تحقیقات اخیر در مورد توانایی ظهور برخی استعدادها و وجود نوعی مهارت اساسی در انسان است که از حیطه تشخیص آزمایشهای تست هوش خارج است و در عوض این مهارت به نوعی استعداد عاطفی، احساسی و هیجانی مربوط میشود که به آن شعور عاطفی میگویند، از این رو هوش عاطفی در پایان قرن 20 و اوایل قرن 21، رقیب جدید هوش منطقی در تحلیل روابط و فعالیتهای موفقیت آمیز انسان به شمار میرود که نقش مؤثری در بهبود روابط انسانی در مدیریت دارد.مبحث هوش عاطفی یکی از موضوعات جدید در عرصه روان شناسی است که مدتی است به عرصه مدیریت نیز وارد شده است. درباره این موضوع، مطالب، مقالات، تحقیقات و کتابهای زیادی در چند سال اخیر به چاب رسیده است. در بیشتر این مطالعات، بر این موضوع تأکید شده است که هوش عاطفی بعنوان عامل تعیین کننده موفقیت افراد در زندگی از جایگاه ویژهای برخوردار است. هوش عاطفی همان مدیریت بر هیجانات خود و دیگران است.
مطالب این پست : پایان نامه کامپیوتر – بررسی و کاربرد هوش ازدحامی در مسئله مدیریت بحران 70 ص
با فرمت ورد (دانلود متن کامل پایان نامه)
فصل اول – مقدمه
مسئله مدیریت بحران در سالهای اخیر اهمیت شایانی یافته است . با توسعه محیطهای شهری ،هنگام وقوع یک بحران خطرات جانی و مالی زیادی افراد شهر را تهدید می کند .به این دلیل ایجاد سیستم مدیریت بحران مؤثر و سازمان یافته بسیار ضروری است. هر بحران شامل چندین حادثه با درخواست تعداد معینی واحد اورژانسی است .وضعیت نابهنجار زمانی به وجود می آید که مسئله کمبود منابع و رقابت برای منابع مطرح می شود.با اینکه هر بحران درجه شدت متفاوتی دارد، اما واکنش مناسب به درخواست هر بحران بسیار ضروری است. با تخصیص واحدهای اورژانسی به حوادث به طور خودکار ، گام بلندی در جهت حذف خطاهای بشری برداشته شده است .
در این پروژه روشهای هوش ازدحامی برای تخصیص تعداد بهینه از منابع در محیطی با چند بحران پیشنهاد شده است. این روشها تکنیکهای جدیدی در مدل کردن روند بحرانی با جمعیتی از عاملها و تخصیص منابع است به طوری که همه بحرانها بتوانند از منابع موردنظرشان استفاده کنند. هوش ازدحامی سیستمی است متشکل از تعداد زیادی افراد که با یک کنترل نا متمرکز و خودسامانده متعادل و هماهنگ می شوند . هوش ازدحامی ، منبع الهامی جهت توسعه سیاست های تخصیص گردش کار است. الگوریتم هایی که از این رفتار الهام میگیرند به طور موفقیت آمیزی جهت کاهش زمان های تنظیم شده و زمان های عملکرد در تولید زمان بندی صنعتی به کار میرود .
در این پروژه روشهایی برای بهینه سازی تخصیص منابع به وقایع بحرانی مختلف با توجه به محدودیتهایی همچون دسترس پذیری منابع ، وضعیت بحرانی وقایع، تعداد منابع خواسته شده و غیره ارائه شده است. روش پیشنهادی به سمت مدیریت رخداد وقایع بحرانی به طور همزمان در یک محیط از پیش تعریف شده خاص با مراکز تخصیص منبع تعیین شده در همان محل پیش می رود. هدف افزایش بهره وری واحدهای واکنش اضطراری به همراه کاهش زمانهای واکنش است. هدف اصلی از تخصیص خدمات اورژانسی ، بیشینه سازی کارایی واحدهای واکنش اضطراری در دسترس و موجود و کمینه سازی زمان واکنش برای کاهش آثار یک یا چند واقعه است.
آژانس های مختلفی در این زمینه تاسیس شده است از آن جمله آژانس مدیریت اورژانسی فدرال(FEMA)[1] است. همچنین سیستمهایی برای نظارت و تخفیف آثار حوادث طراحی شده است مانند سیستم دریافت و پاسخ (اینفوسفر)[2] و سیستم مدیریت بحران (CMS)[3].
الگوریتم های زیادی به همراه تعمیمشان برای رسیدن به راه حل های بهینه مسئله تخصیص منبع پیشنهاد شده است. الگوریتم ژنتیک ، تئوری بازیها ، الگوریتم های پویا و… از آن دسته اند.
عملیات نجات روبوکاپ موضوع تعدادی از پیاده سازی های عملی و سودمند است. عملیات نجات روبوکاپ یک محیط شبیه سازی شده برای برنامه ریزی حادثه شامل عاملهای متعدد است.در فصل های بعد به مسائل گفته شده پرداخته می شود.
[1] Federal Emergency Management Agency
[2] Infosphere
[3] Crisis Management System
متن کامل را می توانید دانلود کنید چون فقط تکه هایی از متن این پایان نامه در این صفحه درج شده است(به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم با فرمت ورد که قابل ویرایش و کپی کردن می باشند
موجود است
هوش مصنوعی
مقدمه ……………………………………………………………………………….. 3
تاریخچه ……………………………………………………………………. 3
تعریف و طبیعت هوش مصنوعی ………………………………………………… 4
فلسفۀ هوش مصنوعی…. …………………………………………………………….. 5
مدیریّت پیچیدگی ………………………………………………………………….. 6
چند سئوال و جواب …………………………………………………………………… 9
سیستم های خبره………………………………………………………………………… 13
مزایای سیستمهای خبره …………………………………………………………. 17
انسان متخصص در مقایسه با سیستم های خبره ………………………… 19
مثالی برای درک کار سیستم های خبره…………………………………………………. 21
سیستم های خبره چه هستند ؟ ……………………………………………… 22
تکنیک های جستجو ………………………………………………………………. 24
جستجو کورکورانه ……. ……………………………………………… 24
نمایش دانش ……………………………………………………………………. 25
قوانین تولید …………………………………………………………………….. 25
مزایای قوانین ………………………………………………………………….. 26
قوانین هیوریستیک……………………………………………………………….. 27
قوانین محدوده ( دامنه ) …………………………………………………………. 27
دانش رویه ای …………………………………………………………………………….. 28
معایب سیستم های تولید قانون …………………………………………………….. 28
شبکه های معنایی …………………………………………………………………. 29
مزایای توارث ……………………………………………………………………….. 29
قاب ها ……………………………………………………………………………….. 30
نمونه هایی از اشیا قاب …………………………………………………………….. 32
منطق …………………………………………………………………………………………….. 33
منطق گزاره ای …………………………………………………………………… 34
منطق محصولات …… ……………………………………………………….. 36
استنتاج ……………………………………………………………………………. 37
عملکرد موتور استنتاج …………………………………………………………. . 37
استراتژی های استنتاج ………………………………………………………………. 40
استنتاج قیاسی ………………………………………………………………………… 40
استنتاج استقرایی …………………………………………………………………….. 41
استنتاج انتزاعی ……………………………………………………………………… 41
کاربرد سیستم های خبره …………………………………………………………… 43
واسط های هوشمند ………………………………………………………………. 46
دلایل بدبینی نسبت به سیستم های خبره ……………………………………….. 48
آینده سیستم های خبره ………………………………………………………………… 50
ابزار های توسعه سیستم های خبره …………………………………………………. 52
زبان های برنامه نویسی ………………………………………………………………. 52
پوسته های سیستم خبره……………………………………………………………….. 54
ابزار های هوش مصنوعی ……………………………………………………. 55
ارزیابی پوسته های سیستم خبره ……………………………………………. 59
مقدمه
هوش مصنوعی (artificial intelligence) را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانشها، علوم، و فنون قدیم و جدید دانست. ریشهها و ایدههای اصلی آن را باید در فلسفه، زبانشناسی، ریاضیات، روانشناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخهها، فروع، و کاربردهای گوناگون و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیستشناسی و پزشکی، علوم ارتباطات و زمینههای بسیار دیگر.
هدف هوش مصنوعی بطور کلی ساخت ماشینی است که بتواند «فکر» کند. اما برای دسته بندی و تعریف ماشینهای متفکر، میبایست به تعریف «هوش» پرداخت. همچنین به تعاریفی برای «آگاهی» و «درک» نیز نیازمندیم و در نهایت به معیاری برای سنجش هوش یک ماشین نیازمندیم.
با وجودی که برآورده سازی نیازهای صنایع نظامی، مهمترین عامل توسعه و رشد هوش مصنوعی بودهاست، هم اکنون از فراوردههای این شاخه از علوم در صنایع پزشکی، رباتیک، پیش بینی وضع هوا، نقشهبرداری و شناسایی عوارض، تشخیص صدا، تشخیص گفتار و دست خط و بازیها و نرم افزارهای رایانهای استفاده میشود.
تاریخچه
مباحث هوش مصنوعی پیش از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول (Boole) که اقدام به ارائه قوانین و نظریههایی در باب منطق نمودند، مطرح شده بود. در سال ۱۹۴۳، با اختراع رایانههای الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر میرسید، فناوری در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانههای هوشمند در صنایع گوناگون هستیم.
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شده بود.
بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههای ریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آنها به انجام رسانند.
تعریف و طبیعت هوش مصنوعی
هنوز تعریف دقیقی که مورد قبول همهٔ دانشمندان این علم باشد برای هوش مصنوعی ارائه نشدهاست، و این امر، به هیچ وجه مایهٔ تعجّب نیست. چرا که مقولهٔ مادر و اساسیتر از آن، یعنی خود هوش هم هنوز بطور همهجانبه و فراگیر تن به تعریف ندادهاست. در واقع، میتوان نسلهایی از دانشمندان را سراغ گرفت که تمام دوران زندگی خود را صرف مطالعه و تلاش در راه یافتن جوابی به این سؤال عمده نمودهاند که: هوش چیست؟
اما اکثر تعریفهایی که در این زمینه ارایه شدهاند بر پایه یکی از ۴ باور زیر قرار میگیرند:
فلسفۀ هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات, استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد . در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسایل دریافت شده تلقی میشود. هوش مصنویی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و نهایتا دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.
در مقایسه هوش مصنوعی با هوش انسانی می توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویه هایی از قبل تعبیه شده بر روی کامپیوتر میباشد. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر ما هنوز قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده ایم.
بطور کلّی، هوش مصنوعی را می توان از زوایای متفاوتی مورد بررسی و مطالعه قرار داد. مابین هوش مصنوعی به عنوان یک هدف، هوش مصنوعی به عنوان یک رشته تحصیلی دانشگاهی، و یا هوش مصنوعی به عنوان مجموعۀ فنون و راه کارهایی که توسط مراکز علمی مختلف و صنایع گوناگون تنظیم و توسعه یافته است باید تفاوت قائل بود.
مدیریّت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریّت پیچیدگی را باید به عنوان هستۀ بنیادین تلاشهای علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینههای علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوهها و تکنیکهای هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمده است که به طور سهل و آسان توسط برنامهنویسی تابعی (Functional programming)، یا شیوههای ریاضی قابل حلّ نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق میآییم، و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی، در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر و بالاتر تجرید را نشانه میرود، تا آنجا که، سرانجام برنامههای کامپوتری درست در همان سطحی کار خواهند کرد که خود انسانها به کار مشغولند.
به یاری پژوهشهای گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کردهاست. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش میدهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی میدود و یا به روشی برای جابجا شدن، دست مییابد، که سازندگانش، برای او، متصور نبودهاند.
هر چند مثال ما در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره میبرند.
آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیهسازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.
هوش مصنوعی که همواره هدف نهایی دانش رایانه بودهاست، اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن میسازند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهای هوش مصنوعی بهره میبرند.
سیستمی که عاقلانه فکر کند. سامانهای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستمها نحوه اندیشیدن انسان مد نظر نیست. این سیستمها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری مینماید. آنها با وجودی که مانند انسان نمیاندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمیکنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستمها در تولید عاملها در نرم افزارهای رایانهای، بهره گیری میشود. عامل تنها مشاهده کرده و سپس عمل میکند.
سیستمهای خبره
سیستمهای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روز افزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانهٔ انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم میشود. سیستمهای خبره به حل مسائلی میپردازند که به طور معمول نیازمند تخصّصهای کاردانان و متخصّصان انسانیست. به منظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میگردد.
عاملهای هوشمند
عاملها (Agents) قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خود می باشند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف میشود. این سیستمها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام میدهند. پس عاقلانه رفتار میکنند، هر چند الزاما مانند انسان فکر نمیکنند.
چند سئوال و جواب
از زبان پروفسور بازنشسته دانشگاه استنفورد و مؤسس آزمایشگاه هوش مصنوعی دانشگاه استنفورد ، جان مک کارتی، از سیر تا پیاز هوش مصنوعی را برای شما تعریف می کند.
هوش مصنوعی چیست ؟
هوش مصنوعی دانش و مهندسی ساخت ماشین های هوشمند و به خصوص برنامه های رایانه ای هوشمند است. هوش مصنوعی با وظیفه مشابه استفاده از کامپیوتر ها برای فهم چگونگی هوش انسان مرتبط است، اما مجبور نیست خودش را به روش هایی محدود کند که بیولوژیکی باشند.
“هوش” چه چیزی است ؟
هوش بخش محاسباتی توانایی است در وجود یک نفر یا شیء برای رسیدن به یک سری اهداف در دنیا. انواع و درجه های مختلفی از هوش در آدم ها، حیوانات و ماشین ها وجود دارد.
آیا تعریف مستقلی از هوش (بدون ارتباط با هوش انسان) وجود دارد ؟
نه هنوز. مشکل این است که ما اهنوز نتوانسته ایم به طور کلی مشخص کنیم که به کدام یک از روش های محاسباتی می خواهیم «هوش» بگوییم. چون از بعضی از مکانیزم های هوش سر در آورده ایم و از بقیه نه.
آیا هوش مصنوعی درباره شبیه سازی هوش انسانی است ؟
گاهی اوقات بله اما نه همیشه. از یک طرف ما با مشاهده آدم های دیگر و یا فقط با مشاهده روش های خودمان، می توانیم چیزهایی درباره حل مسائل توسط ماشین ها یاد بگیریم. از طرف دیگر بیشتر کارها در هوش مصنوعی بیشتر از این که بر اساس مطالعه آدم ها و حیوانات باشد، شامل مطالعه مسایلی است که دنیا به هوش ارائه می کند. محققان هوش مصنوعی برای استفاده از روش هایی که آدم های از آن استفاده نمی کنند و یا استفاده از قدرت محاسباتی بیشتر از توانایی آدم ها آزاد هستند.
تحقیقات هوش مصنوعی از کی شروع شد ؟
بعد از جنگ جهانی دوم، تعدادی از آدم ها به طور مستقل کار روی ماشین های هوشمند را شروع کردند. اولین نفر احتمالا ریاضیدان انگلیسی، آلن تورینگ، است. او در سال 1947 در این باره سخنرانی کرد. او احتمالا اولین نفری هم هست که گفت تحقیقات هوش مصنوعی به جای ساخت ماشین ها بهتر است با برنامه نویسی رایانه ها ادامه پیدا کند. تا اواخر 1950 محققان زیادی در این حوزه فعالیت می کردند و بیشتر آن ها کارشان را بر اساس برنامه نویسی رایانه ها قرار داده بودند.
آیا هدف هوش مصنوعی ایجاد چیزی مثل فکر انسان برای رایانه ها است ؟
بعضی محققان می گویند که آن ها چنین هدفی دارند، اما شاید آن ها دارند از یک اصطلاح مشابه استفاده می کنند. چون فکر انسان ویژگی های عجیب و غریبی دارد و من مطمئن نیستم که کسی به طور جدی بخواهد ساخت همه ویژگی های فکر آدم را عملی کند.
آیا هدف هوش مصنوعی رسیدن به هوشی هم سطح هوش انسان است؟
بله. نهایت تلاش، ساخت برنامه های رایانه ای است که بتواند به خوبی انسان مسائل را حل کنند و به اهداف مورد نظر برسند. اگر چه سطح آرزو های خیلی از آدم های در گیر در هوش مصنوعی، به خصوص در زمینه های تحقیقاتی، کمتر از این حرف هاست.
هوش مصنوعی چقدر با رسیدن به هوش هم سطح انسان فاصله دارد ؟ این اتفاق کی می افتد ؟
بیشتر محققان هوش مصنوعی عقیده دارند که برای رسیدن به هوش هم سطح انسان، ایده های جدیدی لازم است. برای همین نمی توان پیش بینی کرد چه وقتی می توان به هوش هم سطح انسان رسید.
آیا از بین ماشین ها، رایانه ها انتخاب خوبی برای هوشمند شدن هستند ؟
رایانه های می توانند برای شبیه سازی هر نوع ماشینی برنامه ریزی شوند. خیلی از محققان ماشین های غیر رایانه ها اختراع کردند به این امید که آن ها بتوانند با روش هایی غیر از روش هایی که برنامه های رایانه ای هوشمند می شوند، هوشمند شوند. اگر چه آن ها معمولا ماشین های اختراعی شان را در رایانه ها شبیه سازی می کنند و در شک و تردید می افتند که ماشین جدید ارزش ساخت دارد یا نه. به خاطر میلیارد ها دلاری که صرف سریع تر و سریع تر کردن رایانه ها شده است، ماشین جدید باید خیلی سریع باشد تا بتواند بهتر از برنامه ی رایانه ای، که همان ماشین را شبیه سازی می کند، عمل کند.
آیا رایانه های برای هوشمند شدن به اندازه کافی سریع هستند ؟بعضی ها فکر می کنند هم به رایانه های سریع تر نیاز داریم و هم به ایده های جدید. عقیده شخصی من این است که رایانه های 30 سال پیش هم به اندازه کافی سریع بودند، اگر ما می دانستیم چگونه آن ها را برنامه ریزی کنیم.
آیا امکان ساخت «یک ماشین کودک» وجود دارد که با خواند و یاد گرفتن از تجربه هایش بتواند رشد کند و هوش خود را توسعه دهد ؟
این ایده بارها پیشنهاد شده است. اولین بار هم در دهه 1940 بود. سرانجام هم این کار انجام خواهد شد. به هر حال برنامه های هوش مصنوعی به سطحی نرسیده اند که قادر به یادگیری بیشتر از چیزهایی که بچه ها از تجربیات عملی یاد می گیرند، باشند. هم چنین برنامه های فعلی به اندازه کافی از زبان سر در نمی آورند که بخواهند با خواندن چیزی یاد بگیرند.
آیا ممکن است که یک سیستم هوش مصنوعی قادر باشد با فکر کردن درباره هوش مصنوعی، خودش سطح هوشش را بالا ببرد ؟
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
فصل اول
1- 1 تاریخچه هوش مصنوعی
هوش مصنوعی را باید عرصهٔ پهناور تلاقی و ملاقات بسیاری از دانشها، علوم، و فنون قدیم و جدید دانست. ریشهها و ایدههای اصلی آن را باید در فلسفه، زبانشناسی، ریاضیات، روانشناسی، نورولوژی، و فیزیولوژی نشان گرفت و شاخهها، فروع، و کاربردهای گونهگونه و فراوان آن را در علوم رایانه، علوم مهندسی، علوم زیستشناسی و پزشکی، علوم ارتباطات و زمینههای بسیار دیگر.
هدف هوش مصنوعی بطور کلی ساخت ماشینی است که بتواند «فکر» کند. اما برای دسته بندی و تعریف ماشینهای متفکر، میبایست به تعریف «هوش» پرداخت.
همچنین به تعاریفی برای «آگاهی» و «درک » نیز نیازمندیم و در نهایت به معیاری برای سنجش هوش یک ماشین نیازمندیم.
با وجودی که برآورده سازی نیازهای صنایع نظامی، مهمترین عامل توسعه و رشد هوش مصنوعی بودهاست، هم اکنون از فراوردههای این شاخه از علوم در صنایع پزشکی، رباتیک، پیش بینی وضع هوا، نقشهبرداری و شناسایی عوارض، تشخیص صدا، تشخیص گفتار و دست خط و بازیها و نرم افزارهای رایانهای استفاده میشود . مباحث هوش مصنوعی پیش از بوجود آمدن علوم الکترونیک، توسط فلاسفه و ریاضی دانانی نظیر بول که اقدام به ارائه قوانین و نظریههایی در باب منطق نمودند، مطرح شده بود. در سال ۱۹۴۳، با اختراع رایانههای الکترونیکی، هوش مصنوعی، دانشمندان را به چالشی بزرگ فراخواند. بنظر میرسید، فناوری در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن مینگریستند تنها پس از چهار دهه، شاهد تولد ماشینهای شطرنج باز و دیگر سامانههای هوشمند در صنایع گوناگون هستیم.
نام هوش مصنوعی در سال ۱۹۶۵ میلادی به عنوان یک دانش جدید ابداع گردید. البته فعالیت درزمینه این علم از سال ۱۹۶۰ میلادی شروع شده بود.
بیشتر کارهای پژوهشی اولیه در هوش مصنوعی بر روی انجام ماشینی بازیها و نیز اثبات قضیههای ریاضی با کمک رایانهها بود. در آغاز چنین به نظر میآمد که رایانهها قادر خواهند بود چنین اموری را تنها با بهره گرفتن از تعداد بسیار زیادی کشف و جستجو برای مسیرهای حل مسئله و سپس انتخاب بهترین آنها به انجام رسانند.
1- 2 هوش چیست؟
اما اکثر تعریفهایی که در این زمینه ارایه شدهاند بر پایه یکی از باورهای زیر قرار میگیرند:
– سیستمهایی که به طور منطقی فکر میکنند.
– سیستمهایی که به طور منطقی عمل میکنند.
– سیستمهایی که مانند انسان فکر میکنند.
– سیستمهایی که مانند انسان عمل میکنند.
– ظرفیت کسب و به کار گیری دانش و مهارت فکر کردن و استنتاج
– توانایی رفتار مناسب در شرایط غیر قابل پیش بینی
– توانایی بدست آوردن اهداف پیچیده در محیط پیچیده
– توانایی کار و تطبیق با محیط همراه با منابع و دانش ناکافی
شاید بتوان هوش مصنوعی را این گونه توصیف کرد : هوش مصنوعی عبارت است از مطالعه این که چگونه کامپیوترها را میتوان وادار به کارهایی کرد که در حال حاضر انسانها آنها رابهتر انجام میدهند.
1-3 فلسفۀ هوش مصنوعی
بطور کلی ماهیت وجودی هوش به مفهوم جمع آوری اطلاعات, استقرا و تحلیل تجربیات به منظور رسیدن به دانش و یا ارایه تصمیم میباشد . در واقع هوش به مفهوم به کارگیری تجربه به منظور حل مسایل دریافت شده تلقی میشود. هوش مصنویی علم و مهندسی ایجاد ماشینهایی با هوش با به کارگیری از کامپیوتر و الگوگیری از درک هوش انسانی و نهایتا دستیابی به مکانیزم هوش مصنوعی در سطح هوش انسانی میباشد.
در مقایسه هوش مصنوعی با هوش انسانی می توان گفت که انسان قادر به مشاهده و تجزیه و تحلیل مسایل در جهت قضاوت و اخذ تصمیم میباشد در حالی که هوش مصنوعی مبتنی بر قوانین و رویه هایی از قبل تعبیه شده بر روی کامپیوتر میباشد. در نتیجه علی رغم وجود کامپیوترهای بسیار کارا و قوی در عصر حاضر هنوزکسی قادر به پیاده کردن هوشی نزدیک به هوش انسان در ایجاد هوشهای مصنوعی نبوده است.
1-4 مدیریت پیچیدگی
ایجاد و ابداع فنون و تکنیکهای لازم برای مدیریّت پیچیدگی را باید به عنوان هستۀ بنیادین تلاشهای علمی و پژوهشی گذشته، حال، و آینده، در تمامی زمینههای علوم رایانه، و به ویژه، در هوش مصنوعی معرّفی کرد. شیوهها و تکنیکهای هوش مصنوعی، در واقع، برای حلّ آن دسته از مسائل به وجود آمده است که به طور سهل و آسان توسط برنامهنویسی تابعی ، یا شیوههای ریاضی قابل حلّ نبودهاند.
در بسیاری از موارد، با پوشانیدن و پنهان ساختن جزئیّات فاقد اهمّیّت است که بر پیچیدگی فائق میآییم، و میتوانیم بر روی بخشهایی از مسئله متمرکز شویم که مهمتر است. تلاش اصلی، در واقع، ایجاد و دستیابی به لایهها و ترازهای بالاتر و بالاتر تجرید را نشانه میرود، تا آنجا که، سرانجام برنامههای کامپوتری درست در همان سطحی کار خواهند کرد که خود انسانها به کار مشغولند.
به یاری پژوهشهای گسترده دانشمندان علوم مرتبط، هوش مصنوعی از آغاز پیدایش تاکنون راه بسیاری پیمودهاست. در این راستا، تحقیقاتی که بر روی توانایی آموختن زبانها انجام گرفت و همچنین درک عمیق از احساسات، دانشمندان را در پیشبرد این علم، یاری کردهاست. یکی از اهداف متخصصین، تولید ماشینهایی است که دارای احساسات بوده و دست کم نسبت به وجود خود و احساسات خود آگاه باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.
برای نمونه به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا، دامنه حرکت خود را گسترش میدهد، و با هر حرکت موفقیت آمیز یا اشتباه، دامنه تجربیات خود را وسعت بخشیده و سر انجام راه رفته و یا حتی میدود و یا به روشی برای جابجا شدن، دست مییابد، که سازندگانش، برای او، متصور نبودهاند.
هر چند این مثال در تولید ماشینهای هوشمند، کمی آرمانی است، ولی به هیچ عنوان دور از دسترس نیست. دانشمندان، عموماً برای تولید چنین ماشینهایی، از تنها مدلی که در طبیعت وجود دارد، یعنی توانایی یادگیری در موجودات زنده بخصوص انسان، بهره میبرند.
آنها بدنبال ساخت ماشینی مقلد هستند، که بتواند با شبیهسازی رفتارهای میلیونها یاخته مغز انسان، همچون یک موجود متفکر به اندیشیدن بپردازد.هوش مصنوعی که همواره هدف نهایی دانش رایانه بودهاست، اکنون در خدمت توسعه علوم رایانه نیز است. زبانهای برنامه نویسی پیشرفته، که توسعه ابزارهای هوشمند را ممکن میسازند، پایگاههای دادهای پیشرفته، موتورهای جستجو، و بسیاری نرمافزارها و ماشینها از نتایج پژوهشهای هوش مصنوعی بهره میبرند.
سیستمی که عاقلانه فکر کند. سامانهای عاقل است که بتواند کارها را درست انجام دهد. در تولید این سیستمها نحوه اندیشیدن انسان مد نظر نیست. این سیستمها متکی به قوانین و منطقی هستند که پایه تفکر آنها را تشکیل داده و آنها را قادر به استنتاج و تصمیم گیری مینماید. آنها با وجودی که مانند انسان نمیاندیشند، تصمیماتی عاقلانه گرفته و اشتباه نمیکنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستمها در تولید عاملها در نرم افزارهای رایانهای، بهره گیری میشود. عامل تنها مشاهده کرده و سپس عمل میکند.
1-5 عاملهای هوشمند
عاملها قادر به شناسایی الگوها، و تصمیم گیری بر اساس قوانین فکر کردن خود می باشند. قوانین و چگونگی فکر کردن هر عامل در راستای دستیابی به هدفش، تعریف میشود. این سیستمها بر اساس قوانین خاص خود فکر کرده و کار خودرا به درستی انجام میدهند. پس عاقلانه رفتار میکنند، هر چند الزاما مانند انسان فکر نمیکنند.
1-6 سیستمهای خبره
سیستمهای خبره زمینهای پرکاربرد در هوش مصنوعی و مهندسی دانش است که با توجّه به نیاز روز افزون جوامع بر اتخاذ راه حلها و تصمیمات سریع در مواردی که دانشهای پیچیده و چندگانهٔ انسانی مورد نیاز است، بر اهمیت نقش آنها افزوده هم میشود. سیستمهای خبره به حل مسائلی میپردازند که به طور معمول نیازمند تخصّصهای کاردانان و متخصّصان انسانی است. به منظور توانایی بر حل مسائل در چنین سطحی (ترازی)، دسترسی هرچه بیشتر اینگونه سامانهها به دانش موجود در آن زمینه خاص ضروری میگردد.
1-7 رابطه هوش جمعی با هوش مصنوعی
یکی از شاخه های هوش مصنوعی به نام”هوش جمعی” هم اکنون برای حل بسیاری از مسائل بهنیه سازی بکار می رود. هوش جمعی ، مبتنی بر رفتارهای جمعی در سامانههای نامتمرکز و خودسامانده بنیان شده است. این سامانهها معمولاً از جمعیتی از کنشگران ساده تشکیل شده است که بطور محلی با یکدیگر و با محیط خود در تعامل هستند. با وجود اینکه معمولاً هیچ کنترل تمرکزیافتهای، چگونگی رفتار کنشگران را به آنها تحمیل نمیکند، تعاملات محلی آنها به پیدایش رفتاری عمومی میانجامد. مثالهایی از چنین سیستمهای را میتوان در طبیعت مشاهده کرد؛ گروههای مورچهها، دستهٔ پرندگان، گلههای حیوانات، تجمعات باکتریها و دستههای ماهیها.
فصل دوم
2- 1 تعریف هوش جمعی
اصطلاح هوش جمعی ، در سال 1989 توسط گرادوبنی و ژینگوانگ، به همراه رباتیک سلولی معرفی گردید.هوش جمعی ویژگی از سیستم است که بر اساس آن رفتار گروهی عامل های غیر پیچیده که به صورت محلی با محیط شان درارتباط هستند منجر به وجود آمدن الگو های منسجم، یکپارچه و کارا میشود . هوش جمعی زمینه ای را فراهم می آورد که در آن امکان کاوش حل مسئله به صورت گروهی ( توزیع شده) بدون کنترل متمرکز کننده یا تهیه مدل کلی ممکن است .
هوش جمعی، هوش مصنوعی است که بر پایه رفتار گروهی سیستم های غیرمتمرکز و خودسازمانده بنا شده است. سیستم های هوش جمعی، معمولا از مجموعه ای از عامل های ساده که به صورت محلی با یکدیگر و به محیط شان در تعامل هستند تشکیل شده است .
عوامل از قوانین بسیار ساده ای پیروی میکنند و با وجود اینکه ساختار کنترل متمرکزی برای تعیین رفتار هر عامل مستقل وجود ندارد، تعامل محلی بین این عامل ها منجر به به وجود آمدن رفتار کلی پیچیده ای می شود.هوش جمعی متدی است که در رابطه با سیستم های مصنوعی و طبیعی که از تعداد زیادی اجزا مستقل تشکیل شده اند مطرح می شود. این اجزا با استفاده از کنترل غیر متمرکز و خود سازماندهی هماهنگ می شود. به طور خاص این متد بر روی رفتار های جمعی که ناشی از بر هم کنش های محلی اجزا مستقل با یکدیگر و با محیطشان است متمرکز شده است. هوش گروهی یک قالب طراحی بر پایه رفتار اجتماعی حشرات است .
در روشهایی که در گروه هوش جمعی جای می گیرند ، ارتباط مستقیم یا غیر مستقیم بین جوابهای مختلف الگوریتم وجود دارد. در واقع، در این روشها ، جوابها که موجوداتی کم هوش وساده هستند، برای پیدا شدن ویا تبدیل شدن به جواب بهینه ، همکاری می کنند . این روشها از رفتارهای جمعی حیوانات و موجودات زنده در طبیعت الهام گرفته شده اند .
بعضی از محصولات مصنوعی ساخت انسان نیز در حوزه هوش جمعی قرار میگیرند. به طور خاص بعضی از سیستم های چند رباته و همچنین برنامه کامپیوتری خاص که برای انجام بهینه سازی و مسائل آنالیز داده نوشته شده اند جزء این دسته قرار میگیرند .
فرض کنید شما و گروهی از دوستانتان به دنبال گنج میروید هر یک از اعضا گروه یک فلز یاب و یک بیسیم دارد که میتواند مکان و وضعیت کار خود را به همسایگان نزدیک خود اطلاع بدهد. بنابراین شما میدانید آیا همسایگانتان از شما به گنج نزدیک ترند یا نه؟ پس اگر همسایه ای به گنج نزدیک تر بود شما می توانید به طرف او حرکت کنید. با چنین کاری شانس شما برای رسیدن به گنج بیشتر می شود و همچنین گنج زود تر از زمانی که شما تنها باشید پیدا می شود .
این مثال ساده از رفتار جمعی است که افراد برای رسیدن به یک هدف نهایی همکاری میکنند. این روش موثرتر از زمانی است که افراد جداگانه عمل می کنند .
هوش جمعی را میتوان به صورت مجموعه ای سازمان یافته از موجوداتی تعریف کرد که با یکدیگر همکاری میکنند .در کاربردهای محاسباتی هوش جمعی از موجوداتی مانند مورچه ها، زنبور ها، موریانه ها، دسته های ماهیان و دسته پرندگان الگو برداری می شود .در این نوع اجتماعات هر یک از موجودات ساختار نسبتا ساده ای دارند ولی رفتار اجتماعی آنها بینهایت پیچیده است .
رفتار کلی یک هوش جمعی به صورت غیر خطی از آمیزش رفتارهای تک تک اجتماع به دست می آید یا به عبارتی یک رابطه بسیار پیچیده بین رفتار جمعی و رفتار فردی یک اجتماع وجود دارد . رفتار جمعی فقط وابسته به رفتار فردی افراد اجتماع نیست بلکه به چگونگی تعامل میان افراد وابسته است . تعامل میان افراد، تجربه افراد درباره محیط را افزایش میدهد و موجب پیشرفت اجتماع می شود .
ساختار اجتماعی هوش جمعی بین افراد مجموعه کانال های ارتباطی ایجاد میکند که طی آن افراد میتوانند به تبادل تجربه های شخصی بپردازند .
مدل سازی محاسباتی هوش جمعی کاربرد های موفق و بسیاری داشته است. هوش جمعی تبادل جزئی تعداد زیادی عوامل ساده را برای حصول یک هدف کلی است . ویژگی خاص سیستم هوش جمعی توانایی آن در عملکرد به صورت هماهنگ بدون حضور هماهنگ کننده یا کنترل کننده خارجی است. مثال های زیادی در رابطه با ذات گروه ها که رفتار جمعی را بدون اینکه هیچ یک از اعضای گروه را کنترل کنند یا از رفتار کلی گروه با خبر باشند انجام می دهند، قابل مشاهده است . با وجود اینکه علیرغم کم بودن اعضای تشکیل دهنده گروه، گروه از دید کل می تواند رفتار هوشمندی را نمایش دهد این نتیجه بر هم کنش اجرایی است که از دید فضایی با یکدیگر همسایه اند و بر مبنای قوانین ساده ای عمل میکنند .
اغلب اوقات رفتار هر یک از اجزای گروه به شکل عبارت های اجتماعی بیان میشود و هر یک از اجزا دارای رفتار اتفاقی یا تصادفی است که وابسته به درک محلی او از همسایگیهایش است . سیستم های زیستی هوشمند روی زمین همان سیستم های بیولوژیک می باشند. اینگونه سیستم ها به کمک فرآیند های تکاملی طراحی شده اند ، معمولا توسط یک دستگاه کنترل می شوند و به صورت گروهی یا گله ای زندگی می کنند. بر خلاف انسان ، بسیاری از این سیستم های هوشمند از جانداران ساده ای درست شده اند که گویا از منطق ، ریاضیات ، برنامه ریزی، مدل سازی پیرامون ، نمی توانند بهره بگیرند و گاهی دارای حافظه نیز نمی باشند . با این همه این سیستم ها با این که دارای سادگی می باشند ، کارهای محاسباتی و پردازش های پیچیده اطلاعاتی را می توانند انجام بدهند . درک اینگونه سیستم ها و به کارگیری مکانیزم هایی که در آنها وجود دارند به ما در حل مسائل پیچیده وطراحی سیستم های هوشمند تر کمک فراوانی می نمایند . هوش جمعی یک روش محاسباتی برای حل مسائل می باشد که بر پایه رفتار سیستم های طبیعی که شامل جانداران بسیاری کنار هم می باشند کار می کند . این روش حل مساله می کوشد که مساله ها را به روش گسترده حل نماید با این ویژگی که میان جانداران این سیستم ، دو سویگی مستقیم یا غیر مستقیم وجود داشته باشد . از کنش و واکنش میان این جانداران و همینگونه با پیرامون خودشان ، رفتاری پدید می آید که کار خواسته شده را انجام می دهد .
(ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)
متن کامل را می توانید دانلود نمائید
چون فقط تکه هایی از متن پایان نامه در این صفحه درج شده (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است