یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

ساختن یک میکروسکوپ به کمک تلفن هوشمند

اختصاصی از یارا فایل ساختن یک میکروسکوپ به کمک تلفن هوشمند دانلود با لینک مستقیم و پرسرعت .

ساختن یک میکروسکوپ به کمک تلفن هوشمند


 ساختن یک میکروسکوپ به کمک تلفن هوشمند

لنزهای مختلفی وجود دارد که بر روی تلفن های هوشمند  نصب شده و قابلیت عکسبرداری مایکرو را در این ابزار ها بهبود می بخشند اما همه آنها قیمت بالایی دارند.دراین مقاله آموزش ساخت یک میکروسکوپ به کمک تلفن هوشمند را مشاهده خواهید کرد که هر کسی می تواند در خانه آن را می سازد.


دانلود با لینک مستقیم

مقاله معرفی میکروسکوپ الکترونی عبوری (TEM)

اختصاصی از یارا فایل مقاله معرفی میکروسکوپ الکترونی عبوری (TEM) دانلود با لینک مستقیم و پرسرعت .

مقاله معرفی میکروسکوپ الکترونی عبوری (TEM)


مقاله معرفی میکروسکوپ الکترونی عبوری (TEM)

توضیحات:

در پژوهش‌های مربوط به خواص مواد نانوساختاری میکروسکوپ الکترونی یکی از مهم‌ترین و پرکاربردترین دستگاه‌هایی است که مورد استفاده قرار می‌گیرد. در اغلب مطالعات انجام‌شده روی خواص مواد نانوساختاری برای تعیین اندازه و شکل آنها از میکروسکوپ  الکترونی عبوری(Transmission Electron Microscopy) که به اختصاربه آن TEM می گویند،استفاده شده است. این روش اندازه و شکل ذرات را با دقت حدود چند دهم نانومتر به دست می‌دهد که به نوع ماده و دستگاه مورد استفاده بستگی دارد. امروزه در بررسی خواص مواد نانوساختاری از میکروسکوپ الکترونی عبوری با وضوح بالا (High-Resolution) استفاده می‌شود. علاوه بر تعیین شکل و اندازه ذرات به وسیله میکروسکوپ الکترونی عبوری با استفاده از پراش الکترون و سایر سازوکارهای موجود در برخورد الکترون با ماده برخی ویژگی‌های دیگر مواد نانوساختاری مانند ساختار بلوری و ترکیب شیمیای را می توان بدست آورد.

فهرست مطالب:

  • تفنگ الکترونی

  • اصول کار میکروسکوپ الکترونی عبوری

  • آماده‌سازی نمونه

  • مزایاومعایب میکروسکوپ الکترونی عبوری

  • کاربرد های میکروسکوپ الکترونی عبوری

این مقاله در قالب فایل Word و در 7 صفحه ارائه شده است.


دانلود با لینک مستقیم

دانلود نرم افزار میکروسکوپ مجازی

اختصاصی از یارا فایل دانلود نرم افزار میکروسکوپ مجازی دانلود با لینک مستقیم و پرسرعت .

دانلود نرم افزار میکروسکوپ مجازی


دانلود نرم افزار میکروسکوپ مجازی

نرم افزاری جالب میکروسکوپ مجازی برای مدارس هوشمند و آن دسته از مدارسی که میکروسکوپ در مدارس در اختیارشون نیست

ضمناً قبل از هر چیز فلش پلیر را روی کامپیوتر خود نصب نمایید


دانلود با لینک مستقیم

پروژه میکروسکوپ ها

اختصاصی از یارا فایل پروژه میکروسکوپ ها دانلود با لینک مستقیم و پرسرعت .

پروژه میکروسکوپ ها


پروژه میکروسکوپ ها

 

 

 

 

 

 

 



فرمت فایل : WORD (قابل ویرایش)

تعداد صفحات:44

فهرست مطالب:
عنوان                                                                                                             صفحه
تقدیر و تشکر...........................................................................................................
تقدیم........................................................................................................................
تعریف میکروسکوپ................................................................................................
تاریخچه...................................................................................................................
سیر تحولی و رشد..................................................................................................
انواع میکروسکوپ.................................................................................................
میکروسکوپ های الکترونی.................................................................................
فناوری در میکروسکوپ های الکترونی................................................................
میکروسکوپ های الکترونی روبشی(SEM).......................................................
میکروسکوپ های الکترونی تراگسیل (TEM)......................................................
میکروسکوپ های نیروی اتمی(AFM)....................................................................
میکروسکوپ های نوری.......................................................................................................
اجزای اصلی میکروسکوپ نوری.................................................................................
چگونگی تشکیل و مشاهده تصویر..............................................................................
میکروسکوپ‌های پراب پویشی......................................................................................
میکروسکوپ تونل زننده...............................................................................................
میکروسکوپ نوری روبش میدان نزدیک....................................................................
میکروسکوپ نیروی مغناطیسی....................................................................................
میکروسکوپ فلورسانت (fluorescent microscope)..................................................
دید کلی ..............................................................................................................................
منابع......................................................................................................................................

 

 

 

تعریف میکروسکوپ
میکروسکوپ (از یونانی μικρόσκοπεῖν) یا ریزبین دستگاهی است که برای دیدن اجسامی که با چشم غیر مسلح دیده نمی‌شوند بکار می‌رود.

تاریخچه میکروسکوپ
در روزگاران قدیم, کوچکترین موجودات زنده ای که مردم می شناختند آنهایی بودند که به زحمت با چشم دیده می شوند. ولی آیا ممکن بود موجوداتی هم باشند که با چشم دیده نشوند اگر با چشم دیده نمی شدند, با چه وسیله ای ممکن بود آنها را دید. البته در آن زمانم مردم به وسایلی می توانستند کاری کنندکه چیزهای خیلی کوچک بزرگتر از آنچه بودند نشان داده شوند. مثلاً بعضی از مردم متوجه شده بودند که اگر از میان شیشه ای که سطح آن منحنی باشد به چیزهای خیلی کوچک نگاه کنند, آنها بزرگتر از آنچه هستند به نظر می آیند.
با این همه, فقط در حدود سال 1650 میلادی بود که دانشمندان با این شیشه های منحنی به چیزهای خیلی کوچک نگاه کردند و به دقت به بررسی آنها پرداختند . اسم این شیشه ها را, که سطح منحنی داشتند, عدسی گذاشتند, زیر اشکال آنها مثل شکل دانه های عدس بود. معمولاً برای اینکه به چیزهای بسیار کوچک نگاه کنند, بیش از یک عدسی به کار می بردند. عدسیها را در دو انتهای یک لوله فلزی جا می دادند.
آنهارا طوری بر جا می دادند که چیزهای بسیار کوچک بهتر دیده شوند. اسم این لوله را, با عدسیهایی که درون آن بود, میکروسکوپ گذاشتند.
میکروسکوپ از دو واژه یونانی میکرو, به معنی کوچک و سکوپ, به معنی دیدن, گرفته شده است. بنابراین میکروسکوپ یعنی دیدن چیزهای کوچک. یکی از موجودات کوچک زنده که دانشمندان بیش از همه آن را مورد مطالعه قرار دادند کک بود. برای همین بود که اسم اولین میکروسکوپها را شیشه های گکی گذاشته بودند.
قبل از اختراع میکروسکوپ در اواسط قرن هفدهم, مشاهده سلول مقدور نبود, زیرا سلول واحد بسیار کوچکی است که با چشم غیر مسلح قابل رویت نیست. روبرت هوک2 اول بار در سال 1665 زیر میکروسکوپ ابتدایی که خود ساخته بود سلولهای مرده را در برش های چوب پنبه و نوعی کمک مشاهده کرد. این سلولهای تو خالی و متصل به هم, شکل اتاقکهای لانه زنبور را داشتند و هوک آنها را سلولی3 نامید که به زبان لاتین مفهوم اتاقکهای کوچک را دارد.

سیر تحولی و رشد
در طول قرن هیجدهم میکروسکوپ در زمره وسایل تفریحی به شمار می‌آمد. با پژوهشهای بیشتر پیشرفتهای قابل توجهی در شیوه ساختن عدسی شئی حاصل شد. بطوری که عدسی‌های دیگر بصورت ذره بینهای معمولی نبودند بلکه خطاهای موجود در آنها که به کجنمایی معروف هستند، دفع شده‌اند و آنها می‌توانستند جرئیات یک شی را دقیقا نشان دهند. پس از آن در طی پنجاه سال، پژوهشگران بسیاری تلاش کردند تا بر کیفیت و مرغوبیت این وسیله بیافزایند. بالاخره ارنست آبه توانست مبنای علمی میزان بزرگنمایی میکروسکوپ را تعریف کند.
بدین ترتیب میزان بزرگنمایی مفید آن بین ۵۰ تا ۲۰۰۰ برابر مشخص شد. البته می‌توان میکروسکوپ‌هایی با بزرگنمایی بیش از ۲۰۰۰ برابر ساخت. مثلاً قدرت عدسی چشمی را بیشتر کرد. اما قدرت تفکیک نور ثابت است و درنتیجه حتی بزرگنمایی بیشتر می‌تواند دو نقطه از یک شی را بهتر تفکیک کند. هر چه بزرگنمایی شی افزایش یابد به میزان پیچیدگی آن افزوده می‌شود. بزرگنمایی شی در میکروسکوپهای تحقیقاتی جدید معمولاً ۳X، ۶X، ۱۰X، ۱۲X، ۴۰X و ۱۰۰X است. در نتیجه بزرگنمایی در این میکروسکوپ بین ۱۸ تا ۱۵۰۰ برابر است. چون بزرگنمایی میکروسکوپ نوری بدلیل وجود محدودیت پراش از محدوده معینی تجاوز نمی‌کند برای بررسی بسیاری از پدیده‌هایی که احتیاج به بزرگنمایی خیلی بیشتر دارند مفید است. تحقیقات بسیاری صورت گرفت تا وسیله دقیق تری با بزرگنمایی بیشتر ساخته شود. نتیجه این پژوهشها منجر به ساختن میکروسکوپ الکترونی شد.
انواع میکروسکوپ از نظر نوع آشکارساز
1- میکروسکوپ‌های الکترونی
2- میکروسکوپ الکترونی روبشی
3- میکروسکوپ الکترونی عبوری
4-میکروسکوپ نوری
5-میکروسکوپ نوری عبوری
5-میکروسکوپ نوری بازتابی
6-میکروسکوپ‌های پراب پویشی
7-میکروسکوپ نیروی جانبی
8- میکروسکوپ نیروی اتمی
9- میکروسکوپ نیروی مغناطیسی
10- میکروسکوپ تونلی پویشی
11-میکروسکوپ میدان نزدیک نوری
11- میکروسکوپ ولتاژ پویشی
میکروسکوپ های الکترونی؛
میکروسکوپ های الکترونی ابزاری نیرومند و دارای قابلیت های فراوانی برای تصویر برداری‌،  آشکار سازی و ارائه اطلاعات مفید درباره  پدیده های کوچک و بسیار کوچک هستند. این ابزارها با خانواده های متفاوت و عناوینی خاص مرتبط با اساس عملکردشان مطرح می شوند که از یک سو از لحاظ ساختار و اجزای داخلی قابل بررسی و ارزیابی اند و از سوی دیگر ، از لحاظ روش های آنالیز و دریافت داده ها از نمونه قابل مقایسه و مطالعه هستند.
آماده سازی و نوع نمونه ها بر اساس ساختار و عــمــلــکــــرد پــــردازش اطــــلاعـــات از نـمـــونـــه مــتــفـــاوت اســـت بـــه طـــوریــکـــه در بــعــضـــی از میکـروسکـوپ‌هـای الکتـرونـی آمـاده سـازی به دشـواری و بـا شرایط خاص همراه است و در بعضی دیگر، روش های آماده سازی نمونه های بیولوژی و غیر بیولوژی متفاوت است. داده های حاصل از پردازش اطلاعات از نمونه ها ، از یک مـنـظـــر در ســـاخـــت و تـــولـیـــد ریــز تــراش هــا ، سیستم‌های متنوع الکترونی و الکترومکانیکی اهـمـیـــت خـــاص دارد و از مـنـظـــر دیـگــر در بــه کــارگـیــری نمـونـه هـای بیـولـوژی ( سلـول هـا ، پـــروتــیـــن هـــا و...) بـــرای طـــراحـــی و ســـاخــت ریـزتـراشـه‌هـای زیـسـتـی و سیستم های زیستی نانومتری نقش به سزایی را ایفا می کند.
مــیــکـــروســکـــوپ هـــای الـکـتــرونــی ابــزاری نـیـرومـنـد و دارای قـابـلـیـت هـای فـراوانی برای تصویر برداری ، آشکار سازی و ارائه اطلاعات مفید درباره پدیده های کوچک و بسیار کوچک هـسـتند. ابن ابزارها با خانواده های متفاوت و عـنـاویـنـی خـاص مرتبط با اساس عملکردشان مطرح می شوند که از یک سو از لحاظ ساختار و اجـزای داخـلی قابل بررسی و ارزیابی اند و از سوی دیگر ، از لحاظ روش های آنالیز و دریافت داده ها از نمونه قابل مقایسه و مطالعه هستند.
در میکروسکوپ های الکترونی نمونه های بیولوژی و غیر بیولوژی در دو دسته مشخص و تفکیک شده مورد مطالعه قرار می گیرند. روش های آماده سازی نمونه ، برای هر دسته متفاوت و بر اساس روش کار و پردازش داده ها توسط میکروسکوپ های الکترونی مبتنی است. آماده سازی نمونه در بعضی سیستم ها با اندود سازی نمونه با سایر عناصر شکل می گیرد و در بعضی دیگر با آبگیری و تثبیت همراه است. در هر صورت برای دستیابی به داده ها از نمونه های بیولوژی و غیر بیولوژی متناسب با روش های استاندارد و قابل استناد باشد تا از یک سو اطلاعات کامل و در حداقل خطا باشند و از سوی دیگر نمونه های با ارزش و زمان آماده سازی به هدر نرفته و کار با موفقیت به انجام رسد.
اگرچه، میکروسکوپ های الکترونی شباهت های اساسی با یکدیگر دارند ولی تـفــاوت هـای قـابـل مـلاحظـه آن‌هـا بـاعـث وجـود گـونـه هـا و خـانـواده هـای مختلـف (میکروسکوپ های الکترونی روبشی ، تراگسیل ، کاوشی ) شده است. این تفاوت بر اساس نوع و روش دستیابی به اطلاعات همانند روش روبش ، تراگسیل ، کاوش است. علت وجود روش های متفاوت، بررسی و مطالعه بهتر و آسان تر و نیز هدفمند نمونه ها است.
فناوری در میکروسکوپ های الکترونی
پیش از ورود به مبحث آماده سازی نمونه ، نگاهی کلی و گذرا بر اصول و روش کار میکروسکوپ های الکترونی اگرچه مختصر امری ضروری است. میکروسکوپ‌های الکترونی براساس ساختار و روش کار میکروسکوپ های نوری ساخته شده اند و از این‌رو دارای شباهت ها و تفاوت هایی با یکدیگرند. اولین مولفه  قابل ارزیابی بین این دو گروه ، نوع منبع است که در میکروسکوپ های الکترونی ، الکترون پر انرژی و متمرکز برای دستیابی به تصویر و اطلاعات از نمونه به جای نور مورد استفاده قرار می گیرد. مـــولـفـــه دیـگـــر ، عـــدســی‌هــای هـسـتـنــد کــه در مـیـکـروسکـوپ هـای الکتـرونـی ، عـدسـی‌هـای الکترومغناطیسی با قابلیت تنظیم فاصله کانونی را دارند. با تغییر میزان جریان الکتریکی ، میزان بزرگنمایی قابل کنترل است. این درحالی است که عدسی های شیشه ای در میکروسکوپ های نور با فاصله کانونی ثابت فاقد این توانایی است و در نتیجه اطلاعات قابل دسترسی محدودتری را در اختیار محققان از نمونه قرار می دهند.
چـگــونـگــی دسـتــرســی و دریـافـت داده هـا ، آشکارسازی و نمایش نتایج حاصله از نمونه ، تــوســط مـیـکـروسکـوپ هـای الکتـرونـی دارای مراحل اساسی مشترک زیر هستند:
1-جریانی از الکترون ها توسط منبع الکترونی ایجاد و با استفاده از یک پتانسیل الکتریکی مثبت به طرف نمونه شتاب داده می شود.
2-جـریـان الـکـتـرونـی بـا کـمـک عدسی های مـغـنـاطـیـسـی و دهـانه ها به یک پرتوی تک فام ظریف و متمرکز تبدیل می شوند.
3-پرتوی الکترونی حاصل با استفاده از یک عــدســی مـغـنــاطـیـســی در روی نـمـونـه کـانـونـی می‌شود.
4-برخورد پرتو الکترونی به نمونه سبب بر هــم کـنــش هــای مـخـتـلفـی در داخـل نمـونـه هـا می‌شود که خود پرتو الکترونی نیز تحت تاثیر قرار می گیرد.
5-سیگنال های حاصل از این بر هم کنش ها و آثار آن ، جمع آوری شده تا امکان دستیابی به اطلاعات با ارزش را میسر سازد
در این مراحل کلی ، نمایی مناسب از روش کار میکروسکوپ های الکترونی حاصل شد. در هر صورت ، قابلیت های ممتاز و توانایی های زیاد میکروسکوپ های الکترونی موجب عدم مـحـدودیـت در اسـتـفـاده و بـه کـارگـیـری آن هـا نـمــی‌شــود. بــه طــور کـلــی  مـهـمـتــریــن عــوامـل مـحــدود‌سـاز شـامـل:  گـران و پـرهـزیـنـه بـودن ، ظرافت و پیچیدگی کاربری ، حساسیت بعضی از مواد، نسبت الکترون های پر انرژی و دشواری آماده‌سازی نمونه در بعضی از گروه ها هستند.
گونه های متداول و معروف میکروسکوپ الـکـتـــرونـــی ، کـــه دارای زیـــر مـجـمـــوعـــه هــای گسترده‌ای نیز هستند عبارتند از : میکروسکوپ الـکـتــرونــی تــراگـسـیــل  (TEM)، میکـروسکـوپ الکترونی روبشی (SEM) و میکروسکوپ نیروی اتمی  (AFM) که در شکل 1 ترسیمی ساده از کنش پرتو در هر یک از سه میکروسکوپ مذکور نمایش داده شده است.


دانلود با لینک مستقیم

دانلود مقاله کاربرد میکروسکوپ TEM

اختصاصی از یارا فایل دانلود مقاله کاربرد میکروسکوپ TEM دانلود با لینک مستقیم و پرسرعت .

دانلود مقاله کاربرد میکروسکوپ TEM


دانلود مقاله کاربرد میکروسکوپ TEM

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:23

مقدمه:

نمونه های مناسب برای میکروسکوپ TEM بایستی بسته به ولتاژ بالای اعمالی ضخامتی در حدود چند صد نانومتر داشته باشند. یک نمونه ایده آل بایستی نازک باشد. نماینده عمق قطعه باشد، تمییز و صاف با دو سطح کاملاً موازی باشد به راحتی قابل حمل باشد، هادی بوده، عاری از جدایش (Segregation) سطحی باشد و Self-Supporting باشد. همه این خواسته ها همواره برآورده نمی شوند تکنیک های آماده سازی معمولاً مناجر به تولید نمونه گوه ای شکل می شوند که دارای یک زاویه کوچک گوه هستند.

آماده سازی نمونه می تواند نبه دو مرحله، آماده سازی ابتدایی و نازک سازی نهایی تقسیم شوند. آماده سازی اولیه از چند مرحله تشکیل شده که البته برخی از آنها می‌توانند حذف شوند.


آماده سازی اولیه نمونه

اولین گام در تهیه نمونه، بریدن یک تکه از نمونه اصلی است. در این خصوص لازم است که دیدگاه ‌ها و نکات مورد مطالعه نیز مد نظر باشد. در مرحله اخیر به احتمال زیاد نمونه دارای حداقل دو سطح خشن بوده، ضخامت آن بسته به دستگاه و روش برشکاری است. یک اره با دندانه های ریز می تواند زبری ها و حفراتی به اندازه حدود یک میلی متر بر روی ساختار نمونه فلز نرم ایجاد نماید. حداقل این عیوب در صورت استفاده از ماشین های برشکاری جرقه های یا به بکارگیری چرخ های برنده الماسه و یا سیم های گردان به همراه استفاده از دوغاب سایشی، حاصل می گردد.

انتخاب روش برش نمونه به ویژگی های آن بستگی دارد. در فصل دوم به انواع روش های برشکاری نمونه اشاره شده است.

آماده کردن سطوح صاف

بعد از این که ضخامت نمونه بریده شده به 5/0 تا 3 میلی متر رسید، لازم است که سطوح نمونه به صورت صاف و موازی درآیند. بدین منظور از ماشین های سنگ زنی، سنباده زنی و پرداخت کاری استفاده می شود. برای به حداقل رساندن عیوب ایجادی در سطح نمونه، استفاده از ساینده نرم و ریزدانه توصیه شده است. ورقه‌هایی از نمونه با سطوح موازی و به ضخامت 100 (و کمتر) در اکثر موارد با استفاده از پرداخت کاری با پودرهای ساینده ای با دانه بندی 600 بدست خواهد آمد. اگر تنها به نمونه‌ای پولکی شکل با قطر 3 میلی متر نیاز باشد، در شرایط صنعتی می توان از صفحات گردان استفاده به عمل آورد. با به کارگیری وسایلی دقیق تر و پیشرفته تر از این دست می توان به ضخامت هایی کمتر از 50 نیز دست یافت. با استفاده از چرخ های ساینده و پرداخت کاری این امر قابل حصول است.

نازک کردن شیمیایی          Chemical Thinning

روشی که در آن می توان حداقل تخریب ها را در یک نمونه بدست آورد، پرداخت کردن شیمیایی است. با استفاده از این روش، برخی عیوب شناخته شده در مراحل مکانیکی آماده سازی نمونه تا حدودی از بین می رود، اما به دست آوردن سطوح موازی در نمونه مشکل به نظر می رسد. ماشین هایی که در آن با استفاده از فرآیندهای شیمیایی می توان ضخامت را کنترل نمود، در دسترس هستند. در این دستگاه ها هر دو سطح نمونه همزمان با یک محلول خورنده پرداخت می شوند. اگر ماده نمونه زیاد باشد، کل نمونه در محلول غوطه ور شده و هیچ تلاشی برای جلوگیری از خوردگی لبه‌ها صورت نمی گیرد. به عبارت دیگر نمونه به اندازه کافی خورده شده و پرداخت می‌شود. بنابراین با به کارگیری این روش نیازی به تهیه نمونه های اولیه بسیار کوچک نیست.

ساختن یک دیسک

بسیاری از روشهای اتوماتیک نیاز به یک نمونه دیسکی شکل به قطر 3 میلی متر (100/0 اینچ) دارند. یک چنین دیسکی براحتی قابل حمل است و بطور مستقیم در اکثر میکروسکوپها، حتی بدون گیره جاگیری می شود و همچنین پشتیبانی ساختاری خوبی را برای نازکترین قسمتهای قطعه مهیا می کند. گهگاهی ماده می تواند در ابتدا بصورت مفتولی به قطر mm3 (1/0 اینچ) آماده شود، نکه از آن دیسکهایی توسط ابزار برش الماسه ای جدا می شوند. اینچنین دیسک هایی معمولاص به ضخامت تقریباً 1 میلی متر (04/0 اینچ) خواهند بود و می توانند با روشهایی که در بالا پیش از نازک سازی نهایی تشریح شد نازکتر شوند.

اما معمولاً در وسط، دیسک بشقابی می شود تا ضخامت 1 میلی متر (04/0اینچ) را در لبه های خارجی تر (که حمل و نقل را توسط موچین آسان می کند) و کمتر از 100 میکرومتر را در مرکز داشته باشد.

بشقابی کردن (Dimoling) که زمان کمتری نسبت به نازک سازی نهایی نیاز دارد، می تواند بصورت مکانیکی با پرداخت الکتریکی و یا بمباران یونی انجام گیرد. نیازی نیست که این بشقاب سطح پویش شده بدون خدشه ای داشته باشد بنابراین فرآیند بشقابی کردن نیازی به کنترل دقیق به عنوان نازکسازی نمونه ندارد.

سریعترین روش تهیه یک دیسک 3 میلی متری (1/0 اینچی) پانچ کردن دیسک توسط یک دستگاه فلکه کاری شعبه ای با یک قطر داخلی 3 میلی متر (1/0 اینچ) می‌باشد. این روش برای فلزات شکل پذیر (Ductile) مناسب است نه برای مواد ترد. البته صدمات غیر منتظره امکان وقوع دارد بطور مثال گزارش شده است که دیسکهای فولادی ممکن است در قسمتهای بشقابی شده پس از پانچ شدن حاوی

باشند.

روشهای آرامتر و ظریفتر برای برش دیسک ها از ورقه ها زمان بیشتری نیاز دارد. رایجترین روشها شامل استفاده از           یا برنده های         می‌باشد.

نازک کردن نهایی نمونه                 Final Thinning پرداخت الکتریکی                      Electropolishing

پرداخت الکتریکی یا الکتروپولیش اغلب برای رساندن ضخامت نمونه به ضخامت نهایی مورد استفاده قرار می گیرد. عملیات پرداخت الکتریکی در یک سلول حاوی الکترولیت که در آن نمونه در حالت آند قرار دارد، با اعمال یک پتانسیل مناسب برای حل کردن مقدار کنترل شده ای از نمونه، انجام می شود. این عمل تا ایجاد یک سوراخ در نمونه ادامه می یابد. محدوده عبور الکترون در TEM، نوار باریکی در محیط همین سوراخ است.

سلول پرداخت الکتریکی در واقع با حذف برجستگی ها و نامنظمی ها بسیار ریز سطح نمونه؟، آنرا پرداخت می نماید. این امر باعث صاف شدن سطح و در نهایت نازک شدن یکنواخت، کامل و سریع نمونه می شوند. مراحل گوناگون فرآیند در شکل (   ) ارایه شده است. پرداخت الکتریکی در واقع روشی عکس فرآیند آبکاری الکتریکی است. در این روش، قطعه مورد پرداخت، آند قرار داده می شود و لذا گرایش به حل شدن در الکترولیت دارد. الکترولیت و چگالی جریان طوری کنترل می‌شوند که اکسیژن آزاده شده در آند، نقاط برجسته قطعه را اکسید نماید. فلز اکسید شده در الکترولیت حل شده و در نتیجه سطحی صیقلی مانند صیقل کاری مکانیکی بدست می آید.

 

 

 

 

شکل (    ): مراحل پرداخت کاری الکتریکی.

نمونه‌خشن(الف) باید پرداخت شده(ب)،صاف شده(ج) و به صورت یکنواخت نازک شود(د).

در محلول الکترولیت سلول معمولاً یک عامل اکسید کننده و یک معرف حضور دارند که باعث ایجاد یک لایه چسبناک، غلیظ و پایدار بر روی نمونه می شوند. پرداخت کاری نرم با حل شدن نمونه همراه بوده و همان طوری که در شکل (     ) نشان داده شده است، با طول مسیر نفوذ از فیلم چسبناک تا الکترولیت کنترل می شود. هرچه نقاط سطح نمونه به سطح آزاد الکترولیت نزدیک تر باشند، عملیات حل شدن نسبت به محیط اطراف سریع تر صورت می گیرد. بدین ترتیب یک سطح نرم به دست می آید که از روشنایی و براقی آن قابل تشخیص است.

 

 

 

شکل (     ): عمل پرداخت کاری الکتریکی نرم. یک لایه چسبناک (V) بین نمونه (S) و الکترولیت (E) وجود دارد. نقاط بالاتر دارای مسیر نفوذ کوتاه تری از لایه بوده و بنابراین پردخت سریعتر صورت می گیرد.

از آن جا که می بایست لایه چسبناک نازک نگه داشته شود، لازم است که الکترولیت محتوی یک ماده حل کننده لایه چسبناک، یک عامل اکسید کننده و یک تشکیل دهنده لایه باشد. گاهی یک نوع معرف می تواند به هر سه گونه رفتار نموده و الکترولیت را ساده نماید. یکی از این معرف ها محلول رقیق اسید پرکلریک (HClO4) در اتانول می باشد که یک عامل پرداخت کننده مرسوم است. هرچند گاهی الکترولیت های پیچیده ای با بیش از 3 الی 4 جزء نیز مشاهده می شود. در چنین مواردی یک عامل اکسید کننده نظیر اسیدپرکلریک (HclO4) یا اسید نیتریک (HNO3)، یک تشکیل دهنده لایه مانند اسید فسفریک (H3PO4) و اسیدهای دیگری چون اسید سولفوریک (H2SO4) برای حل کرد اکسیدها و نیز یک رقیق کننده ای که می تواند غلیظ هم باشد مثل گلیسرول برای کنترل کردن سرعت واکنش، حضور دارد.

ترکیب الکترولیت با تغییرات اولیه پتانسیل کاربردی تعیین می شود. از طرف دیگر پتانسیل پایین به اچ شدن نمونه و پتانسیل بالا به سوراخ شدن و عدم پرداخت کاری منجر می گردد. بدیهی است می بایست از هر دو گونه شرایط مذکور دوری جست. شرایط صحیح عملکرد با مطالعه منحنی عملی ولتاژ- جریان قابل تشخیص است. در یک سلول پرداخت الکتریکی پایدار منحنی مذکور می تواند بدان گونه که در منحنی A شکل (‌     ) آمده ملاحظه گردد. پرداخت کاری بهینه در منطقه فلات منحنی رخ می دهد. هرچند یک پتانسیواستات برای اندازه مقدار واقعی منحنی ولتاژ- جریان مورد نیاز است. به دلیل وجود مشکلات بسیار در حصول شرایط پایدار، تحقیقات خبره کمتری برای رسم منحنی های تجربی انجام شده است. یک تجربه عملی چیزی شبیه منحنی B شکل (   ) را به دست داده که چندان مفید هم نیست. در مجموع تحقیقات انجام شده مبین شروع فرآیند با پتانسیل توصیه شده است. فراتر رفتن پتانسیل، باعث اچ شدن و فروتر رفتن آن منجر به حفره دار شدن نمونه خواهد گشت.


دانلود با لینک مستقیم