فرمت فایل : word(قابل ویرایش)
تعداد صفحات:18
چکیده:
اشاره:
بیوتکنولوژی و مهندسی ژنتیک دانش جدیدی است که نخستین دستاوردهای آن در هاله ای از بیم و امید ارزیابی می شود. در طول تاریخ بسیاری از پدیده های علمی در مرحله آغازین با تردید و مقاومت شدید روبه رو بوده اند. صدها نمونه از وقایع تلخ و شیرینی که بر این اساس رقم خورده، قابل شمارش است، اما کمتر دانشی به اندازه مهندسی ژنتیک با ساختار اصلی و قانونمند سامانه هستی درگیر شده است.دهه اخیر شاهد تحولاتی اعجاب آور و تحسین برانگیز در زمینه تولید فرآورده های حاصل از مهندسی ژنتیک و تکنولوژی زیستی بوده است. چنان که پیش بینی می شد، در آغاز هزاره سوم میلادی نیز بر سرعت تحولات در این زمینه افزوده شده است. تحولاتی که به همراه فنآوری ارتباطات سرنوشت اقتصادی و حتی اجتماعی و بعضاً سیاسی برخی از مناطق جهان را تحت تأثیر قرار خواهد داد. مهندسی ژنتیک و دست ورزی گیاهان زراعی و تولید گیاهان با مقاومت مطلق در مقابل آفات و امراض نباتی و بی نیاز از کاربرد سموم خطرناک تحولی را در کشاورزی ایجاد کرده است که تنها با «انقلاب سبز» قابل مقایسه است.
مقدمه
کلمه بیوتکنولوژی اولین بار در مجمع سازمان ملل متحد ، در شهر لیدز انگلستان و در سال 1920 به کار برده شد . بیوتکنولوژی یکی از مدرن ترین شاخه های زیست شناسی است که مجموعه ای از علوم بیوشیمی ، میکروبیولوژی سلولی ، بیولوژی ، مهندسی ژنتیک و ... را شامل می شود. در دهه ششم از قرن بیستم اصلاح گران نباتات توانستند عملکرد بالایی از واریته های جدید به دست آورده و بدین ترتیب انقلاب سبز را به وجود آوردند . اما همزمان با افزایش جمعیت ، این افزایش نتوانست کمبود مواد غذایی را جبران کند لذا دانشمندان به تحقیق در این زمینه پرداختند. پیشرفت های جدید زمینه های جدید را بوجود آورده که با کمک آن می توان از میکروارگانیزم ها برای تولید محصولات تجاری متفاوت شامل مواد غذایی و دارو بهره گرفت. به همین کیفیت تکنیک هایی برای تشخیص بیماری ها ، تولیدات شیمیایی بیولوژی و سوخت برای آینده مورد استفاده قرار گرفته است. مهندسی ژنتیک یکی از ابزارهای کارآمد بیوتکنولوژی می باشد که هدف از آن، شناخت ساختمان و کارآیی ژن ، تولید پروتئین و مواد اولیه مفید دیگر به وسیله روش های متداول و نوظهور و تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب می باشد.البته باید توجه داشت که مهندسی ژنتیک با ژنتیک تفاوت داشته ، بدین ترتیب که ژنتیک بیشتر یک علم است و به بررسی نحوه انتقال صفات از والدین به فرزندان میپردازد و از ابتدای قرن ۲۰ پس از کشف مجدد قوانین مندل به صورت یک علم نوین ظهور کرد ، اما مهندسی ژنتیک یک فناوری یا یک تکنیک است که با استفاده از علوم مختلف طی دستورزی یا دستکاری ژنتیکی موجودات زنده در سطح مولکول DNA تغییراتی در موجودات ایجاد میشود. مهندسی ژنتیک بخشی از بیوتکنولوژی مدرن امروزی است که از دهه ۸۰ میلادی به طور جدی مطرح شده است.
پیدایش و تعریف بیوتکنولوژی:
منشا بیوتکنولو ژی به دوران ما قبل تاریخ بر می گردد، زمانی که از میکروارگانیزم ها برای فرایندهایی همچون تخمیر ، تولید ماست و پنیر از شیر، تولید سرکه از ملاس ، تولید بوتانول و استون از نشاسته توسط clostridium acetobutilycum و یا تولید آنتی بیوتیک هایی نظیر پنیسیلین از penicillium notatum استفاده کرده اند. معذالک با کشف آنزیم های برشی در دهه 1970 بیوتکنولو ژی پیشرفت قابل ملاحظه ای کرد و به ابداع فنون متنوعی در فرآوری ژن انجامید ، به طوری که به عنوان مهمترین انقلاب علمی این قرن در نظر گرفته می شود. گرچه بیوتکنولوژی در سال 1970 فراگیر شد اما نتایج اولیه آزمایشگاهی آن فقط بعد از سال 1980 نمایان شد.
در واقع بیوتکنولو ژی محصول تعامل بین علم بیولو ژی و تکنولو ژی است. به منظور تعریف بیوتکنولو ژی پیشنهاداتی ارایه شده است و محققین مختلف تفاسیر متفاوتی از این فنآوری ارایه داده اند. معذالک تعاریف زیر به نظر می رسد که مناسب ترین تعاریف باشند:
1- کاربرد علم و مهندسی در استفاده مستقیم یا غیر مستقیم از موجودات زنده و یا اجزا و تولیدات آنها در حالت طبیعی یا تغییر یافته آن موجودات
2- استفاده تلفیقی از علوم بیوشیمی میکروبیولوژی و مهندسی به منظور نایل شدن به استفاده صنعتی از قابلیت های میکروارگانیزم ها، سلول های بافت کشت شده و اجزای متعلق به آنها (فدراسیون بیوتکنولوژی اروپا )
3- استفاده کنترل شده از عوامل بیولوژیکی از قبیل میکروارگانیزم ها یا اجزای سلولی برای استفاده مفید (فرهنگستان علوم ایالات متحده )
4- تولید فرآورده ها از طریق فرآیند زیستی که مستلزم فنون مهندسی است (فرهنگستان علوم جمهوری اسلامی ایران )
یکی از مشکلات اصلاح نباتات کلاسیک و مرسوم این است که دامنه موجوداتی که امکان مبادله ژن در بین آنها وجود دارد ، به دلیل موانع گونه ای شدیدا محدود است. فنآوری جدید راهکار بهتری را برای کنترل و دست ورزی اهداف فراهم کرده اند و حصار های خاص گونه ای مانعی بر سر راه آنها محسوب نمی شود. این فنون جایگزین اصلاح نباتات مرسوم نیستند بلکه با ایجاد روش های نوین دسترسی به اهدافی که با روش های مرسوم امکان پذیر نیست را ممکن می سازند.
فواید بیوتکنولوژی
بیوتکنولوژی جبهه علمی هیجان انگیزی را در کشاورزی گشوده است. تکنیک های جدید حاصل از بیوتکنولوژی در مقایسه ، سریع ، بسیار ویژه و در مصرف منابع کارآمد هستند.اکنون دیگر قدرت بیوتکنولوژی قدرتی تخیلی نیست. در چند سال اخیر توانسته ایم آنچه را که تنها در فکر می گذشت به فعل در آوریم . به طور نمونه دانشمندان یاد گرفته اند که چگونه با تغییر ژنتیکی بعضی گیاهان مقاومت آنها را در برابر برخی علفکش ها افزایش دهند یا با استفاده از بیوتکنولوژی توانسته اند واکسن های مطمئن و کارآ تری را علیه بیماری های ویروسی و باکتریایی نظیر هاری کاذب، اسهال و تب برفکی بسازند. بیوتکنولوژی امروزه توانسته است بر روی ژن موجودات زنده کار کند و در جهت هدف های پیش بینی شده تغییراتی را ایجاد کند که از این منظر عبارت از دخالت مستقیم در محتوای اطلاعات وراثتی سلول های زنده و توفیق در تولید گونه های جدید و بهتر است.
روش های جدید بیوتکنولوژی در علم کشاورزی شامل کشت سلولی، کشت بافت و پروتوپلاست گیاهی ، هیبرید سلول های سوماتی، دستکاری و انتقال جنین و DNA نوترکیب در شناسایی تبیین ماهیت انتقال و کنترل ژن است. دانشمندان بسیاری از این روش ها را برای بهینه سازی گیاهان و جانوران به کار برده اند. برای نمونه بیش از 40 نوع گیاه از الحاق پروتوپلاست تولید شده است که سیب زمینی و گوجه فرنگی از جمله این نمونه ها به شمار می رود. کشت بافت به عنوان یکی از بنیادی ترین روشهای فنآوری بیوتکنولوژی امروزه به صورت گسترده مورد استفاده دانشمندان قرارگرفته است. طی این روشها میتوان از یک سانتی متر مکعب از بافت یااندام گیاه، چندین میلیون سلول همانند تولید کرد که بطور بالقوهای میتوان از آنها میلیونها بوته با خواص یکسان بدست آورد. طی این شیوه ، امکان مطالعه بهتر گیاه در کم ترین زمان و با بیشترین ضریب اطمینان ممکن میباشد. برای نمونه در یک آزمایشگاه تحقیقاتی به نام ماکسپلانک (MAX Planck) در آلمان، ضمن آزمایشی معلوم شد که ازمیان 42 هزار بافت سیب زمینی مورد آزمایش فقط 73 بافت یعنی (4درصد بافتها) در برابر قارچ سیب زمینی مقاوم بودند. بافت مقاوم تکثیرگردیده و گیاهان مقاوم به قارچ، سپس به مزرعه منتقل گردیدند. (اینشیوه دستیابی به گونههای مقاوم فقط در مدت 8 ماه عملی گردید، درصورتی که در سالهای 1975 تا 1980 این کار از طریق روشهای اصلاحنباتات حداقل 10 تا 15 سال زمان میطلبد. این کار در گیاهان دیگر ازجمله نخل روغنی حداقل 30 سال زمان نیاز دارد. در حال حاضر درکشورهای صنعتی ، این شیوه بسیار رواج یافته و تحولات شگرفی در تولیدگونههای گیاهان زراعی با خصوصیات جدید بوجود آمده است.
بیوتکنولوژی، روشهای جدید بهینه سازی گیاهان به طور مقرون بهصرفه و از طرق مختلف را ممکن ساخته است ، که برای نمونه میتوان بهافزایش مقاومت در مقابل خطرات و بیماریها، راههای جدید مبارزه باعلفهای هرز، مقاومت بیشتر در مقابل فشارهای جوی و محیطی ازجمله خشکسالی، سرما و نمک و مواد شیمیایی (مثل آلومینیم)، استفاده بهتر از مواد مغذی مثل نیتروژن، بهبود کیفی فرآوردهها از طریق ایجادتغییراتی در ویژگیهای موادی مثل اسیدهای چرب، اسیدهای آمینه،طعم، مزه و قابلیت حفظ کیفیت به هنگام ذخیرهسازی و بهبود درچگونگی متابولیسم گیاهی (مثل استفاده از نیتروژن فتوسنتز)، تولید گل و دانه و تقسیم مواد غذایی بین ساقه و دانه اشاره نمود.
فواید مهندسی ژنتیک :
در طول تاریخ کشاورزی ، بشر از فرایند طبیعی مبادله ژنی در قالب اصلاح نباتات و به وجود آمدن تنوع خصایص بیولوژیکی استفاده نموده است. واقعیت فوق پشتوانه کلیه تلاش ها برای اصلاح گونه های کشاورزی ، خواه از طریق اصلاح نباتات و دام به صورت سنتی و یا از طریق تکنیک های بیولوژیکی ملکولی بوده است.در این دو مورد بشر، برای تولید انواع گیاهان و جانورانی که دارای صفات و خصایص مطلوب باشند ، مانند گیاهان مقاوم به بیماری ها و دام های خوراکی که در آنها نسبت ماهیچه به چربی زیادتر است ، تلاش کرده است .
دلیل اصلی و اولیه ایجاد مهندسی ژنتیک ناشی از رسیدن به اهداف سودمندی در علوم کاربردی ، بهداشتی و پزشکی به شرح ذیل بوده است :
1- شناخت ساختمان و کارآیی ژن
2- تولید پروتیین های مفید و مواد اولیه دیگر بوسیله روش های نوظهور متداول
3- تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب
تفاوت عمده میان اصلاح نبات و دام به صورت سنتی و روشهای "بیولوژیکی- ملکولی " انتقال ژن ها ، نه در هدف هاست و نه در فرآیندها، بلکه در سرعت ، دقت ، قابلیت اطمینان و دامنه کار قرار دارد . هرگاه متخصصان سنتی اصلاح دام و نباتات دو گیاه یا دام دارای قابلیت جنسی را با یکدیگر آمیزش می دهند، ده ها ژن با یکدیگر درهم می آمیزند ، هریک از والدین نیمی از ژنوم ( یا مجموعه ژنهای ) خود را در قالب ادغام سلولی تخم و اسپرم به نسل خود منتقل می کند ، لیکن ترکیب آن نیمه در هر یک از سلولهای جنسی والدینی و به تبع آن در هر آمیزش تفاوت می کند . قبل از وقوع ترکیب "مطلوب" ژن ها و ایجاد صفات مورد نظر در نسل بعد باید آمیزش های زیادی صورت پذیرد.
با استفاده از روش های بیولوژیکی ملکولی و مطالعه تاثیر تک تک ژن ها می توان برخی از این مسایل را حل نمود. دانشمندان به جای اتکا به ترکیب های متوالی تعداد متنابهی ژن برای کسب نتایج دلخواه می توانند هر ژن را به طور مجزا برای بررسی صفتی معین مستقیما در ژنوم سلول تخم قرار دهند.آنها نحوه تظاهر این ژن ها در رقم جدید گیاه یا دام را هم کنترل می کنند. خلاصه آنکه با تمرکز روی صفت مطلوب می توان از طریق انتقال ملکولی ژن مورد نظر، مدت زمان لازم برای ایجاد ارقام جدید را کوتاه نمود و سطح دقت مطالعه را بالا برد. همچنین می توان با استفاده از این روش ، ژن ها را میان گیاهان و یا جانورانی که از لحاظ جنسی قابل آمیزش نیستند مبادله نمود.
تکنیک های انتقال ژن ، کلید بسیاری از کار بست های بیوتکنولوژی هستند.اساس مهندسی ژنتیک عبارت است از توان شناسایی ژن مورد نظر یعنی ژنی که حاوی ویژگی مطلوب در موجودات است، مجزا کردن آن ژن ، مطالعه کارکرد و اصول فعالیت آن تغییر ژن و کار گذاشتن مجدد آن در میزبان طبیعی خود و یا گیاه و جانوری دیگر.این تکنیک ها ابزار هستند نه هدف . با استفاده از آنها می توان طبیعت و وظیفه و کارکرد ژن ها را شناسایی نمود ، اسرار مقاومت به بیماری ها را گشود ، رشد و نمو را تنظیم نمود و یا در نحوه ارتباط میان سلول ها و موجودات دخل و تصرف نمود.
مهندسی ژنتیک امکان ایجاد واریته ها و گیاهانی را فراهم می کند که دارای صفاتی هستند که دسترسی به آنها از روش های معمول غیرممکن است. برای مثال با دست ورزی ژنتیک برنج طارم مولایی ، نه تنها به کرم ساقه خوار برنج بلکه به کلیه آفات پروانه ای و برخی بیماری های قارچی مانند شیت بلایت مقاوم شده است.
صفت مقاومت مطلق به کرم ساقه خوار و بیماری شیت بلایت در هیچ یک از ۱۲۰۰۰۰ نمونه برنج نگهداری شده در مؤسسه بین المللی تحقیقات برنج مشاهده نشده است. با توجه به عدم دسترسی به ارقام مقاوم نمی توان از روش های سنتی اصلاح نباتات برای ایجاد چنین صفات مهمی استفاده کرد. منافع اقتصادی و زیست محیطی این قبیل واریته های زراعی بی نیاز از توضیح است. کاهش مصرف سموم، کاهش هزینه های تولید، افزایش عملکرد، محیط زیست سالم تر برای انسان، دام و آبزیان و به ویژه انطباق کامل این فناوری با روش های مبارزه تلفیقی از معدود مزایای کاربرد گیاهان تراریخته مقاوم به آفات و بیماری است.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:18
چکیده:
اشاره:
بیوتکنولوژی و مهندسی ژنتیک دانش جدیدی است که نخستین دستاوردهای آن در هاله ای از بیم و امید ارزیابی می شود. در طول تاریخ بسیاری از پدیده های علمی در مرحله آغازین با تردید و مقاومت شدید روبه رو بوده اند. صدها نمونه از وقایع تلخ و شیرینی که بر این اساس رقم خورده، قابل شمارش است، اما کمتر دانشی به اندازه مهندسی ژنتیک با ساختار اصلی و قانونمند سامانه هستی درگیر شده است.دهه اخیر شاهد تحولاتی اعجاب آور و تحسین برانگیز در زمینه تولید فرآورده های حاصل از مهندسی ژنتیک و تکنولوژی زیستی بوده است. چنان که پیش بینی می شد، در آغاز هزاره سوم میلادی نیز بر سرعت تحولات در این زمینه افزوده شده است. تحولاتی که به همراه فنآوری ارتباطات سرنوشت اقتصادی و حتی اجتماعی و بعضاً سیاسی برخی از مناطق جهان را تحت تأثیر قرار خواهد داد. مهندسی ژنتیک و دست ورزی گیاهان زراعی و تولید گیاهان با مقاومت مطلق در مقابل آفات و امراض نباتی و بی نیاز از کاربرد سموم خطرناک تحولی را در کشاورزی ایجاد کرده است که تنها با «انقلاب سبز» قابل مقایسه است.
مقدمه
کلمه بیوتکنولوژی اولین بار در مجمع سازمان ملل متحد ، در شهر لیدز انگلستان و در سال 1920 به کار برده شد . بیوتکنولوژی یکی از مدرن ترین شاخه های زیست شناسی است که مجموعه ای از علوم بیوشیمی ، میکروبیولوژی سلولی ، بیولوژی ، مهندسی ژنتیک و ... را شامل می شود. در دهه ششم از قرن بیستم اصلاح گران نباتات توانستند عملکرد بالایی از واریته های جدید به دست آورده و بدین ترتیب انقلاب سبز را به وجود آوردند . اما همزمان با افزایش جمعیت ، این افزایش نتوانست کمبود مواد غذایی را جبران کند لذا دانشمندان به تحقیق در این زمینه پرداختند. پیشرفت های جدید زمینه های جدید را بوجود آورده که با کمک آن می توان از میکروارگانیزم ها برای تولید محصولات تجاری متفاوت شامل مواد غذایی و دارو بهره گرفت. به همین کیفیت تکنیک هایی برای تشخیص بیماری ها ، تولیدات شیمیایی بیولوژی و سوخت برای آینده مورد استفاده قرار گرفته است. مهندسی ژنتیک یکی از ابزارهای کارآمد بیوتکنولوژی می باشد که هدف از آن، شناخت ساختمان و کارآیی ژن ، تولید پروتئین و مواد اولیه مفید دیگر به وسیله روش های متداول و نوظهور و تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب می باشد.البته باید توجه داشت که مهندسی ژنتیک با ژنتیک تفاوت داشته ، بدین ترتیب که ژنتیک بیشتر یک علم است و به بررسی نحوه انتقال صفات از والدین به فرزندان میپردازد و از ابتدای قرن ۲۰ پس از کشف مجدد قوانین مندل به صورت یک علم نوین ظهور کرد ، اما مهندسی ژنتیک یک فناوری یا یک تکنیک است که با استفاده از علوم مختلف طی دستورزی یا دستکاری ژنتیکی موجودات زنده در سطح مولکول DNA تغییراتی در موجودات ایجاد میشود. مهندسی ژنتیک بخشی از بیوتکنولوژی مدرن امروزی است که از دهه ۸۰ میلادی به طور جدی مطرح شده است.
پیدایش و تعریف بیوتکنولوژی:
منشا بیوتکنولو ژی به دوران ما قبل تاریخ بر می گردد، زمانی که از میکروارگانیزم ها برای فرایندهایی همچون تخمیر ، تولید ماست و پنیر از شیر، تولید سرکه از ملاس ، تولید بوتانول و استون از نشاسته توسط clostridium acetobutilycum و یا تولید آنتی بیوتیک هایی نظیر پنیسیلین از penicillium notatum استفاده کرده اند. معذالک با کشف آنزیم های برشی در دهه 1970 بیوتکنولو ژی پیشرفت قابل ملاحظه ای کرد و به ابداع فنون متنوعی در فرآوری ژن انجامید ، به طوری که به عنوان مهمترین انقلاب علمی این قرن در نظر گرفته می شود. گرچه بیوتکنولوژی در سال 1970 فراگیر شد اما نتایج اولیه آزمایشگاهی آن فقط بعد از سال 1980 نمایان شد.
در واقع بیوتکنولو ژی محصول تعامل بین علم بیولو ژی و تکنولو ژی است. به منظور تعریف بیوتکنولو ژی پیشنهاداتی ارایه شده است و محققین مختلف تفاسیر متفاوتی از این فنآوری ارایه داده اند. معذالک تعاریف زیر به نظر می رسد که مناسب ترین تعاریف باشند:
1- کاربرد علم و مهندسی در استفاده مستقیم یا غیر مستقیم از موجودات زنده و یا اجزا و تولیدات آنها در حالت طبیعی یا تغییر یافته آن موجودات
2- استفاده تلفیقی از علوم بیوشیمی میکروبیولوژی و مهندسی به منظور نایل شدن به استفاده صنعتی از قابلیت های میکروارگانیزم ها، سلول های بافت کشت شده و اجزای متعلق به آنها (فدراسیون بیوتکنولوژی اروپا )
3- استفاده کنترل شده از عوامل بیولوژیکی از قبیل میکروارگانیزم ها یا اجزای سلولی برای استفاده مفید (فرهنگستان علوم ایالات متحده )
4- تولید فرآورده ها از طریق فرآیند زیستی که مستلزم فنون مهندسی است (فرهنگستان علوم جمهوری اسلامی ایران )
یکی از مشکلات اصلاح نباتات کلاسیک و مرسوم این است که دامنه موجوداتی که امکان مبادله ژن در بین آنها وجود دارد ، به دلیل موانع گونه ای شدیدا محدود است. فنآوری جدید راهکار بهتری را برای کنترل و دست ورزی اهداف فراهم کرده اند و حصار های خاص گونه ای مانعی بر سر راه آنها محسوب نمی شود. این فنون جایگزین اصلاح نباتات مرسوم نیستند بلکه با ایجاد روش های نوین دسترسی به اهدافی که با روش های مرسوم امکان پذیر نیست را ممکن می سازند.
فواید بیوتکنولوژی
بیوتکنولوژی جبهه علمی هیجان انگیزی را در کشاورزی گشوده است. تکنیک های جدید حاصل از بیوتکنولوژی در مقایسه ، سریع ، بسیار ویژه و در مصرف منابع کارآمد هستند.اکنون دیگر قدرت بیوتکنولوژی قدرتی تخیلی نیست. در چند سال اخیر توانسته ایم آنچه را که تنها در فکر می گذشت به فعل در آوریم . به طور نمونه دانشمندان یاد گرفته اند که چگونه با تغییر ژنتیکی بعضی گیاهان مقاومت آنها را در برابر برخی علفکش ها افزایش دهند یا با استفاده از بیوتکنولوژی توانسته اند واکسن های مطمئن و کارآ تری را علیه بیماری های ویروسی و باکتریایی نظیر هاری کاذب، اسهال و تب برفکی بسازند. بیوتکنولوژی امروزه توانسته است بر روی ژن موجودات زنده کار کند و در جهت هدف های پیش بینی شده تغییراتی را ایجاد کند که از این منظر عبارت از دخالت مستقیم در محتوای اطلاعات وراثتی سلول های زنده و توفیق در تولید گونه های جدید و بهتر است.
روش های جدید بیوتکنولوژی در علم کشاورزی شامل کشت سلولی، کشت بافت و پروتوپلاست گیاهی ، هیبرید سلول های سوماتی، دستکاری و انتقال جنین و DNA نوترکیب در شناسایی تبیین ماهیت انتقال و کنترل ژن است. دانشمندان بسیاری از این روش ها را برای بهینه سازی گیاهان و جانوران به کار برده اند. برای نمونه بیش از 40 نوع گیاه از الحاق پروتوپلاست تولید شده است که سیب زمینی و گوجه فرنگی از جمله این نمونه ها به شمار می رود. کشت بافت به عنوان یکی از بنیادی ترین روشهای فنآوری بیوتکنولوژی امروزه به صورت گسترده مورد استفاده دانشمندان قرارگرفته است. طی این روشها میتوان از یک سانتی متر مکعب از بافت یااندام گیاه، چندین میلیون سلول همانند تولید کرد که بطور بالقوهای میتوان از آنها میلیونها بوته با خواص یکسان بدست آورد. طی این شیوه ، امکان مطالعه بهتر گیاه در کم ترین زمان و با بیشترین ضریب اطمینان ممکن میباشد. برای نمونه در یک آزمایشگاه تحقیقاتی به نام ماکسپلانک (MAX Planck) در آلمان، ضمن آزمایشی معلوم شد که ازمیان 42 هزار بافت سیب زمینی مورد آزمایش فقط 73 بافت یعنی (4درصد بافتها) در برابر قارچ سیب زمینی مقاوم بودند. بافت مقاوم تکثیرگردیده و گیاهان مقاوم به قارچ، سپس به مزرعه منتقل گردیدند. (اینشیوه دستیابی به گونههای مقاوم فقط در مدت 8 ماه عملی گردید، درصورتی که در سالهای 1975 تا 1980 این کار از طریق روشهای اصلاحنباتات حداقل 10 تا 15 سال زمان میطلبد. این کار در گیاهان دیگر ازجمله نخل روغنی حداقل 30 سال زمان نیاز دارد. در حال حاضر درکشورهای صنعتی ، این شیوه بسیار رواج یافته و تحولات شگرفی در تولیدگونههای گیاهان زراعی با خصوصیات جدید بوجود آمده است.
بیوتکنولوژی، روشهای جدید بهینه سازی گیاهان به طور مقرون بهصرفه و از طرق مختلف را ممکن ساخته است ، که برای نمونه میتوان بهافزایش مقاومت در مقابل خطرات و بیماریها، راههای جدید مبارزه باعلفهای هرز، مقاومت بیشتر در مقابل فشارهای جوی و محیطی ازجمله خشکسالی، سرما و نمک و مواد شیمیایی (مثل آلومینیم)، استفاده بهتر از مواد مغذی مثل نیتروژن، بهبود کیفی فرآوردهها از طریق ایجادتغییراتی در ویژگیهای موادی مثل اسیدهای چرب، اسیدهای آمینه،طعم، مزه و قابلیت حفظ کیفیت به هنگام ذخیرهسازی و بهبود درچگونگی متابولیسم گیاهی (مثل استفاده از نیتروژن فتوسنتز)، تولید گل و دانه و تقسیم مواد غذایی بین ساقه و دانه اشاره نمود.
فواید مهندسی ژنتیک :
در طول تاریخ کشاورزی ، بشر از فرایند طبیعی مبادله ژنی در قالب اصلاح نباتات و به وجود آمدن تنوع خصایص بیولوژیکی استفاده نموده است. واقعیت فوق پشتوانه کلیه تلاش ها برای اصلاح گونه های کشاورزی ، خواه از طریق اصلاح نباتات و دام به صورت سنتی و یا از طریق تکنیک های بیولوژیکی ملکولی بوده است.در این دو مورد بشر، برای تولید انواع گیاهان و جانورانی که دارای صفات و خصایص مطلوب باشند ، مانند گیاهان مقاوم به بیماری ها و دام های خوراکی که در آنها نسبت ماهیچه به چربی زیادتر است ، تلاش کرده است .
دلیل اصلی و اولیه ایجاد مهندسی ژنتیک ناشی از رسیدن به اهداف سودمندی در علوم کاربردی ، بهداشتی و پزشکی به شرح ذیل بوده است :
1- شناخت ساختمان و کارآیی ژن
2- تولید پروتیین های مفید و مواد اولیه دیگر بوسیله روش های نوظهور متداول
3- تولید گیاهان و حیوانات تراریخته با ویژگی های مطلوب
تفاوت عمده میان اصلاح نبات و دام به صورت سنتی و روشهای "بیولوژیکی- ملکولی " انتقال ژن ها ، نه در هدف هاست و نه در فرآیندها، بلکه در سرعت ، دقت ، قابلیت اطمینان و دامنه کار قرار دارد . هرگاه متخصصان سنتی اصلاح دام و نباتات دو گیاه یا دام دارای قابلیت جنسی را با یکدیگر آمیزش می دهند، ده ها ژن با یکدیگر درهم می آمیزند ، هریک از والدین نیمی از ژنوم ( یا مجموعه ژنهای ) خود را در قالب ادغام سلولی تخم و اسپرم به نسل خود منتقل می کند ، لیکن ترکیب آن نیمه در هر یک از سلولهای جنسی والدینی و به تبع آن در هر آمیزش تفاوت می کند . قبل از وقوع ترکیب "مطلوب" ژن ها و ایجاد صفات مورد نظر در نسل بعد باید آمیزش های زیادی صورت پذیرد.
با استفاده از روش های بیولوژیکی ملکولی و مطالعه تاثیر تک تک ژن ها می توان برخی از این مسایل را حل نمود. دانشمندان به جای اتکا به ترکیب های متوالی تعداد متنابهی ژن برای کسب نتایج دلخواه می توانند هر ژن را به طور مجزا برای بررسی صفتی معین مستقیما در ژنوم سلول تخم قرار دهند.آنها نحوه تظاهر این ژن ها در رقم جدید گیاه یا دام را هم کنترل می کنند. خلاصه آنکه با تمرکز روی صفت مطلوب می توان از طریق انتقال ملکولی ژن مورد نظر، مدت زمان لازم برای ایجاد ارقام جدید را کوتاه نمود و سطح دقت مطالعه را بالا برد. همچنین می توان با استفاده از این روش ، ژن ها را میان گیاهان و یا جانورانی که از لحاظ جنسی قابل آمیزش نیستند مبادله نمود.
تکنیک های انتقال ژن ، کلید بسیاری از کار بست های بیوتکنولوژی هستند.اساس مهندسی ژنتیک عبارت است از توان شناسایی ژن مورد نظر یعنی ژنی که حاوی ویژگی مطلوب در موجودات است، مجزا کردن آن ژن ، مطالعه کارکرد و اصول فعالیت آن تغییر ژن و کار گذاشتن مجدد آن در میزبان طبیعی خود و یا گیاه و جانوری دیگر.این تکنیک ها ابزار هستند نه هدف . با استفاده از آنها می توان طبیعت و وظیفه و کارکرد ژن ها را شناسایی نمود ، اسرار مقاومت به بیماری ها را گشود ، رشد و نمو را تنظیم نمود و یا در نحوه ارتباط میان سلول ها و موجودات دخل و تصرف نمود.
مهندسی ژنتیک امکان ایجاد واریته ها و گیاهانی را فراهم می کند که دارای صفاتی هستند که دسترسی به آنها از روش های معمول غیرممکن است. برای مثال با دست ورزی ژنتیک برنج طارم مولایی ، نه تنها به کرم ساقه خوار برنج بلکه به کلیه آفات پروانه ای و برخی بیماری های قارچی مانند شیت بلایت مقاوم شده است.
صفت مقاومت مطلق به کرم ساقه خوار و بیماری شیت بلایت در هیچ یک از ۱۲۰۰۰۰ نمونه برنج نگهداری شده در مؤسسه بین المللی تحقیقات برنج مشاهده نشده است. با توجه به عدم دسترسی به ارقام مقاوم نمی توان از روش های سنتی اصلاح نباتات برای ایجاد چنین صفات مهمی استفاده کرد. منافع اقتصادی و زیست محیطی این قبیل واریته های زراعی بی نیاز از توضیح است. کاهش مصرف سموم، کاهش هزینه های تولید، افزایش عملکرد، محیط زیست سالم تر برای انسان، دام و آبزیان و به ویژه انطباق کامل این فناوری با روش های مبارزه تلفیقی از معدود مزایای کاربرد گیاهان تراریخته مقاوم به آفات و بیماری است.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:32 صفحه ,19 اسلاید
فهرست مطالب:
چکیده.................................................................................................................4
مقدمه..................................................................................................................5
فصل اول
1-1)الگوریتم ژنتیک چیست؟...................................................................................9
2-1)ایده اصلی....................................................................................................13
3-1)الگوریتم .....................................................................................................15
3-1-1)روش های نمایش ......................................................................................17
3-1-2)روش های انتخاب .....................................................................................18
3-1-3)روش های تغییر .......................................................................................19
فصل دوم
1-2)نقاط قوت الگوریتم های ژنتیک.........................................................................21
2-2)محدودیتهای الگوریتم ژنتیک............................................................................22
3-2)کاربردهای الگوریتم های ژنتیک.......................................................................24
4-2)یک مثال ساده...............................................................................................25
نتیجه گیری........................................................................................................31
منابع................................................................................................................32
چکیده:
الگوریتم های ژنتیک از اصول انتخاب طبیعی داروین برای یافتن فرمول بهینه جهت پیش بینی یا تطبیق الگو استفاده می کنند.الگوریتم های ژنتیک اغلب گزینه خوبی برای تکنیک های پیش بینی بر مبنای رگرسیون هستند.همان طور ساده،خطی وپارامتری یک گفته می شود،به الگوریتم های ژنتیک می توان غیر پارامتریک گفت.
مختصراً گفته می شود که الگوریتم ژنتیک (یا GA) یک تکنیک برنامه نویسی است که از تکامل ژنتیکی به عنوان یک الگوی حل نمسئله استفاده می کند.مسئله ای که باید حل شود ورودی است و راه حلها طبق یک الگو کد گذاری می شودومتریک که تابع fitness هم نام دارد هر راه حل کاندید را ارزیابی می کندکه اکثر آنها به صورت تصادفی انتخاب می شوند.
کلاً این الگوریتم ها از بخش های زیر تشکیل می شوند :
تابع برازش - نمایش – انتخاب – تغییر
که در ادامه آنها را توضیح خواهیم داد.
چکیده:
هندسی به عنوان ویژگی های پیچیده تر استفاده می کند. مقاله حاضر با تمرکز برفاز دوم ،با به کارگیری شبکه عصبی تکاملی نتایج قابل قبولی ارائه می دهد.
در ادامه فاز تشخیص آرم شرح داده خواهد شد به طوریکه به منظور حفظ استقلال روش پیشنهادی از فرضیاتی در مورد چیدمان متن استفاده نمی کنیم که این از مزایای روش به شمار می رود.
2- روش پیشنهادی
شناسایی دقیق یک آرم شامل سه مرحله کلی بخش بندی تصویر ،تشخیص آرم و انطباق آرم می باشد.بخش بندی تصویر با استفاده از الگوریتمtop-down سلسله مراتبی ]2[ ، مسئله انطباق آرم نیز در
]1 [تشریح شده است. این مقاله بر مسئله تشخیص آرم تاکید داشته که با در اختیار گرفتن مجموعه ای از بخش ها به عنوان ورودی (تصاویر متنی بخش بندی شده در فاز اول )،پس از استخراج ویژگی ،با استفاده از شبکه عصبی تکاملی،بر پایه الگوریتم ژنتیک ،آن هارا به دو مجموعه قطعه های شامل آرم و قطعه های بدون آرم افراز می نماید] 11,10[.
فرمت:word(قابل ویرایش)
تعداد صفحات:93
پایان نامه دوره کارشناسی پیوسته کامپیوتر گرایش نرم افزار
فهرست مطالب:
مقدمه 11
فصل یکم - معرفی برنامه ریزی فرآیند به کمک کامپیوتر(CAPP) و الگوریتم ژنتیک 17
1-1- برنامه ریزی فرآیند به کمک کامپیوتر17
1-1-1- رویکرد بنیادی 18
1-1-2- رویکرد متنوع 18
1-2- الگوریتم ژنتیک20
1-2-1-کلیات الگوریتم ژنتیک21
1-2-2-قسمت های مهم الگوریتم ژنتیک23
1-2-2-1-تابع هدف و تابع برازش26
1-2-2-2- انتخاب27
1-2-2-3- تقاطع28
1-2-2-4- جهش32
فصل دوم- نمونه هایی از کاربرد الگوریتم ژنتیک در برنامه ریزی فرآیند به کمک کامپیوتر34
2-1-بهینه سازی مسیر فرآیند با استفاده از الگوریتم ژنتیک34
2-1-1- توصیف توالی فرآیند34
2-1-2- استراتژی کد گزاری37
2-1-3- تجزیه و تحلیل همگرایی38
2-1-3-1-همگرایی نزدیک شونده38
2-1-3-2-همگرایی با در نظر گرفتن احتمال40
2-1-3-3-همگرایی Gها در توالی سازی فرایندهای پشت سر هم40
2-1-3-4-تعریف یک قانون41
2-1-4-اپراتورهای ژنتیک41
2-1-4-1-اپراتور انتخاب41
2-1-4-2- اپراتور تغییر و انتقال42
2-1-4-3- اپراتور جهش44
2-1-5- برقراری تابع تناسب44
2-1-5-1- آنالیز محدودیت ها44
2-1-5-2- برقراری تابع برازش45
2-1-6-مثال47
2-1-6-1-مثالهایی برای کاربرد این روشها 47
2-1-6-2-تاثیر پارامترهای متغیر بر روند تحقیقات 49
2-1-7-نتیجه گیری50
2-2-روشی برای برنامه ریزی مقدماتی ترکیبات دورانی شکل محور Cاستفاده از الگوریتم ژنتیک51
2-2-1-مقدمه51
2-2-2-مدول های سیستمCAPP پیشنهاد شده54
2-2-3-تجسم قطعه56
2-2-4-تولید توالی های ممکن58
2-2-4-1-الزامات اولویت دار58
2-2-4-2- الزامات تلرانس هندسی59
2-2-4-3- رابطه ویژگی های اولویت دار60
2-2-5 بهینه سازی با استفاده از الگوریتم ژنتیک G64
2-2-5-1- تابع برازش67
2-2-5-2- الگوریتم ژنتیک68
2-2-6- نتایج و بحث71
2-2-7-نتیجه گیری71
فصل سوم: الگوریتم پیشنهادی برای کاربرد الگوریتم ژنتیک در طراحی قطعه به کمک کامپیوتر در محیط صنعتی 73
3-1-مقدمه73
3-2-الگوریتم ژنتیک74
3-2-1-سیستم های تولیدی توزیع شده74
3-2-2-نمایش طرح های فرایند75
3-2-3-جمعیت اولیه76
3-3-تولید مثل76
3-3-1-ادغام76
3-3-2-دگرگونی و جهش77
3-4- ارزیابی کروموزوم 80
3-4-1- مینیمم سازی زمان فرایند80
3-4-2- مینیمم سازی هزینه های تولید80
3-5- مطالعات موردی81
3-5-1- CAPPسنتی81
3-5-2- CAPP توزیع شده85
3-6- ارزیابی88
3-6-1- معیار اول88
3-6-2- معیار دوم89
فصل چهارم -نتیجه گیری90
فهرست شکلها
شکل 1-1- نمایش یک کروموزوم با ارقام صفر و یک22
شکل 1-2- دو کرموزوم قبل از تقاطع (والدین22
شکل 1-2- دو کروموزوم بعد از تقاطع (فرزندان23
شکل 1-3- کروموزوم بعد از جهش223
شکل 1-4 - تقاطع چند نقطه ای232
شکل2-1-نمودار جریان برنامه246
شکل2-248
شکل2-3 -طرح دیاگرام CAPP پیشنهادشده55
شکل2-4-ساختار سلسله مراتبی ویژگی های فرمی نوعی56
شکل 2-557
شکل2-6- مثالهای الزامات اولویت دار59
شکل 2-7- مثال الزامات تلرانس هندسی 60
شکل 2-8- یک شکل نمونه دارای 18 ویژگی61
شکل 2-9-تولید مجدد گرافیکی62
شکل2-10 تولید مجدد داخلی62
شکل 3-1- توصیف یک سیستم تولیدی توزیع شده75
شکل 3-2- نمونه ای از یک طرح فرآیند75
شکل 3-3- اپراتور ادغام77
شکل 3-4- اپراتور جهش79
شکل 3-5-یک قطعه منشوری برای ارزیابی الگوریتم81
شکل 3-6 تغییرات هزینه تولید در طی اجراهای مختلف84
شکل3-7-یک قطعه منشوری شکل85
فهرست جدولها
جدول2-1- استراتژی کدگذاری37
جدول2-2 توالی سازی با استفاده از Gتحویل47
جدول 2-3- رابطه نوع ویژگی کدبندی ویژگی سلول ماشینکاری و کدبندی طبیعی G48
جدول 2-4 49
جدول 2-550
جدول 2-650
جدول 2-7 61
جدول 2-8 توالی های اولیه64
جدول 2-9-جزئیات برای قطعه نمونه65
جدول 2-10- الگوههای اولویت و مجاورت65
جدول 2-11- جمیعت اولیه66
جدول2-12-نسل بعد از تولید مجدد68
جدول 2-13 -فرآیند ادغام69
جدول 2-14- فرآیند جهش70
جدول 2-15- توالی های بهینه/نزدیک بهینه71
جدول3-1- اطلاعات تولید82
جدول 3-4-طرح فرآیند مطالعه موردی 83
جدول 3-3- ماتریس تقدم و تاخر83
جدول 3-2-منابع موجود در کارگاه تولید84
جدول 3-5- رابطه تقدم و تاخر برای مطالعه موردی86
جدول 3-6- شاخصهای زمان و هزینه در سه کارخانه87
جدول 3-7- منابع مورد استفاده در سه کارخانه87
جدول 3-8 توصیف هفت عملیات اصلی87
جدول 3-9 منابع موجود در عملیات ماشینکاری87
جدول 3-10- طرح فرآیند بر طبق ضابطه کمینه کردن هزینه تولید88
جدول 3-11 طرح فرآیند بر طبق ضابطه کمینه کردن زمان فرآیند89
مقدمه:
در جهان صنعتی امروز، به تولید به عنوان یک سلاح رقابتی نگریسته می شود و سازمانهای تولیدی در محیطی قرار گرفته اند که از ویژگی های آن می توان به افزایش فشارهای رقابتی، تنوع در محصولات، تغییر در انتظارات اجتماعی و افزایش سطح توقع مشتریان اشاره کرد. محصولات در حالی که باید بسیار کیفی باشند، تنها زمان کوتاهی در بازار می مانند و باید جای خود را به محصولاتی بدهند که با آخرین ذائقه، سلیقه و یا نیاز مشتریان سازگار هستند. بی توجهی به خواست مشتری و یا قصور در تحویل به موقع ممکن است بسیار گران تمام شود. شرایط فوق سبب گردیده تا موضوع اطلاعات برای سازمانهای تولیدی از اهمیت زیادی برخوردار شود. از طرف دیگر، آخرین بررسی ها حاکی از آن است که استراتژی رقابتی مبتنی بر بازار خود نیز به تدریج در حال گذر است و چشم انداز استراتژیک رقابت در آینده مبتنی بر منابع خواهد بود. به عبارت دیگر در حالی که شرکتها امروزه موفقیت را در تبعیت و استفاده درست از قوانین، فرصتها و شرایط دیکته شده توسط بازار می دانند، استراتژی مبتنی بر منابع بر این موضوع تاکید دارد که منفعت و موفقیت بیشتر با اتکا بر مزیتها و منابع منحصر به فرد و قابل اطمینان شرکت و سرمایه گذاری به منظور توسعه و حفاظت از آنها حاصل خواهد شد.
البته منابع تولیدی مورد نظر تنها شامل سرمایه، زمین، ماشین آلات و تجهیزات نمی شوند، بلکه بنای تولید نسل آینده بر تاکید و توجه به اطلاعات، مدیریت دانش و توجه ویژه به مسئله آموزش افراد خواهد بود.
وضعیت به وجود آمده و تحولات صورت گرفته مذکور در حوزه فعالیتهای تولیدی، اگرچه خود حاصل به کارگیری گسترده و همه جانبه فناوریهای اطلاعاتی در این حوزه است، ولی در عین حال باعث توجه مضاعف سازمانها و شرکتهای تولیدی به مقوله اطلاعات و فناوریهای مرتبط با آن شده است. این تحقیق با هدف تبیین موضوع فوق به طور عام و تبیین بخش خاصی از آن به نام برنامه ریزی فرایند به کمک کامپیوتر صورت گرفته است. اهمیت این بررسی از آنجا ناشی می شود که چند سالی است در کشور، افزایش تعداد واحدهای تولیدی و به تبع آن تحقق نسبی فضای رقابتی باعث گردیده تا توجه تولیدکنندگان و شرکتهای صنعتی به کیفیت محصولات، افزایش سهم بازار و مسئله صادرات معطوف گردد. از همین رو به نظر مــی رسد دانستن تحولات صورت گرفته در بخشهای تولیدی جوامع پیشرفته می تواند در تعیین و شناخت بهتر مسیری که سازمانهای تولیدی و صنعتی کشور برای ارتقای توان رقابتی خود باید طی کنند موثر واقع شود. توسعــه های اخیر در حوزه فناوری اطلاعات به ویژه هوش مصنوعی و سیستم های خبره، وضعیت تولید در جوامع صنعتی را دگرگون ساخته است.
عصر فعلی را برخی عصر اطلاعات لقب داده اند. این نامگذاری شاید به این دلیل باشد که امروزه اطلاعات به جزء تفکیک ناپذیر زندگی بشر تبدیل شده است. اگرچه اطلاعات از دیرباز در زندگی بشر تاثیر بسزایی داشته و انسان برای تصمیم گیریها و طی طریق همواره محتاج به آن بوده است ولی آنچه که امروزه اهمیت آن را صدچندان کرده، شرایط نوین زندگی و افزایش سهم اطلاعات در آن است.
اختراع رایانه، امکان پردازش سریع و ذخیره حجم انبوهی از داده ها را فراهم آورد و پیشرفتهای بعدی در زمینه ارتباط بین رایانه ها و امکان تبادل داده بین آنها، تبادل و انتقال اطلاعات را در سطح وسیعی ممکن ساخت. این رویدادها به همراه سایر پیشرفتهای صورت گرفته در زمینه الکترونیک و ارتباطات اعم از میکروالکترونیک، نیمه هادیها، ماهواره و روباتیک به وقوع انقلابی در زمینه نحوه جمع آوری، پردازش، ذخیره سازی، فراخوانی و ارائه اطلاعات منجر گردید که شکل گیری فناوری اطلاعات حاصل این رویداد بود.
براساس تعریف، فناوریهای اطلاعاتی مجموعه ای از ابزارها، تجهیزات، دانش و مهارتهاست که از آنها در گردآوری، ذخیـــــره سازی، پردازش و انتقال اطلاعات (اعم از متن، تصویر، صوت و…) استفاده می شود.
در این میان نقش ابزارهای رایانه ای و مخابراتی به وضوح مشخص است. این فناوری به سرعت در حال رشد است و فعالیتها و سرمایه گذاریهای انجام شده در این زمینه به ویژه پس از ظهور پدیده اینترنت، بسیار چشمگیر است. دامنه علوم مرتبط با آن بسیار گسترده و وسیع بوده و مباحثی نظیر علوم رایانه و مهندسی نرم افزار، مخابرات، هوش مصنوعی، سیستم های اطلاعاتی مدیریتی، سیستم های پشتیبانی تصمیم، مهندسی دانش، فناوری چندرسانه ای، مدیریت اطلاعات، امنیت داده و اطلاعات، داد و ستد و ارتباطات انسان – رایانه، ارتباطات گروهی مبتنی بر رایانه، روباتیک و پایگاههای اطلاعاتی اینترنتی را شامل می شود. پرتوهای این فناوری نوین بسیاری از زوایای زندگی انسان را فرا گرفته است و بسیاری از علوم و موضوعها را تحت تاثیر خود قرار داده است.
امروزه موارد استفاده فناوری اطلاعات را می توان در آموزش، مدیریت و سازمان، پزشکی، تجارت، امور نظامی، تولید و صنعت، تحقیقات، حمل و نقل، کنترل ترافیک و صنعت نشر به وضوح مشاهده کرد.
جستجو به منظور یافتن راهی بهتر برای تولید قطعات، همواره عامل محرک و اساسی در خودکارسازی یا اتوماسیون بوده است. تعویض نیروی کار انسانی با ماشین را می توان ابتدایی ترین مرحله خودکارسازی تولید دانست که حدوداً در سال ۱۷۷۵ میلادی به وقوع پیوست و انقلاب صنعتی نقش موثری در رابطه با آن داشت. دستگاه تراش و نقاله ها نمونه هایی از مکانیزاسیون ایجاد شده بودند. روند اتوماسیون، در سال ۱۹۵۲ با ساخت اولین ماشین NC در دانشگاهMIT وارد مرحله جدیدی شد که مشخصه بارز آن عبارت بود از جایگزینی کنترل انسانی با کنترل خودکار ماشین. نوعی از اتوماسیون قابل برنامه ریزی بود که عملیات آن به وسیله اعداد و نشانه ها کنترل می شد.
در دهه ۷۰، با ظهور رایانه های ارزانتر و کارآتر و پیشرفتهای الکترونیکی و مخابراتی، اتوماسیون های نقطه ای نیز به تدریج گسترش یافته و با پیوستن به یکدیگر تبدیل به اتوماسیون های گسترده تری به نام جزایر اتوماسیون شدند. جزایر اتوماسیون نشانگر مجموعه ای از زیرسیستم های یکپارچه خودکار شده در کارخانه هستند. سیستم های تولید انعطاف پذیر، سیستم مدیریت تولید، سیستم های یکپارچه جابجایی و انبارسازی مواد و سیستم های CAM وCAD نمونه هایی از جزایر اتوماسیون ایجاد شده هستند. انگیزه غایی، همانا خواست انسان برای افزایش هرچه بیشتر اتوماسیون در سیستم تولیدی به منظور دستیابی به بهره وری بالاتر است.
باادامه فعالیت و تحقیق بر روی جزایر اتوماسیون، این جزایر نیز به مرور توسعه پیدا کرده و شروع به همپوشانی و رقابت با یکدیگر کردند.
این مسئله به همراه جایگزینی تدریجی اندیشه سیستمـی و کل نگر به جای اندیشه جزء نگرانه، همچنین پیشرفتهـای صورت گرفته در زمینه فناوری اطلاعات باعث شد تا برخی به فکر یکپارچه سازی کلیـه عملیات تولیدی با یکدیگر بیفتند و به این ترتیب موضـوع «تولید یکپارچه رایانه ای» Computer Integrated Manufacturing = CIM)) مطرح گردید.
تولید یکپارچه رایانه ای اگرچه پایان تلاشهای محققان در خودکارسازی امور تولیدی و صنعتی نیست اما از آنجا که نمایانگر خودکارسازی و یکپارچه سازی کلیه فعالیتهای مرتبط با تولید به وسیله به کارگیری رایانه ها، روبات ها و شبکه های ارتباطی در درون یک کارخانه است دارای اهمیت بسیار زیادی است.
تولیدیکپارچه رایانه ای نوعی فناوری است که می تواند به هر صنعت وابسته شده و توسط آن صنعت هدایت شود، بدین معنی که هر صنعت برحسب مجموعه تجارب، نیازمندیها و موقعیتهای خاص خود، شرایطی ویژه برای تولید یکپارچه رایانه ای فراهم می آورد. از این رو، تعاریف و توصیفهای متفاوتی برای آن وجود دارد. در زیر نمونه هایی از توصیف های صورت گرفته ارائه شده است.
سیستم یکپارچه رایانه ای شامل رایانه ای کردن فراگیر و سیستماتیک فرایند تولیدی است. چنین سیستم هایی بااستفاده از پایگاه داده های مشترک، فعالیتهایی همچون طراحی به کمک رایانه، ساخت به کمک رایانه، مهندسی به کمک رایانه، انجام تست ها، تعمیرات و مونتاژ را یکپارچه می سازند.
(اسپریت، کمیسیون انجمن های اروپایی ۱۹۸۲) سیستم تولید یکپارچه رایانه ای عبارتست از به کارگیری یکپارچه اتوماسیون بر پایه رایانه و سیستم های پشتیبانی تصمیم گیری به منظور مدیریت فعالیتهای سیستم تولیدی، از طراحی محصول تا فرایند تولیدی و نهایتاً توزیع به انضمام مدیریت تولید و موجودی و مدیریت منابع مالی.
(هارن و براون ۱۹۸۴) سیستـم تولید یکپارچه رایانـه ای، پردازنـده های مواد و اطلاعات است که سه زیر سیستم اصلی آنها عبارتند از: سیستم فیزیکی کارخانه، سیستم تصمیم و سیستم اطلاعاتی.
(مایر ۱۹۹۰) تولید یکپارچه رایانه ای عبارت است از علم و هنر خودکارسازی بااستفاده از یکپارچگی حاصل از فناوری اطلاعات در فرآیندهای تولیدی. (یومانز و همکاران ۱۹۸۶)
با کمی دقت در توصیفها و دیدگاههای مذکـور در مورد تولیـد یکپارچه رایانـه ای مـــی توان به نقش و اهمیت اطلاعـات و فناوریهای اطلاعاتی در تحقق سیستم تولید یکپارچـه رایانه ای پی برد. به بیان دیگر، می توان گفت که این سیستم در طی روند توسعه فناوری اطلاعات به مانند فعالیت مهمی در کنار آن ظاهر گردیده و گسترش یافته است.
برای بررسی نقش فناوری اطلاعات در این سیستم بهتر است که ابتدا دیدگاه مذکور کمی شفاف تر شود. همانگونه که هارن، براون و شیونان در کتابشان اشاره می کنند، درک مسئله این سیستم بستگی به زمینه تجربی و دیدگاه اشخاص نسبت به آن دارد. از این رو است که نگرشها و دیدگاههای متفاوتی در رابطه با آن وجود دارد که آنها در اثر خود به برخی از آنها اشاره کرده اند. آنچه در اینجا به عنوان ملاک در نظر گرفته می شود، دیدگاهی است که خودهارن و همکارانش در مورد این سیستم ارائه کرده اند. این دیدگاه که در شکل یک نشان داده شده است به لحاظ جامعیت و نگرش سیستمی، مناسبترین دیدگاه از بین دیدگاههای موجود به نظر می رسد .
ارتباط نشانگر یکپارچگی مجموعه عملیات و نیز نشاندهنده مدار بسته بازخورد اطلاعات هستند. به طور خلاصـه، مـی توان گفت که تولید یکپارچه رایانه ای به معنی یکپارچگی جزایر اتوماسیون مرتبط با عملیات اداری – مالی، پشتیبانی مهندسی، مدیریت تولید و عملیات مربوط به سطح اجرایی است. این فرایند به وسیله ارتباطات رایانه ای و تسهیلات ذخیره سازی داده ها انجام می شود.
در گذشته طراحی قطعات و محصولات به صورت دستی و بااستفـاده از میزهای بزرگ و ابزارهای نقشــــه کشی انجام می گرفت و نقشه ها غالباً برروی کاغذ ترسیم می شدند. به همین سبب طراحیها عموماً وقت گیر و پردردسر بودند. همچنین در صورت ترسیم اشتباه و یا تغییر طرح، اصلاح و رسم مجدد نقشه ها زمان زیادی را به خود اختصاص می داد. این مسئله در مواردی که محصول از قطعات متعدد و پیچیده برخوردار بود نمود بیشتری داشت. نگهداری نقشه ها و مراقبت از آنها نیز مسئله دیگری بود که هم فضای زیادی را می طلبید و هم زمان قابل توجهی را برای کدگذاریبایگانی و بازیابی مجدد به خود اختصاص می داد. بااین همه این نقشه ها تنها نمایانگر شکل و وضعیت هندسی و مکانی قطعات نسبت به یکدیگر آن هم به صورت دو بعدی بودند.
به تدریج با بکارگیری رایانـه در امر نقشــه کشی و ایجاد و توسعه نرم افزارهای CAD ، تحولی در امور طراحی به قوع پیوست. کاهش خطاهای طراحی و تولید، ایجاد تناسب میان نقشه و روشهای تولید، تشخیص آسان روابط اجزای قطعه در مرحله تحلیل، تسهیل در آمــاده سازی مستندات و بهبود یا افزایش استانداردهای طراحی از مزایای طراحی به کمک رایانه بودند.
امروزه باافزایش توان رایانه ها در ذخیره و پردازش داده و همچنین پیشرفتهای صورت گرفته در زمینه فناوریهای اطلاعاتی به ویژه هوش مصنوعی، امکانات و قابلیتهای سیستـــم های CAD به طور چشمگیری افزایش یافته است. نرم افزارهای پیشرفتهCAD امروزی، امکان ایجاد مدلهای توپر سه بعدی را برای طراح فراهم آورده اند. این نرم افزارها با بهره برداری وسیع از تکنیــک های هوش مصنوعی و به لطف سیستم های خبره تعبیه شده در آنها، قابلیت تجزیه و تحلیل طرحها را نیز دارا هستند. به عنوان مثال آنها قادرند جرم طرح، حجم طرح و مرکز ثقل قطعات را محاسبه و تعیین کنند.
می توانند محل برخورد یا فصل مشترک قطعات مونتاژی را بررسی کنند و خواص مکانیکی قطعات نظیر تنش و یا جریان گرمایی را مورد تجزیه و تحلیل قرار دهند. برخی از این نرم افزارها می توانند حرکت قطعات را نیز مورد مطالعه قرار دهند و برخی دیگر قادرند نقاط و زمانهای بازرسی قطعه را تعیین سازند. آنها حتی پایگاه اطلاعاتی مورد نیاز تولید محصول را به وجود می آورند. پایگاه مذکور شامل تمام اطلاعات مربوط به محصول از دید طراحی، از اطلاعات هندسی، لیست مواد و قطعات، مشخصات مواد و غیره گرفته تا اطلاعات اضافی مورد نیاز برای تولید می شود. سیستم های قدرتمندCAD فعلی، همچنین قابلیت تبادل اطلاعات با سیستم های بانک اطلاعاتی و انتقال داده ها به سایر نرم افزارهای تولیدی را نیز دارا هستند که این ویژگی، کارآیی آنها را به نحو چشمگیری افزایش داده است.
یکی دیگر از جزایر اتوماسیون ایجاد شده در زمینه تولید، سیستم طراحی فرآیند به کمک رایانه (Computer-Aided Process Planning=CAPP) است. این سیستم هـا بـه منظور انجام خودکار طراحی فرایند تولید قطعاتی که در گذشته توسط متخصصان روشهای تولیـدی انجام می گرفت ایجاد گردیده اند. این سیستم ها از نظر یکپارچـــــه سازی اهمیت بسیاری دارند چرا که یکی از نقاط کلیدی در ایجاد ارتباط میانCAD و CAM به شمار می روند. خروجیهای یک سیستم طراحی فرآیند عبارتند از: انتخاب عملیات مناسب و تعیین توالی عملیات مزبور بر روی قطعه، انتخاب ماشین آلات ضروری برای اجرای عملیات، تعیین ابزارآلات و فیکسچرها و همچنین دستورالعملهای اجرایی برای تنظیم دستگاه، مسیر حرکت ابزارها، پارامترهای عملیات نظیر سرعت، مدت، میزان بار و… البته باید خاطرنشان ساخت از آنجا که برنامه ریزی و طرح ریزی فرایند ساخت قطعات بسیار متکی به تجربه و قضاوت برنامه ریزان است، خودکارسازی کلیه فعالیتهای یادشده، کاری بس دشوار بوده و غالب سیستم های موجود طراحی فرآیند، توان اجرای تمامی فعالیتهـای فوق را ندارند، بلکه در اکثـر موارد تنهـا مــــی توانند خدمات پشتیبانی تصمیم گیری ارائه کنند.
نقش فناوری اطلاعات در سیستم طراحی فرآیند نیز بسیار مشهود است. به طور کلی در توسعه این نوع سیستم ها دو رویکرد مطرح است: ۱ – رویکرد بهبودی یا متنوع؛ ۲ – رویکرد مولد یا بنیادی.
در رویکرد بهبودی که اساس آن استفاده از فناوری گروهی و ابزارهای دسته بندی و کدگذاری است، از یک قطعه مرکب اصلی برای نشان دادن دامنه اشکال تولیدی در یک خانواده استفاده می شود. هرگاه که سیستم قطعه جدیدی را به عنوان عضوی از یک خانواده خاص شناسایی کرد، طرح ریزی فرآیند قطعه مرکب آن خانواده را به گونه ای اصلاح می نماید که بتواند طرح فرآیند آن قطعه جدید را ایجاد کند. سیستـم در این رویکرد، برای تعیین شکل قطعـات از تکنیک های طبقـه بندی قطعات استفاده کرده و آنها را با اشکال متناظـر در قطعات اصلی مطابقت مـــی دهد.
در رویکرد بنیادی، طرح فرآیند براساس اطلاعات موجود در پایگاه داده های تولید ایجاد می شود. در این رویکرد، سیستم طراحی فرآیند در شکل سیستـم های دانش – پایه و هوش مصنوعی و در برخی موارد نیز به صورت یک سیستمDSS عمل کرده و با دریافت اطلاعات جزئیات قطعه موردنظر، انواع عملیات تولیدی در دسترس و توانایی آنها برحسب دقت و تلرانس، تجربه مربوط به قطعات پیشین و… اقدام به طراحی فرآیند مناسب جهت قطعه می کند.
موضوع مورد بحث در تحقیق حاضر شرح برنامه ریزی فرآیند به کمک کامپیوتر و کاربرد الگوریتم ژنتیک برای این مهم می باشد.