‌شود (حدود 105 برابر) ، تعداد کانالها افزایش می‌یابد که با ارزیابی خوشبینانه تری توام گشته است. استفاده از نور در مخابرات با پیدایش انسان شروع شد و بعد از اختراع لیزر ، دانشمندان توجه خاصی به استفاده از نور جهت انتقال اطللاعات مبذول داشتند. استفاده از لیزر نیم رسانا و تار نوری با تلفات کم از پیشرفتهای مهم در این خصوص بوده است.


ریشه لغوی

Laser

کلمه لیزر از حروف ابتدای عبارت "تقویت نور بوسیله گسیل القایی تابش"

(Light Amplification by Stimulated Emission of Radiation)

در لاتین ساخته شده است که معمولاً در طول موجهای مادون قرمز نزدیک ، مرئی و ماورای بنفش طیف الکترومغناطیس می‌باشد. به گسیلهای لیزر گونه طول موجهای بلندتر ناحیه میکروویو «میزر» گفته می‌شود. لیزر اصولاً به منبع نور همدوس و تکرنگ گفته می‌شود.

 

تاریخچه

میمن برای نخستین بار لیزر یاقوت را در سال 1959 ساخت.پس از دو سال آقای ایمان اخوان، دانشمند ایرانی برای نخستین بار لیزر گازی هلیوم- نئون را ساخت. از حدود سال 1966 لیزر نیم رسانا در مخابرات نوری در ژاپن و آمریکا مورد توجه قرار گرفت و نسبت به امکان مد گردانی مستقیم آن تا فرکانسهای فوق‌العاده زیاد شناخت حاصل شده است.

پیشنهاد استفاده از گسیل القایی از یک سیستم با جمعیت معکوس برای تقویت امواج میکروویو بطور مستقل بوسیله وبر ،جوردون،زیگر،باسو،تانز و پروخورو داده شد. اولین استفاده عملی از چنین تقویت کننده‌هایی توسط گروه جوردون ، زیگر و تاونز در دانشگاه کالیفرنیا انجام شد. اولین میزر با استفاده از گذار میکروویو در مولکولهای آمونیاک ساخته شد. در سال 1958 اولین بار پیشنهاد فعالیت میزر در فرکانسهای نوری در مقاله‌ای توسط اسکاولو و تاونز داده شد.

در سال 1960 یعنی کمتر از دو سال دیگر ، میلمن موفق به ساخت لیزر پالسی یاقوت شد. این لیزر کار که لیزر گازی هلیوم نئون بود، در سال 1961 توسط علی جوان ایرانی ساخته شد. در سال 1962 نیز پیشنهاد لیزرهای نیمه ‌هادی مطرح گردید.

 

سیر تحول و رشد

با پیشرفت روزافزون مکانیک کوانتومی و جنبه‌های ذره‌ای نور و تولید آینه‌هایی با توان بالا دانشمندان لیزرهایی را با توان خروجی بهتر(لیزرهای توان بالا) و همدوسی بالاتر ساخته شدند.

اختراع لیزر به سال 1958 با نشر مقالات علمی در رابطه با میزر اشعه مادون قرمز و نوری بر می‌گردد. نشر مقالات مذکور سبب افزایش تحقیقات علمی توسط دانشمندان در سر تا سر جهان گردید. در بخش ارتباطات نیز کارشناسان توانایی لیزر را که جایگزین ارسال یا مخابره الکتریکی شود، تأیید نمودند. اما اینکه چگونه پالسها را مخابره نمایند، مشکلات زیادی را بوجود آورد. در سال 1960 دانشمندان پالس نور را مخابره نمودند، سپس از لیزر استفاده کردند. لیزر ، نور خیلی زیادی را تولید نمود که بیش از میلیونها بار روشنتر از نور خورشید بود. متأسفانه پرتو لیزر می‌تواند خیلی تحت تأثیر شرایط جوی مثل بارندگی ، مه ، ابرهای کم ارتفاع ، چیزهای موجود در آزمایشهای مربوط به هوا از قبیل پرندگان قرار گیرد.

دانشمندان نیز طرحهای جدیدی را جهت حمایت نور از برخورد با موانع را پیشنهاد نمودند. قبل از اینکه لیزر بتواند سیگنالهای تلفن را ارسال دارد. اختراع مهم دیگر موجبر فیبر نوری بود که شرکتهای مخابراتی برای ارسال صدا ، اطلاعات و تصویر از آن استفاده می‌کنند. امروزه ارتباطات الکترونیکی بر پایه فوتونها استوار می‌باشد. تکنولوژی تسهیم طول موج یا رنگهای مختلف نوری برای ارسال تریلیون بیت فیبر نوری استفاده می‌کند.

بعد از اینکه لیزر دی اکسید کربن در سال 1964 اختراع شد کاربرد لیزر در زمینه‌های پزشکی خیلی توسعه یافت و برای جراحان این امکان را فراهم نمود تا بجای استفاده از چاقوهای جراحی از فوتون استفاده نمایند. امروزه لیزر می‌تواند وارد بدن گردد، اعمال جراحی را انجام دهد، در صنایع و در کارهای ساختمانی ، در وسایل نظامی و غیره کاربردهای فراوان آنرا می‌توان مشاهده نمود.

 

سازوکار لیزر

نخست لازم است تا به محیط فعال لیزری به نحوی انرژی داده شود. به این عمل پمپاژ لیزر می‌گویند. عمل پمپاژ به روشهای گوناگونی صورت می‌گیرد که می‌توان به پمپاژ نوری، پمپاژ الکتریکی، پمپاژ توسط لیزرهای دیگر (پمپاژ لیزری)و جز اینها نام برد.

 

گونه‌های لیزر

لیزرها را براساس مواد لیزرزا به چند گروه زیر بخش بندی می‌کنند : لیزرهای جامد، لیزرهای گازی، لیزرهای مایع یا رزینه، لیزرهای الکترون آزاد و لیزرهای نیمه رسانا لیزرها را بر پایه خروجی آنها به دو دسته لیزرهای تپی و لیزرهای پیوسته کار تقسیم بندی می‌کنند. غالبا لیزرهای توان بالا را از نوع تپی (پالسی) میسازند.


دانلود با لینک مستقیم

دانلود پایان نامه لیزر الکترون آزاد free eleetron laser (FEL)

اختصاصی از یارا فایل دانلود پایان نامه لیزر الکترون آزاد free eleetron laser (FEL) دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه لیزر الکترون آزاد free eleetron laser (FEL)


دانلود پایان نامه لیزر الکترون آزاد free eleetron laser (FEL)

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:43

پایان نامه برای دریافت درجه کارشناسی فیزیک 

فهرست مطالب:
عنوان                                                                                  صفحه
فصل اول    1
مقدمه‌ای راجع به لیزر:    1
خواص اساسی نور تقویت شده:    6
3- درخشش بالا:    6
مقدماتی از طیف نمایی:    7
ساختار الکترونی- مولکولی:    8
فصل دوم    9
اصول لیزر الکترون آزاد    9
لیزر الکترون آزاد:    9
اساس کار لیزر الکترون آزاد:    11
فصل سوم    23
معرفی میدانهای ویگلر (wiggler)    23
انواع ویگلرها در لیزرهای الکترون آزاد    23
معرفی میدان ویگلر:    23
مکانیسم میدانهای ویگلر:    24
انواع ویگلر در لیزرهای الکترون آزاد    27
تعریف ویگلر (میدان پیچ دهنده):    27
انواع ویگلرها:    28
شکل  آرایش ویگلر با آهن ربای الکتریکی    29
پلاسما، مادۀ فعال لیزر الکترون آزاد:    33
پایدار سازی یک باریکۀ الکترونی:    34
فصل چهارم    36
لیزر الکترون آزاد- کاربردهای آن    36
چگونه بهره لیزر الکترون آزاد را افزایش دهیم؟    36
چکیده مطالب    36
لیزر الکترون آزاد- کاربردهای آن:    36
چکیده مطالب    42
منابع    43

 

 

فصل اول مقدمه‌ای راجع به لیزر:

 

دو اصطلاح "لیزر " و "میزر" مشخص کننده ادوات جدیدی‌اند موسوم به "تقویت کننده‌های کوانتومی" و مخفف به ترتیب «تقویت میکرو موج توسط گسیل برانگیختة تابش» و «تقویت نور توسط گسیل برانگیخته تابش» می‌باشند.

در شکل اجزاء لیزر مشاهده می‌شود:

 

   

شکل

بطور خلاصه، برای حصول عمل تقویت کوانتوم‌های انرژی ابتدا لازم است به محیط انرژی داده شود تا خاصیت تقویت کنندگی در آن بوجود آید یا اصطلاحاً فعال شود، در مرحله بعد جمعت فوتونها در اثر فرآیند «گسیل برانگیخته» در محیط فعال شده افزایش می یابد. و در آخرین مرحله ممکن است مقداری از فوتونها را با همان فاز بدرون محیط برگردانده شوند که در شکل بصورت «پس خور مثبت» نشان داده شده است.

از نظر تاریخی مقاله اینشتین، را در زمینه ترمودینامیک آماری، برای بررسی مسئله جسم سیاه درون یک مشدد از دیده کوانتش انرژی برای اجزاء ماده و تصویر ذره‌ای نور «فوتون» استفاده کرده – که نخستین طلیعه ظهور این ابزار می‌دانند. اما تحقق عملی آن در سال 1958 بطول انجامید.

تا سرانجام در سال 1960 میمن با تابانیدن «تپ نوری شدید» حاصل از یک لامپ فلاش حلقوی، به یک میله مرکزی از جنس یاقوت مصنوعی توانست نخستین لیزر را بسازد. و تا امروز از مواد مختلف در حالات گوناگون (جامد- مایع- گاز و پلاسما) برای تقویت فوتونی در محدوده وسیعی از طیف استفاده شده است که همگی آنها با عنوان کلی لیزر شناخته می­شوند.

در ادامه توجه مان را به اجزاء اساسی تقویت کننده­ها معطوف می­کنیم:

الف) گسیل برانگیخته:

انیشتن در ضمن بررسی مسئله جسم سیاه یک مشدد بسته که در تعادل ترمودینامیک با جسم در دمایباشد از ایده­های کوانتش انرژی تابش کننده­ها و کوانتش انرژی الکترو مغناطیس نظریه فوتونی استفاده نمود.- ولی دریافت که برای حصول تابع توزیع پلانک- برای چگالی فوتونها بر حسب فرکانس لازم است سه نوع برهم کنش فوتون- ماده را در نظر گرفت، که یکی جذب و دو تا گسیل هستند.

یکی از آنها فرآیندهای گسیل خودبخودی است و تابع مشخصات درونی ذره میباشد. و دیگری در اثر تداخل فوتون با یک سیستم در حالت تحریکی و افت آن به یک حالت پائینی بطوری که اختلاف انرژی آنها برابر انرژی فوتون ورودی باشد رخ می­دهد «گسیل القایی یا برانگیخته». فوتون حاصله علاوه بر هم انرژی بودن با فوتون ورودی هم راستا و همدوس نیز هست. برای اثبات می‌توان از تصویر کلاسیک تشدید بین دو نواسانگر یکسان کمک گرفت.

ب) ایجاد وارونی جمعیت (فعال کردن محیط):

در نظریه ذره­ای، هر محیط مادی در واقع مجموعه­ای از سیستم­های کوانتومی میباشد. در این حالت چنانچه NO را چگالی اجزاء در حالت پایه و Ni را چگالی اجزاء در حالت تحریکی liم با انرژی E در نظر بگیریم خواهیم داشت:

Ni = No

T، دمای محیط در شرایط تعادل ترمودینامیکی در واحد مطلق است، اکنون دو تراز دلخواه را در نظر می­گیریم، با انرژی­های و چگالیهای اجزاء بطوری که

    و   در حالت

     و  

برای فوتونی با انرژی احتمال جذب شدن بیشتر از تقویت بر اثر گسیل القایی میباشد.

پس به دیگر شرط اینکه محیط قابلیت تقویت داشته باشد اینست که (شرط وارونی جمعیت) و با توجه به:  

                            

و از قبل که داشتیم

لازمۀ این امر برقراری شرط است. اما فرآیندی منجر به منفی شدن دمای مطلق شود از دیدگاه کلاسیک ممکن نیست پس از طریق عادی ما حداکثر خواهیم داشت:

 

که در این حالت هم تعداد کل گسیلها برابر جذبهاست. و در واقع محیط خنثی خواهد بود.

در نتیجه برقراری شرط تقویت محیط با بودن در تعادل ترمودینامیکی کلی و فراگیر مستقل از زمان- حداقل برای عملکرد پیوسته منافات دارد.

لهذا برای عملی کردن وارونی جمعیت بین دو تراز احتیاج به حضور یک با بیشتر تراز واسط هست. بر این اساس سیستم­های لیزی به دو گروه عمدۀ

«سه ترازی» و «چهار ترازی» تقسیم می­کنند.


دانلود با لینک مستقیم