فرمت فایل : word(قابل ویرایش)
تعداد صفحات:19
فهرست مطالب:
سیل
نکات کلی برای ایمنی در مدارس در مقابل آتش سوزی
خصوصیات فیزیکی مدرسه در مقابل آتش سوزی
تراکم دانش آموزان در هنگام آتش سوزی
تاثیر اندازه مدرسه در مقابل آتش سوزی
رنگ فضاها در مقابل آتش سوزی
سازماندهی و ساختار کلاس
انواع چیدمان در کلاس
تعویض مکانیکی هوا
پیشنهاد سیستم گرمایش و سرمایش برای مدرسه
تأسیسات سرمایش و گرمایش
تقسیم بندی فضا
راهنمای درجه استفاده
پیشنهاد استفاده از انرژی خورشیدی در مدرسه به عنوان منبع تولید گرما و نور
آسایش حرارتی
چکیده:
برای حفظ و حراست ساختمان های آموزشی و امنیت دانش آمزان در مقابل سیل به کارگیری تمهیداتی در انتخاب مکان می تواند موثر واقع گردد. این تمهیدات شامل احتراز از ساخت فضاهای آموزشی در مناطق پست و سیل گیر و حفظ حریم سیل ها و رود خانه های فصلی و دائمی خواهد بود.
* نکات کلی برای ایمنی در مدارس:
خصوصیات فیزیکی مدرسه:
* تراکم دانش آموزان:
تحقیقات نشان می دهند ، تراکم زیاد جمعیت به عنوان عامل فیزیکی، رفتارهای تهاجمی را افزایش می دهد و در صورت استمرار، موجب بروز واکنش های بیمار گونه و نابهنجاری می شود. تراکم فیزیکی نیز در انسان حساس ازدحام بر می انگیزد. نظر به اینکه دانش آموز به اندازه سطح کلاس مشخص می کنند. احساس ازدحام از میزان تراکم تأثیر پذیرد ولی پدیده ای است ذهنی و از عوامل روانشناختی از یکسو و محیطی – فرهنگی از سوی دیگر متأثر می شود.
آستانه تحریک پذیری افراد از نظر احساس ازدحام تحت تأثیر تجارب پیشین آنان قرار می گیرد. به عنوان مثال معلمینی که به تدریس در کلاسهای پر جمعیت عادت کرده اند، در یک کلاس سی نفره احساس ازدحام می کنند.
نوع فعالیتی که قرار است در فضای واحد انجام شود نیز عاملی بس موثر در بروز احساس ازدحام می باشد. به عنوان مثال هرگاه در یک کلاس پر جمعیت (با تراکم بالا) دانش آموزان با رفتار انفعالی، فقط به سخنان معلم گوش کنند، ازدحام محسوب نمی شود. مگر اینکه موضوع درس (کاردستی) باشد و یا یک روش تدریس ویژه دانش آموزان را به فعالیت و تحرک بیشتر وادار نماید. به طور خلاصه احساس ازدحام هنگامی به انسان دست می دهد که علاوه بر عوامل دیگر، تراکم جمعیت مخل آسایش شده، موانعی در مقابل جریان طبیعی فعالیتها ایجاد کند.
* تاثیر اندازه مدرسه:
به نظر می رسد که مدرسه بزرگ نفوذ دارد. ابعاد خارجی بزرگ آن، راههای طولانی و اتاقهای زیاد آن و گروههای بزرگ دانش آموزان آن ، همگی اشاره بر قدرت و خوبی آن دارند. مدرسه کوچک فاقد این اطمینان است. ساختمان متوسط آن ، راهروی کوتاه و اتاقهای کم و دانش آموزان معدود آن به صورت گروههای کوچک می باشند و این یک حسی از محیط سطحی و نه چندان تحصیلی را به ما منتقل می کند. اما اینها تنها یک نظریه گول زننده است.
کاملترین اطلاعات در مورد تاثیر اندازه مدرسه بر نوجوان و تحقیقات انجام شده توسط یک روانشناس به نام راجر بایگل و همکارانش بدست آمده است.
مدارس بزرگ بیش از مدارس کوچک مسائل متنوع را ارائه می کنند. اما تنوع موضوعات ارائه شده در آنها هنگامی که اندازه مدرسه افزایش بیشتری دارد به مقدار کمی افزایش پیدا می کند. در حالیکه یک مدرسه با 2000 دانش آموز ممکن است دارای 50 موضوع کلاسی متفاوت باشد. یک مدرسه با 4000 دانش آموز ممکن است فقط شامل 60 موضوع باشد. به هر حال شاید جالب توجه ترین یافته ها، توجه به مشارکت در فعالیتهای غیر کلاسی است. ممکن است توقع داشته باشیم که مدارس بزرگ علاوه بر فراهم کردن فعالیتهای متنوع تر ، فعالیتهای فوق برنامه گوناگونی را نیز به دانش آموزانشان ارائه دهند که البته همین طور نیز هست. اما از آنجا که مدارس بزرگ دانش آموزان زیادی دارند، مشارکت در فعالیتهای مختلف در مدارس بزرگ نصف مدارس کوچکتر است. مدرسه کوچک به دانش آموزان اجازه کار نزدیک با دیگران می دهد و حس اهمیت و مورد نیاز بودن را به آنها القا می کند.
گزارشی نشان داده ات که در یک مدرسه کوچک دیر یا زود اغلب دانش آموزان این شانس را می یابند که در یک تیم ورزشی یا تشکیلات دانش آموزی مشارکت کنند. اندازه مدرسه مخصوصاً بر مشارکت دانش آموزانی که موقعیت خوبی ندارند، اثر دارد. در مدارس بزرگ دانش آموزان حاشیه ای به ندرت در فعالیتهای مدرسه سهیم می شوند ولی در مدارس کوچک این دانش آموزان حس درگییری و تعهد یکسانی به دانش آموزان موفق از نظر درسی دارند.
کارشنماسان اکنون در مورد این مساله که اندازه ایدال آل یک مدرسه برای نوجوانان بین 500 تا 1000 دانش آموز است، اتفاق نظر دارند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:13
چکیده:
در بسیاری موارد نیاز به اندازه گیری مقاومت بتن یک عضو سازه ای می باشد. در این موارد مغزه گیری به عنوان یکی از روشهای تخمین مقاومت قسمتهای داخلی یک عضو می تواند به کار رود. با توجه به عوامل مؤثر بر مغزه، مقاومت مغزه با مقاومت نمونه های استوانه ای معمول برابر نیست. لذا یک برنامه آزمایشگاهی جهت بررسی مقاومت مغزه تهیه شد و در دانشگاه صنعتی شریف به اجرا درآمد. هدف از این برنامه تعیین ضرایبی جهت ارتباط بین مقاومت مغزه و مقاومت نمونه استوانه ای می باشد.
در این راستا نمونه هایی به صورت تیر و استوانه برای سه مقاومت مختلف بتن ساخته شدو پس از عمل آوری از تیرها مغزه هایی گرفته شد. مغزه ها همراه با نمونه های استوانه ای استاندارد تحت آزمایش فشاری قرار گرفتند. بر اساس نتایج حاصل از آزمایش ها،روابطی برای تعیین مقاومت بتن بر اساس مقاومت مغزه به دست آمد.
کلید واژه ها: آزمایشهای بتن، مغزه، مغزه گیری، مقاومت بتن، نمونه های استوانه ای استاندارد
مقدمه
معمول ترین آزمایش بر روی بتن، آزمایش مقاومت فشاری است زیرا به هر حال بتن یک مصالح سازه ای است و از طرفی آزمایشهای مربوط به اندازه گیری مقاومت ساده هستند. نمونه های این آزمایش از بتن تازه و قبل از ریختن آن در قالب گرفته می شود. درحقیقت این آزمایش ، مقاومت موجود در عضو سازه ای را به دست نمیدهد زیرا در آن اثرات انتقال، تراکم و عمل آوری بتن با وضع موجود در سازه متفاوت است. به علاوه از آنجا که تعیین مقاومت نمونه های استاندارد معمولا در سن 28 روزه انجام میشود، نمیتوان از آن برای تعیین مقاومت در سنین کمتر استفاده کرد.گاهی اوقات ممکن است اطلاعات لازم در مورد یک سازه ساخته شده موجود نباشد یا اینکه اطلاعات موجود بنابر دلایلی مورد تردید واقع شوند یا برای بررسی علل خرابی یک ساختمان پس از خرابی آن نیاز به اندازه گیری مقاومت بتن باشد.در همه این موارد آزمایشهای در محل مورد نیاز میباشند.
مغزه گیری به عنوان یکی از دقیق ترین و مهمترین آزمایشهای در محل مطرح میباشد. هر چند مغزه گیری بین آزمایشهای در محل جزء آزمایشهای پر هزینه و با سرعت کند محسوب میگردد اما دقت و قابلیت اعتماد مناسب آن انجام این آزمایش را توجیه میکند . در بسیاری موارد با توجه به عدم دقت سایر آزمایشهای در محل، نیاز به مغزه گیری وجود دارد اگرچه آنها در کاهش تعداد مغزه های مورد نیاز موثر میباشد. شایان ذکر است که بررسی دقیق و هوشمندانه باید همواره همراه آزمایشهای غیر مخرب باشدکه مغزه گیری را نیز دربرمی گیرد.
جهت ارزیابی نتایج این آزمایشها باید رابطه بین نتایج در محل و مقاومت بتن تعیین گردد. هدف از این مقاله ارائه ضرایبی برای ارتباط دادن مقاومت مغزه و مقاومت نمونه استوانه ای استاندارد برای مقاومتهای کمتر از Kg/cm² 450 بر اساس مطالعات آزمایشگاهی می باشد.
تاریخچه :
در اوایل دهه 60 میلادی و در اوایل شروع تحقیقات بر روی مقاومت مغزه در مقاله ای توسط آقایان Tynes و Mather بیان شد که برای افزایش دقت نمونه های مغزه گیری علاوه بر افزایش تعداد مغزه ها باید ابعاد آنها را نیز بزرگ تر در نظر گرفت[4]. در همان دهه افراد مختلف کارهای آزمایشگاهی و تجربی زیادی در این زمینه انجام دادند. آنها نیز به این نتیجه رسیدند که نتایج آزمایش مقاومت فشاری مغزه ها دارای انحراف معیار بیشتری نسبت به نمونه های استاندارد می باشند [4]. آقای Bloem در سال 1968 به این نتیجه رسید که در صورت عمل آوری خوب و ایده آل مقاومت فشاری مغزه ها به طور متوسط %10 کمتر از مقاومت نمونه های استوانه ای استاندارد عمل آوری شده تحت شرایط میدانی می باشد در حالی که برای عمل آوری ضعیف این مقدار ممکن است به %20 برسد [4]. در همان سال Petersons نیز اعلام کرد که نسبت مقاومت مغزه به مقاومت استوانه استاندارد (در عمر یکسان) همواره از یک کمتر است و این نسبت با افزایش سطح مقاومت استوانه کاهش می یابد. او مقادیر تقریبی این نسبت را قدری کمتر از یک برای وقتی که مقاومت استوانه استاندارد حدود MPa 20 باشد و 7/0 برای وقتی که مقاومت نمونه استوانه ای استاندارد Mpa 60 باشد به دست آورد . او همچنین نشان داد با افزایش عمق زیر سطح فوقانی، مقاومت مغزه افزایش می یابد]1].
در سال 1971، Petersons پیشنهاد کرد که برای شرایط معمولی افزایش در مقاومت پس از سه ماه در مقایسه با مقاومت 28 روزه حدود %10 و برای عمر 6 ماه %15 درنظر گرفته شود هر چند سه سال بعد توسط Plowman و همکارانش شواهدی به دست آمد که نشان می دهند بتن در جا ریخته شده در کارگاه پس از 28 روز افزایش کمی در مقاومت حاصل می نماید[1].
در سال 1977 Bentur و Bungey به این نتیجه رسیدند که در مورد سنگدانه هایی با حداکثر اندازه mm 20، مغزه های با قطر mm 50 دارای مقاومتی حدود %10 کمتر از مغزه های با قطر mm 100 می باشد [1]. گزارشهای مختلف در سال 1977 توسط Malhotra و Murphy پیشنهاد می کنند که حتی در شرایط ایده آل در قالب ریختن و به عمل آوردن بتن غیر محتمل است که مقاومت مغزه ها بیش از %70 تا %85 مقاومت نمونه های آزمایشهای استاندارد باشد [1]. در سال 1979، Bungey رابطه بین تغییرات مقاومت مغزه با تغییرات l/d را به دست آورد و همچنین ضرایبی جهت تعیین مقاومت مکعبی بتن از مقاومت مغزه های کوچک (با قطر mm44) ارائه داد [3]. آزمایشهای ژاپنی ها در سال 1979 نشان داد که آزمایش در حالت خشک نتایجی را که حدود %10 بیش از نتایج آزمایش در حالتی که مغزه مرطوب باشد به دست می دهد [1]. در سال 1984، آقایان Munday و Dhir اثر l/d را برمقاومت بررسی نمودند. آنها همچنین روابطی تجربی برای به دست آوردن مقاومت مکعبی بتن از مقاومت مغزه پیشنهاد نمودند[3]. در سال 1992 Lee et al پیشنهاد کرد که از مقاومت مغزه های استاندارد به عنوان پایین ترین حدمقاومت واقعی بتن در ساختمان استفاده گردد.
از آزمایشهای جدیدی که در مورد بررسی رفتار مغزه ها انجام شده است می توان به آزمایشها و بررسیهای آقایان Bartlett و MacGregor در دانشگاه آلبرتا اشاره نمود. در یکی از این آزمایشها با استفاده از 758 مغزه اثر نسبت طول نمونه به قطر آن را بر مقدار و دقت مقاومت فشاری آنها بررسی کرده اند. آنها ضرایب اصلاح مختلفی به دست آورده اند تا مقاومت مغزه با بین 1 تا 2 نسبت به مقاومت نمونه استاندارد با 2= را به دست دهد. اطلاعات ایشان بیان می کند که رطوبت مغزه و مقاومت آن به شدت بر ضرایب اصلاح فوق تاثیر می گذارند [8].
در مقاله دیگری Bartlett و MacGregor نشان دادند که مقاومت بتن در محل و ظرفیت عضو سازه ای می تواند با دقت مناسب از مقاومت مغزه به دست آید به شرطی که آثار خرابی مربوط به حفاری و شرایط رطوبت مغزه ها مدنظر قرارگیرند [9].
در حال حاضر با وجود انحراف معیارزیاد درآزمایشهای مربوط به مغزه ها، این آزمایش به عنوان یکی ازدقیق ترین و مهمترین انواع آزمایشهای غیرمخرب مطرح می باشد. مطالعات گسترده انجام شده، مخصوصاً مطالعات تجربی و آزمایشگاهی به نوبه خود نشان از اهمیت این آزمایش دارد. با این وجود هنوز اطلاعات بسیاری در مورد مغزه ها، در پرده ابهام وجود دارد. به عنوان مثال هنوز تفاوت بین مقاومت مغزه های استاندارد و بتن واقعی موجود در کارگاه به طور کامل بررسی نشده است [10]. از طرفی گسترش روزافزون استفاده از این آزمایش در کارهای ساختمانی و روسازی های بتنی، لزوم انجام تحقیقات بیشتر در این زمینه را می رساند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:13
SHSP (Small heat shock protein) به طور گسترده ای در سلولهای پروکاریوت و یوکاریوت در مواجهه با گرما تولید می شود به خاطر تنوع و فراوانی غیرعادی در گیاهان پیشنهاد می شود که SHSP اهمیت ویژه ای دارند(علاوه بر تنش گرمایی، SHSP در گیاهان تحت سایر تنش ها و در مراحل نهایی نمو تولید می شود بیان ژن SHSP و تجمع پروتئین به هنگام مواجهه با تنشهای محیطی ما را متوجه این فرضیه می کند که این پروتئین ها یک نقش مهم در مقاومت به تنش بازی می کند وظیفه SDSPها همانند یک کاپرون (Chapron) مولکولی به وسیله سنجشهای invitro و onvivo تأئید می گردد.
در مواجهه با تنش گرما هر دوی سلولهای پروکاریوت و یوکاریوت یک گروه پروتئینی با وزن مولکولی 15 تا 42 کیلو دالتون (KDa) که پروئینهای Small heat shock (SHSP) نامیده می شود تولید می گردند. در گیاهان به علت تولید زیاد و فراوانی غیرعادی SHSP ممکن است نیازشان را به سازش هر سریعتر به تغییرات محیطی مثل دما، نور، رطوبت منعکس سازند.
SHSPها بر اساس توالی DNA، تعیین موقعیت درون سلولی به 6 Class مرتب می شوند. SHSPها معمولاً در بافتهای رویشی تحت شرایط نرمال کشف نشده اند اما می توان به وسیلة تنشهای محیطی و محرک رشد و نمو به وجود آیند. رابطة بین سنتز SHSPها و پاسخ به تنش منتهی به این فرضیه شد که SHSPها سلولها را از آسیب اثرات استرس محافظت می نمایند. مدارک قوی مبنی بر این است که SHSPها همانند یک کاپرون مولکولی از اتصال ناقص سوبسترای پروتئین ها جلوگیری گردد و از آن طریق از تجمع برگشت ناپذیر آنها جلوگیری می کند بنابراین موجب اتصال درست سوبسترا می گردد. این Review داده های فیزیولوژیکی و مولکولی را در مورد SHSP گیاهان را بررسی کرده است.
SHSP ها پروتئینهایی با وزن مولکولی 15 تا 42 کیلو دالتون اند که روی الکتروفورز ژل پلی اکریلامید (PAGE) مشخص می گردند. اغلب این پروتئینها، پروتئینهای غالبی اند که در مواجه با گرما تولید می گردند. Scharf و همکاران SHSP را به طور کامل در Avabidapsis thaliana که پیش می رود تحقیقات به مرور زمان در این گیاه را تحقیق کرده و متوجه شدند ژنوم Avabidopsis محتوی 19 Fream خواننده می باشد که پروتئینهای وابسته به SHSPها را رمز می کند.
تحت شرایط نرمال اغلب SHSPها را در بافتهای رویشی نمی توان یافت اما به سرعت در واکنش به گرما تولید می شوند افزایش دما تا حدود 15-10 بالاتر از دمای مناسب رشد که معمولاً در دامنة غیرکشنده است موجب واکنش به تنش گرمایی می شود. میزان تجمع SHSP وابسته به دما و طول مدت استرس است بعد از تنش گرمایی SHSP مقدارش ثابت مانده و یک نیمة عمر 50-30 ساعت دارد. پیشنهاد شده که SHSP ها ممکن است برای بازیابی و بهبودی گیاه مهم باشد فقط تنش گرمایی، بیان ژن SHSP را تحریک نمی کند گاهی اوقات تجمع SHSP در واکنش به تنش اسمزی است. در آفتابگردان ژنهای (CI)6/17Ha HSP و CII9/17 Ha HSP به وسیلة تنش آب به وجود می آینمد و مقادیر mRNA به طور مثبت وابسته به درجة دهیدراسیون است. با افزایش دهیدراسیون مقدار mRNA برای سنتز SHSP افزایش می یابد در آفتابگردان در تحت تنش به یکسان بودن HSDP در ساقه ها و ریشه های پی برده شد مانیتول و ABA می توانند موجب تحریک بیان ژن CII9/17 Ha HSP در کشت invitro وانهالها شود.
SHSP سیتوزولی که هومولوگ با CI6/17Ha HSP و CII9/17 Ha HSP می باشند به طور ترکیبی در تجدید حباب گیاه Craterostigma plantagineum تجمع می یابند اما نه در کالوس خشک به حالت مقاوم است (مگر اینکه با ABA با مشاء خارجی تیمار شود.
مقادیر SHSP در گیاهان C.plantagineum در واکنش به خشکی افزایش می یابد. بنابراین پیشنهاد می گردد SHSP در مقاومت به خشکی مهم اند و در این زمینه مکانیسم وابسته به ABA واسطه می شود. رمز کردن ژنها برای تولید SHSP ها که در واکنش به تنش اسمزی تحریک می شود انجام گیرد که در اینجا SHSPهای سیتوزولی CII-7/17At HSP و CII6/17At HSP در A.thaliana (که A6/17 At HSP و II7/17 At HSP نامیده می شوند) و نیز
CII17QS HSP که در دالانهای Cork-oak وجود دارند تولید می گردند. در مقابل با CI-17QS HSP، پروتئینهای SHSP سیتوزولی CII در A.thaliana در مقادیر بالای تنش اسمزی یافت نشد.
در زیرمجموعة SHSPها، SHSPهایی که به وسیلة تنش Oxidative تحریک و تولید می گردند که شامل 2 نوع سیتوزولی (Class I و Class II)، SHSP میتوکندری و SHSP کلروپلاست می باشند. برخی ژنهای SHSP به وسیلة تنش سرما heatymetal ازن (3O)، اشعة uv، اشعه تحریک می شوند. مشاهدات نشان می دهد که SHSPها ممکن است با تنش های غیر زنده (abiotic) همبستگی داشته باشد. در غیاب تنش های محیطی سنتز SHSPها در گیاهان محدود به مراحل نمو نظیر embryogenesis،جوانه زنی، نمو گروه و بلوغ میوه می گردد.
Embryogenesis شامل 3 مرحله است. وقتی دانه ها در میانه مرحلة بلوغ اند یک افزایش ABA مشاهده می شود که باعث به خواب رفتن (dormant) آنها می گردد در اواخر مرحلة بلوغ پروتئینهای زیاد سنتز و ذخیره می شوند و با بلوغ دانه به dehyation مقاوم CII7/17 At HSP شروع به افزایش کرده و در مرحلة آخر بلوغ فراوان اند. در نخود و آفتابگردان هر دوی SHSPهای کلاسهای I و II در طول ذخیره شدن سنتز یافته و در دانه های بالغ افزایش می یابند. به دلیل سنتز SHSPها در طول بلوغ بذر پیشنهاد می شود که SHSPها ممکن است برای حفاظت سلولی در مقابل خشکی مهم باشد این فرضیه به وسیلة رابطة کاهش مقادیر SHSP با فنوتیپهای غیرمقاوم به خشکی تائید می گردد.
در بذرهای موتانت abi 3-6 (غیرمقاوم به خشکی) ژن مارکر خاموش و تجمع CI4/17At HSP، CI6/17At HSP و CII7/17At HSP متوقف می شود. ژنهای SHSP تحت کنترل HSF (Heat Shock transcription Factor) می باشند. در شرایط تنش وظایف HSF به طور بالایی حفظ شده. تحت شرایط نرمال HSF در وضعیت مخفی (Latent) می باشد اما در هنگام تنش گرمایی HSF به وسیلة تریمریزاسیون (trimerization) فعال می شود. عامل حساس به تنش گرمایی (HSE) [heat sheck - responsive element] شامل 13 اتصال و تکرارهای معکوس شدة یک توالی –BP5 می باشد مثل nGAAn.
در گیاهان مهمترین بخش HSE، توالی 3-aGAAg-5 است در کوچکترین 3 واحدی منجر به تشکیل 3-nGAAn nTCn nGAAn5 شده که برای محدود کردن یا اتصال HSF کافی است به وسیلة استفاده از سیستمهای هومولوگ و هترولوگ هر دوی مکانیسم های وابسته به HSE و غیروابسته به HSE در طول نمود در تولید SHSP دخالت دارند. HSE مصنوعی (سنتز شده) می تواند باعث تنظیم نموی شده و ویروس موزائیک گل کلم [1](CAMU) را در تنباکر، تحریک کند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:13
SHSP (Small heat shock protein) به طور گسترده ای در سلولهای پروکاریوت و یوکاریوت در مواجهه با گرما تولید می شود به خاطر تنوع و فراوانی غیرعادی در گیاهان پیشنهاد می شود که SHSP اهمیت ویژه ای دارند(علاوه بر تنش گرمایی، SHSP در گیاهان تحت سایر تنش ها و در مراحل نهایی نمو تولید می شود بیان ژن SHSP و تجمع پروتئین به هنگام مواجهه با تنشهای محیطی ما را متوجه این فرضیه می کند که این پروتئین ها یک نقش مهم در مقاومت به تنش بازی می کند وظیفه SDSPها همانند یک کاپرون (Chapron) مولکولی به وسیله سنجشهای invitro و onvivo تأئید می گردد.
در مواجهه با تنش گرما هر دوی سلولهای پروکاریوت و یوکاریوت یک گروه پروتئینی با وزن مولکولی 15 تا 42 کیلو دالتون (KDa) که پروئینهای Small heat shock (SHSP) نامیده می شود تولید می گردند. در گیاهان به علت تولید زیاد و فراوانی غیرعادی SHSP ممکن است نیازشان را به سازش هر سریعتر به تغییرات محیطی مثل دما، نور، رطوبت منعکس سازند.
SHSPها بر اساس توالی DNA، تعیین موقعیت درون سلولی به 6 Class مرتب می شوند. SHSPها معمولاً در بافتهای رویشی تحت شرایط نرمال کشف نشده اند اما می توان به وسیلة تنشهای محیطی و محرک رشد و نمو به وجود آیند. رابطة بین سنتز SHSPها و پاسخ به تنش منتهی به این فرضیه شد که SHSPها سلولها را از آسیب اثرات استرس محافظت می نمایند. مدارک قوی مبنی بر این است که SHSPها همانند یک کاپرون مولکولی از اتصال ناقص سوبسترای پروتئین ها جلوگیری گردد و از آن طریق از تجمع برگشت ناپذیر آنها جلوگیری می کند بنابراین موجب اتصال درست سوبسترا می گردد. این Review داده های فیزیولوژیکی و مولکولی را در مورد SHSP گیاهان را بررسی کرده است.
SHSP ها پروتئینهایی با وزن مولکولی 15 تا 42 کیلو دالتون اند که روی الکتروفورز ژل پلی اکریلامید (PAGE) مشخص می گردند. اغلب این پروتئینها، پروتئینهای غالبی اند که در مواجه با گرما تولید می گردند. Scharf و همکاران SHSP را به طور کامل در Avabidapsis thaliana که پیش می رود تحقیقات به مرور زمان در این گیاه را تحقیق کرده و متوجه شدند ژنوم Avabidopsis محتوی 19 Fream خواننده می باشد که پروتئینهای وابسته به SHSPها را رمز می کند.
تحت شرایط نرمال اغلب SHSPها را در بافتهای رویشی نمی توان یافت اما به سرعت در واکنش به گرما تولید می شوند افزایش دما تا حدود 15-10 بالاتر از دمای مناسب رشد که معمولاً در دامنة غیرکشنده است موجب واکنش به تنش گرمایی می شود. میزان تجمع SHSP وابسته به دما و طول مدت استرس است بعد از تنش گرمایی SHSP مقدارش ثابت مانده و یک نیمة عمر 50-30 ساعت دارد. پیشنهاد شده که SHSP ها ممکن است برای بازیابی و بهبودی گیاه مهم باشد فقط تنش گرمایی، بیان ژن SHSP را تحریک نمی کند گاهی اوقات تجمع SHSP در واکنش به تنش اسمزی است. در آفتابگردان ژنهای (CI)6/17Ha HSP و CII9/17 Ha HSP به وسیلة تنش آب به وجود می آینمد و مقادیر mRNA به طور مثبت وابسته به درجة دهیدراسیون است. با افزایش دهیدراسیون مقدار mRNA برای سنتز SHSP افزایش می یابد در آفتابگردان در تحت تنش به یکسان بودن HSDP در ساقه ها و ریشه های پی برده شد مانیتول و ABA می توانند موجب تحریک بیان ژن CII9/17 Ha HSP در کشت invitro وانهالها شود.
SHSP سیتوزولی که هومولوگ با CI6/17Ha HSP و CII9/17 Ha HSP می باشند به طور ترکیبی در تجدید حباب گیاه Craterostigma plantagineum تجمع می یابند اما نه در کالوس خشک به حالت مقاوم است (مگر اینکه با ABA با مشاء خارجی تیمار شود.
مقادیر SHSP در گیاهان C.plantagineum در واکنش به خشکی افزایش می یابد. بنابراین پیشنهاد می گردد SHSP در مقاومت به خشکی مهم اند و در این زمینه مکانیسم وابسته به ABA واسطه می شود. رمز کردن ژنها برای تولید SHSP ها که در واکنش به تنش اسمزی تحریک می شود انجام گیرد که در اینجا SHSPهای سیتوزولی CII-7/17At HSP و CII6/17At HSP در A.thaliana (که A6/17 At HSP و II7/17 At HSP نامیده می شوند) و نیز
CII17QS HSP که در دالانهای Cork-oak وجود دارند تولید می گردند. در مقابل با CI-17QS HSP، پروتئینهای SHSP سیتوزولی CII در A.thaliana در مقادیر بالای تنش اسمزی یافت نشد.
در زیرمجموعة SHSPها، SHSPهایی که به وسیلة تنش Oxidative تحریک و تولید می گردند که شامل 2 نوع سیتوزولی (Class I و Class II)، SHSP میتوکندری و SHSP کلروپلاست می باشند. برخی ژنهای SHSP به وسیلة تنش سرما heatymetal ازن (3O)، اشعة uv، اشعه تحریک می شوند. مشاهدات نشان می دهد که SHSPها ممکن است با تنش های غیر زنده (abiotic) همبستگی داشته باشد. در غیاب تنش های محیطی سنتز SHSPها در گیاهان محدود به مراحل نمو نظیر embryogenesis،جوانه زنی، نمو گروه و بلوغ میوه می گردد.
Embryogenesis شامل 3 مرحله است. وقتی دانه ها در میانه مرحلة بلوغ اند یک افزایش ABA مشاهده می شود که باعث به خواب رفتن (dormant) آنها می گردد در اواخر مرحلة بلوغ پروتئینهای زیاد سنتز و ذخیره می شوند و با بلوغ دانه به dehyation مقاوم CII7/17 At HSP شروع به افزایش کرده و در مرحلة آخر بلوغ فراوان اند. در نخود و آفتابگردان هر دوی SHSPهای کلاسهای I و II در طول ذخیره شدن سنتز یافته و در دانه های بالغ افزایش می یابند. به دلیل سنتز SHSPها در طول بلوغ بذر پیشنهاد می شود که SHSPها ممکن است برای حفاظت سلولی در مقابل خشکی مهم باشد این فرضیه به وسیلة رابطة کاهش مقادیر SHSP با فنوتیپهای غیرمقاوم به خشکی تائید می گردد.
در بذرهای موتانت abi 3-6 (غیرمقاوم به خشکی) ژن مارکر خاموش و تجمع CI4/17At HSP، CI6/17At HSP و CII7/17At HSP متوقف می شود. ژنهای SHSP تحت کنترل HSF (Heat Shock transcription Factor) می باشند. در شرایط تنش وظایف HSF به طور بالایی حفظ شده. تحت شرایط نرمال HSF در وضعیت مخفی (Latent) می باشد اما در هنگام تنش گرمایی HSF به وسیلة تریمریزاسیون (trimerization) فعال می شود. عامل حساس به تنش گرمایی (HSE) [heat sheck - responsive element] شامل 13 اتصال و تکرارهای معکوس شدة یک توالی –BP5 می باشد مثل nGAAn.
در گیاهان مهمترین بخش HSE، توالی 3-aGAAg-5 است در کوچکترین 3 واحدی منجر به تشکیل 3-nGAAn nTCn nGAAn5 شده که برای محدود کردن یا اتصال HSF کافی است به وسیلة استفاده از سیستمهای هومولوگ و هترولوگ هر دوی مکانیسم های وابسته به HSE و غیروابسته به HSE در طول نمود در تولید SHSP دخالت دارند. HSE مصنوعی (سنتز شده) می تواند باعث تنظیم نموی شده و ویروس موزائیک گل کلم [1](CAMU) را در تنباکر، تحریک کند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:85
فهرست مطالب :
آزمایش پیچش ............................................................................................................2
کشش.........................................................................................................................20
تمرکز تنش.................................................................................................................51
تیر معین و نامعین.........................................................................................................66
ضربه..........................................................................................................................79
خلاصه ای از آزمایشگاه مقاومت مصالح در دانشگاه واشنگتن....................................87
چکیده:
کلیات :
یکی از پر اهمیت ترین قسمت ها که تأثیر نیروی پیچشی و تنش ناشی از آن را روی قطعات میله ای دایروی و میله های چوبی بیان می کند آزمایش پیچش است . در حقیقت این تست قسمتی از تنش برشی خالص را روی نمونه هایی که تحت بار گذاری پیچشی قرار دارد ایجاد می کند . این تست برای معلوم کردن مؤلفه های برشی و خواص فلز موردنظر از جمله تنش برشی نهایی ، تنش جاری شدن برشی و مدول پیچشی استفاده می شود .
مقدار نیروی پیچشی ( تورک ) که بر نمونه وارد میشود و تغییر شکل را نتیجه می دهد ، ( زاویه پیچش ) در حین تست اندازه گیری می شود ، این کمیت تبدیل به تنش برشی () می شود و همچنین کرنش برشی (y) که از روابط مربوط بدست خواهد آمد .
در این روابط ، C نمایانگر شعاع میله دایروی ، L0 طول نمونه که در آن پیچش روی می دهد . ( زاویه در شعاع خوانده می شود ) و j نمایانگر ممان اینرسی قطبی نمونه است که بصورت زیر محاسبه می شود .
مدول برشی در ناحیه الاستیک به صورت شیب خطی تعریف می شود که از نمودار تنش برشی بر حسب کرنش برشی از مقدار صفر تا حد مخصوص تنش برشی است که به صورت زیر محاسبه می شود :
این رابطه ی مدول برشی مانند رابطه مدول الاستیسیته فقط در محدوده الاستیک اعتبار دارد .
تعاریف :
حد الاستیک ( حد مخصوص ) :
بزرگترین مقدار تنش که تنش و کرنش با یکدیگر رابطه ی خطی دارند .
مدول الاستیسیته برشی ( مدول سختی پیچشی ) :
نسبت تنش برشی و کرنش برشی در محدوده الاستیک است .
منحنی تنش و کرنش :
منحنی تنش بر حسب کرنش روی نمودار نمایش داده میشود و از ابتدای بارگذاری تا شکست نمونه معتبر است ودر این ناحیه اندازه گیری شده است .
تنش نهایی برشی :
بالاترین تنش برشی مشاهده شده که نمونه هنوز سر جای خود است وآسیبی ندیده است .
تنش جاری شدن :
تنشی است که ماده شروع به جاری شدن می کند برای اکثر مواد از انحراف برای یافتن تنش برش جاری شدن بهره می جویند . مقدار کرنش که با نشان داده شده و خطی موازی خط ناحیه الاستیک که از آن نقطه رسم شده ، نمودار را در نقطه ای به نام تنش جاری شدن قطع خواهد کرد .
اهداف :
برای مشاهده رفتار یک قطعه آلومینیومی زیر بار پیچش تا نقطه شکست و همچنین معین کردن خصوصیات مکانیکی نمونه آلومینیومی زیر اثر برش
وسایل آزمایش :
نمونه : 6060-T6 نمونه آزمایش آلومینیومی اسمی 0-75inch
دستورالعمل :
درخواست ها :
a – 1 : نمودار کامل تنش و کرنش از شروع تست تا خاتمه آن و شکست نمونه
b ) منحنی تنش و کرنش برای نقطه جاری شدن ( به وسیله انحراف 0.2 % )
c ) نمودار تنش و کرنش که فقط مقدار مخصوص تنش را پوشش دهد .
شکل 4 تا 6 نتایج کلی و ارائه هایی از نتایج آزمایشات شما را نشان می دهد .
a-2 ) مقدار زیر را به صورت خوبی تقریب زده و روی منحنی تنش و کرنش نمایان کنید .
b ) تنش برش مخصوص در پیچش
c ) مدول برش در ناحیه الاستیک ( مدول سختی )
d ) تنش جاری شدن در پیچش
e ) تنش نهایی
نتایج خود را با مقادیر تئوری در آزمایش 6061-T6 آلومنیوم مقایسه کنید .
خطاهای آزمایش را ارائه دهید و مقدار خطا را به وسیله نتایج تئوری و به درصد بیان کنید .
آزمایش پیچش برای میله هایی با مقطع مستطیلی
هدف :
برای یافتن نمودار لنگر پیچشی بر اساس زاویه پیچش برای میله هایی با مقاطع دایروی و همچنین تعیین خصوصیات مواد ، نظیر سختی پیچش () ، مدول برش ( G ) و تنش نهایی برش () .
ابزار آزمایش :
نمونه منشوری با مقطع مستطیلی ، کولیس ، متر مخصوص اندازه گیری ، دستگاه تست پیچش Tecquipment ( شکل 3-1 را مشاهده فرمایید . )
تئوری : یک میله با سطح مقطع مستطیلی ، یک میله یکنواخت است که سطح مقطع آن به صورت منشور یکنواخت است . چند نمونه از میله های منشوری به صورت مقاطع دایروی ، مثلثی ، مربعی ، مستطیلی و شش گوشه ای است . این آزمایش ادامه آزمایش قبلی که روی میله هایی با مقاطع دایره ای بحث شد است . در این آزمایش یک میله با مقطع مستطیلی تست می شود و لنگر پیچش بر اساس تابعی از زاویه پیچش رسم خواهد شد .
برای یک سطح مقطع مستطیلی رابطه ی بین لنگر پیچش ( T ) و تنش برش ماکزیمم ( ) به صورت زیر است :
a : بزرگترین قطر
b : قطر کوچک
ضریب بستگی به مقدار دارد و در جدول 3-1 ( ) داده شده است .
زاویه پیچش ( ) توسط رابطه زیر محاسبه می شود :
ضریب : بستگی به مقدار دارد و توسط جدول 3-1 داده شده است .
تفاوت بین پیچش در مقطع میله های دایروی و غیر دایروی در این است که در مقاطع دایروی به همان صورت باقی مانده و اعواجاج پیدا نمی کند درحالی که در مقاطع غیر دایروی شکل مقطع دچار اختلال شده و تاب برمی دارد . شکل 3-2 را ببینید .
سختی پیچش برای مقاطع غیر مستطیلی از رابطه زیر به دست می آید :
می توانید مدول برش ( G ) را از سختی پیچش بدست آورید و همچنین مدول الاستپسیته را از رابطه ی زیر بدست آورید :
: نسبت پواسن است .
خلاصه ای از نحوه انجام آزمایش :
1 – نمونه را به صورت مناسب در دستگاه تست قرار دهید .
2 – مقدار طول ( L ) ، ابعاد a و b ( شکل 3-3 را ببینید . ) از مقطع مستطیلی اندازه بگیرید و همچنین ضریب و را از جدول 3-1 بیابید .
3 – بارگذاری پیچش را شروع کنید و این کار را به وسیله پیچاندن دسته به صورت مناسب بین 3 تا 5 درجه بپیچانید . مقدار گشتاور را به وسیله ضرب کردن نیرو در طول بازه (in 5 ) بیابید .
4 – مقدار شیب خطی نمودار لنگر پیچش بر حسب زاویه پیچش را بیابید ، سختی برش برابر است و از این مقدار برای یافتن G استفاده کنید .
5 – مقدار تنش برش حداکثر را برای نمونه از روی نمودار تنش کرنش بیابید .
مراجع :
مکانیک مواد – بیرجانسون ، دی ولف ، ویرایش سوم ، انتشارات MCGraw-Hill