دانلود با لینک مستقیم و پر سرعت .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
مهندسی ژنتیک
گرگور مندل در اواسط قرن 19 با مطالعهی صفات ظاهر و انجام آزمایشات دورگهگیری بر روی گیاه نخود موفق به ارائهی قوانین توارث صفات زیستی شد و در سال 1866 رسالهی خود را تحت عنوان «آزمایشهای دورگهگیری» به چاپ رساند. کشف این قوانین به منزلهی تولد علم ژنتیک بود.
طی 30 سال از زمان شکل گیری، این علم به طور چشمگیری رشد کرد. در سال 1882 والتر فلمینگ، سلولشناس اتریشی، میتوز را، که طی آن هستهی یک سلول n2 کروموزومی به دو هسته با تعداد کروموزوم برابر با سلول اولیه تقسیم میشوند، کشف کرد. در 1892 پرفسور آلمانی، تئودور بوواری، میوز یا تقسیم کاهشی را تعریف کرد. در این تقسیم تعداد کروموزومهای سلول نصف میشود و 4 گامت (سلول جنسی) حاصل میشود. در 1903 یک دانشجوی آمریکایی به نام ساتن اهمیت کاهش کروموزوم قبل از لقاح را نشان داد و نظریهی کروموزومی توارث را ارائه کرد. در این نظریه وی بیان کرد که ژنها بر روی کروموزومها واقعاند. در 1910 مورگان با تحقیق بر روی توارث در مگس سرکه، نحوهی قرارگیری ژنها بر روی کروموزوم را بررسی کرد و تکنیکهایی برای نقشهکشی ژن (gene mapping) ارائه کرد. توسعهی این تکنیکها در سال 1923 منتهی به ارائهی چگونگی قرارگیری بیش از 2000 ژن روی چهار کروموزوم مگس سرکه شد.
علیرغم درخشش این مطالعات در زمینهی ژنتیک کلاسیک، تا دههی 1940 هیچگونه اطلاعاتی دربارهی ماهیت مولکولی ژن در دست نبود. در سال 1944 اسوالد آوری با همکاری مکلود و مککارتی نشان دادند که اسید نوکلئیکها مادهی ژنتیک سلول هستند در حالی که تا پیش از آن تصور میشد پروتئین مادهی ژنتیکی سلول است زیرا ساختمان اسیدنوکلئیک سادهتر از آن به نظر میرسید که بتواند مادهی ژنتیکی باشد. ده سال بعد از کشفِ آوری، مدل مولکولی DNA به وسیلهی واتسون و کریک کشف شد و چگونگی عملیات رونویسی و ترجمهی DNA توضیح داده شد.
از این زمان به بعد رشد علم ژنتیک تا 1990 دچار وقفه شد چرا که تکنیکهای موجود برای درک مفاهیم اساسی و مهم با جزئیات بیشتر کافی نبودند. در سال 1973 تحقیقات ژنتیک شتاب تازهای گرفت چرا که در این سالها دانیال ناتانر توانست ایدهای جدید برای نقشهکشی ژن ارائه کند و آن استفاده از آنزیمهای محدود کننده برای توالییابی DNA بود. آنزیمهای محدود کننده، آنزیمهای اندونوکلئازی میباشند که DNA را در محلهایی با توالی خاص میبرند. این کشف اساس شکلگیری تکنیک کلون کردن DNA توسط نورسن کوهن آمریکایی بود که در سال 1917 توانست با استفاده از آنزیمهای محدود کننده قطعاتی ازمولکول DNA باکتری استفلوکوکوس را جدا کند و آن را به نوعی پلاسمید پیوند بزند. به این ترتیب نوعی پلاسمید نوترکیب ایجاد کرد و توانست آن را وارد باکتری ایکولای کند که در میزبان جدید تکثیر شد و DNA نوترکیب ازدیاد یافت.
بدین ترتیب فصل جدیدی در علم ژنتیک آغاز شد و آن تولد مهندسی ژنتیک است که اساس آن تولید DNA نوترکیب با استفاده از کلونینگ ژن میباشد. ژن کلونینگ منجر به ایجاد روشهای سریع و کارآمد توالییابی DNA شد و در نهایت در سال 1990 با انجام پروژهی مهم توالییابی ژنوم (شامل پروژهی ژنوم انسان که در سال 2000 کامل شد) استفاده از این روشها و تکنیکها به نقطهی اوج خود رسید. اما کاربرد کلونینگ ژن فراتر از تعیین توالی DNA است. با استفاده از این تکنیک دانشمندان زیست مولکولی توانستند به مطالعهی چگونگی تنظیم ژنها بپردازند و تأثیر اختلال تنظیم ژن را در بیماریهایی نظیر سرطان دریابند. همچنین این تکنیکها در تولید انبوه پروتئینهای خاص نظیر انسولین که ترکیبات مهم در پزشکی و فرایندهای صنعتی میباشند کاربرد دارند.
روشهای زیادی در مهندسی ژنتیک وجود دارد اما بهطور اساسی شامل چهار مرحلهی زیر است:
1- جدا کردن ژن مورد نظر (ایزولاسیون).
2- الحاق (Insertion ) ژن جدا شده به وکتور (ناقل).
3- انتقال (Transformation) وکتور به سلولهای هدف.
4- جداسازی سلولهایی که وکتور دریافت کردهاند از آنهایی که وکتور دریافت نکردهاند.
در مرحلهی ایزولاسیون دانشمندان ژن مورد نظر را تعیین میکنند. برای این امر معمولاً از بررسی عملکرد ژن استفاده میکنند. برای بدست آوردن ژن مورد نظر از کتابخانههای cDNA و gDNA و یا بهکارگیری تکنیک PCR استفاده میشود.
در مرحلهی الحاق، ژن جدا شده را به وکتور، که میتواند پلاسمید، DNA ویروس و یا وکتورهای دیگر باشد، منتقل میشود. در این مرحله پلاسمید یا DNA ویروس را با آنزیمهای محدود کنندهای که دارای جایگاه شناسایی در این مولکولها باشند، میبرند و قطعهی DNAایزوله شده را که دارای انتهای مکمل دو انتهای باز شدهی وکتور است توسط آنزیم لیگاز به وکتور متصل میکنند.
برای انتقال وکتور به موجود هدف از روشهای مختلف استفاده میشود. اگر موجود هدف یک یوکاریوت باشد معمولا از لیپوزوم، تفنگ ژنی و یا ویروس آن موجود استفاده میشود. در اکثر موارد جاندار هدف یک پروکاریوت (باکتری) است. انتقال به باکتریها سادهتر از یوکاریوتها و معمولاً در محیطهای کشت مناسب باکتریها قادر به دریافت پلاسمید نوترکیب میباشد.
اولین دارویی که از طریق مهندسی ژنتیک تولید شد هورمون رشد انسانی بود که در سال 1982 توسط یک شرکت آمریکایی به نام Drug Adninstrat Food & صورت گرفت. دانشمندان برای تولید انسولین از باکتری دارای پلاسمیدی نوترکیب با ژن انسولین استفاده کردند. این باکتری به این ترتیب قادر به تولید و ترشح انسولین گشت. سپس دانشمندان به تولید هورمون رشد انسانی و واکسن هپاتیت پرداختند.
یکی از بهترین کاربردهای مهندسی ژنتیک اصلاح ژنتیکی موجودات از قبیل گیاهان و سبزیجات و انقلاب حاصل از آن در کشاورزی, اصلاح نباتات و تولید و تأمین غذای انسانها و دامها میباشد. اصلاح ژنتیکی موجودات این پتانسیل را دارد که برای مثال میوههایی با قابلیت تولید واکسن در خود ایجاد کرد و واکسیناسیون دهانی و با هزینهی کمتر انجام داد.
وکتورها در مهندسی ژنتیک
وکتورها، مولکولهای DNA ای هستند که برای کلون کردن قطعات DNA در سلولهای میزبان بکار میروند. برحسب کاربرد، وکتورها به انواع مختلفی تقسیم میشوند. دو نوع متداول آن عبارتاند از وکتورهای کلونینگ و وکتورهایی بیانگر. از ویژگیهای عمومی تمامی وکتورها، پایداری آنها در سلول میزبان میباشد. وکتورها عموماً توانایی همانند سازی مستقل در سلول میزبان را دارند، به طوریکه دارای محل آغاز همانند سازی قابل شناسایی برای سیستم سلول میزبان بوده ودر سلول میزبان پایدار میباشند. [۱ وکتورهای کلونینگ ۲ وکتورهای بیانگر ۳ وکتورهای یوکاریوتی و پروکاریوتی وکتورهای کلونینگ وکتورهای کلونینگ صرفاً جهت کلون نمودن قطعات DNA به منظور تکثیر، انتقال و بررسی توالی آنها به کار میروند. چنین وکتورهائی دارای ناحیه (توالی) خاصی با چندین جایگاه برای آنزیمهای محدود کننده به نام ناحیه کلونینگ با جایگاه چند گانه (MCS) میباشند. وکتورهای بیانگر وکتورهای بیانگر، علاوه بر نگهداری و تکثیر قطعات DNA برای بیان ژنها به کار برده میشوند. وکتورهای مزبور دارای پروموترهای مناسب، جایگاه اتصال ریبوزوم (RBS)، کدون آغاز ترجمه و توالی ختم رونویسی میباشند که در فاصله معینی در اطراف ژن کلون شده قرار گرفته و ایجاد یک قاب خواندن (ORE) مناسب برای ژن مینمایند. به ناحیهای که این اجزا را در برمی گیرد کاست گفته میشود. وکتورهای یوکاریوتی و پروکاریوتی بسته به نوع میزبانی که ژن مورد نظر در آن تکثیر و یا بیان میشود، نوع وکتور و پروموتر به کار رفته متفاوت خواهد بود. خصوصیات عمومی وکتورهای یوکاریوتی و پروکاریوتی مشابهاست. اما این وکتورها در برخی خواص با هم تفاوت دارند. جایگاههای آغاز همانند سازی، رونویسی و توالیهای تنظیمی هر وکتور باید بگونهای باشد که برای سیستم آنزیمی