این فایل در قالب ورد وقابل ویرایش در 130 صفحه می باشد.
مقدمه
انرژی الکتریکی به وسیله نیروگاههای حرارتی که معمولاً در کنار ذخایر بزرگ ایجاد می شوند و نیروگاههای آبی که در نواحی دارای منابع آبی قابل ملاحظه احداث می شوند ، تولید می شود . از این رو به منظور انتقال آن به نواحی صنعتی که ممکن است صدها و هزاران کیلومتر دورتر از نیروگاه باشد ، خطوط انتقال زیادی بین نیروگاهها و مصرف کننده ها لازم است .
در هنگام جاری شدن جریان در طول یک خط انتقال مقداری از قدرت انتقالی به صورت حرارت در هادیهای خط انتقال تلف می شود . این تلفات با افزایش جریان و مقاومت خط افزایش می یابد .تلاش برای کاهش تلفات تنها از طریق کاهش مقاومت ، به صرفه اقتصادی نیست زیرا لازم است افزایش اساسی در سطح مقطع هادیها داده شود و این مستلزم مصرف مقدار زیادی فلزات غیر آهنی است .
ترانسفورماتور برای کاهش توان تلف شده و مصرف فلزات غیر آهنی بکار می رود . ترانسفورماتور در حالیکه توان انتقالی را تغییر نمی دهد با افزایش ولتاژ ، جریان و تلفاتی که متناسب با توان دوم جریان است را با شیب زیاد کاهش می دهد .
در ابتدای خط انتقال قدرت ، ولتاژ توسط ترانسفورماتور افزاینده افزایش می یابد و در انتهای خط انتقال توسط ترانسفورماتور کاهنده به مقادیر مناسب برای مصرف کننده ها پایین آورده می شود و به وسیله ترانسفورماتور های توزیع پخش می شود .
امروزه ترانسفورماتور های قدرت ، در مهندسی قدرت نقش اول را بازی می کنند . به عبارت دیگر ترانسفورماتور ها در تغذیه شبکه های قدرت که به منظور انتقال توان در فواصل زیاد به کار گرفته می شوند و توان را بین مصرف کننده ها توزیع می کنند ، ولتاژ را افزایش یا کاهش می دهند . به علاوه ترانسفورماتور های قدرت به خاطر ظرفیت و ولتاژ کاری بالایی که دارند مورد توجه قرار می گیرند .
تامین شبکه های 220 کیلو ولت و بالاتر موجب کاربرد وسیع اتو ترانسفورماتور ها شده است که دو سیم پیچ یا بیشتر از نظر هدایت الکتریکی متصلند ، به طوریکه مقداری از سیم پیچ در مدارات اولیه و ثانویه مشترک است .
در پستهای فشارقوی به دو منظور اساسی اندازه گیری و حفاظت ، به اطلاع از وضعیت کمیت های الکتریکی ولتاژ و جریان احتیاج است . ولی از آنجا که مقادیر کمیت های مذبور در پستها و خطوط فشارقوی بسیار زیاد است و دسترسی مستقیم به آنها نه اقتصادی بوده و نه عملی است ، لذا از ترانسفورماتور های جریان و ولتاژ استفاده می شود . ثانویه این ترانسفورماتور ها نمونه هایی با مقیاس کم از کمیت های مزبور که تا حد بسیار بالایی تمام ویژگیهای کمیت اصلی را داراست ، در اختیار می گذارد ، و کلیه دستگاههای اندازه گیری ، حفاظت و کنترل مانند ولتمتر ، آمپرمتر ، توان سنج ، رله ها دستگاههای ثبات خطاها و وقایع و غیره که برای ولتاژ و جریان های پایین ساخته می شوند از طریق آنها به کمیت های مورد نظر در پست دست می یابند . بنابراین ترانسفورماتور های جریان و ولتاژ از یک طرف یک وسیله فشار قوی بوده و بنابراین می بایستی هماهنگ با سایر تجهیزات فشار قوی انتخاب شوند و از طرف دیگر به تجهیزات فشار ضعیف پست ارتباط دارند ، لذا لازم است مشخصات فنی آنها بطور هماهنگ با تجهیزات حفاظت ، کنترل و اندازه گیری انتخاب شوند .
ترانسفورماتور جریان حفاظتی جهت بدست آوردن جریان عبوری از خط انتقال یا تجهیزات دیگر در شبکه قدرت در مقیاس پایین تر به کار می روند و سیم پیچی اولیه آن بطور سری در مدار قرار می گیرد . تفاوت آن با ترانسفورماتور اندازه گیری آن است که قابلیت آن را دارد که جریانهای خیلی زیاد را به جریان کم قابل استفاده در رله ها تبدیل کند. از آنجا که در اختیار گذاشتن جریان به طور مستقیم در ولتاژ های بالا میسر نیست ، و از طرفی چنانچه امکان بدست اوردن ان نیز باشد ، ساخت وسایل حفاظتی که در جریان زیاد کارکنند به لحاظ اقتصادی مقرون به صرفه نیست لذا این عمل عمدتاً توسط ترانسفورماتور های جریان انجام می شود . همچنین ترانسفورماتور جریان باید طوری انتخاب شود که هم در حالت عادی شبکه و هم در حالت اتصال کوتاه ئ ایجاد خطا بتواند جریان ثانویه لازم و مجاز برای دستگاههای حفاظتی تامین کند .
ترانسفورماتور ولتاژ حفاظتی ترانسفورماتور هایی هستند که در آن ولتاژ ثانویه متناسب و هم فاز با اولیه بوده و به منظور افزایش درجه بندی اندازه گیری ولتمتر ها ، واتمترها و نیز به منظور ایزولاسیون این وسایل از ولتاژ فشار قوی بکار برده می شود . همچنین از ثانویه ترانسفورماتور ولتاژ برای رله های حفاظتی که هب ولتاژ نیاز دارند نظیر رلههای دیستانس ، واتمتری و… استفاده می شود . این ترانسفورماتور از نظر ساختمان به دو نوع تقسیم می شود که عبارتند از :
الف- ترانسفورماتور ولتاژاندکتیوی
ب- ترانسفورماتور ولتاژ خازنی
همچنین این نوع ترانسفورماتور ها سد عایقی ایجاد می کنند به طوریکه رله هایی که برای حفاظت تجهیزات فشار قوی استفاده می شود ، فقط نیاز دارند برای یک ولتاژ نامی 600 ولت عایق بندی شوند .
ترانسفورماتور های اندازه گیری : در بیشتر مدارهای قدرت ، ولتاژ و جریانها بسیار زیادتر از آنستکه بشود با دستگاههای اندازه گیری معمولی اندازه گرفت . از این رو ترانسهای اندازه گیری بین این مدارها و وسایل اندازه گیری قرار می گیرند تا ایمنی ایجاد کنند . در ضمن مقدیر اندزه گیری شده در ثانویه ، معمولاً برای سیم پیچ های جریان A 1یا A 5 و برای سیم پیچ های ولتاژ 120 ولت است . رفتار ترانسفورماتور های ولتاژ و جریان در طول مدت رخداد خطا و پس از آن در حفاظت الکتریکی ، حساس و مهم است زیرا اگر در اثر رفتار نا مناسب در سیگنال حفاظتی ، خطایی رخ دهد ، ممکن است باعث عملکرد نادرست رله هل شود . یک ترانسفورماتور حفاظتی نیاز است که در یک محدوده ای از جریان که چندین برابر جریان نامی است کار کند و اغلب در معرض شرایطی قرار دارد که بسیار سنگین تر از شرایطی است که ممکن است ترانسفورماتور جریان اندازه گیری با آن مواجهه شود . تحت چنین شرایطی چگالی شار تا وضعیت اشباع پیشرفت می کند که پاسخ، تحت این شرایط و دوره گذرای اندازه گیری اولیه جریان اتصال کوتاه مهم است ، در نتیجه به هنگام گزینش ترانسفورماتور های ولتاژ یا جریان مناسب ، مسائلی مانند دورة گذرا و اشباع نیز باید در نظر گرفته شود .
2-1 مقدمه
ترانسفورماتور وسیله ای است که انرژی الکتریکی را در یک سیستم متناوب ، از یک مدار به مداری دیگر انتقال می دهد و در این میان ولتاژ کم را به ولتاژ زیاد و بالعکس ولتاژ زیاد را به ولتاژ کم تبدیل می نماید .
هر ترانسفورماتوری از دو بخش اصلی تشکیل می گردد :
1ـ هسته که از ورقه های نازک فولادی ساخته می شود.
2ـ دو یا چند سیم پیچ که با هم رابطه مغناطیسی دارند.
ترانسفورماتورها دارای انواع گوناگونی هستند که از آن جمله می توان از ترانسفورماتورهای قدرت و ترانسفورماتورهای اندازه گیری نام برد. ترانسفورماتورهای اندازه گیری از نظر تئوری عملکرد وتکنیکهای ساخت شباهت فراوانی با ترانسفورماتورهای قدرت دارند . ولی به طور کلی می توان تفاوتهای زیر را بین این دو قایل شد :
1ـ نسبت تبدیل اولیه به ثانویه در ترانسفورماتورهای اندازه گیری خیلی بیشتر از ترانسفورماتورهای قدرت است .
2ـ توان انتقالی در ترانسفورماتورهای اندازه گیری نسبت به ترانسفورماتورهای قدرت، خیلی کمتراست .
3ـ ترانسفورماتورهای قدرت عمدتاً سه فاز می باشند در حالیکه ترانسفورماتورهای اندازه گیری اصولاً تک فاز هستند .
4ـ دقت تبدیل در ترانسفورماتورهای اندازه گیری پارامتر مهمی در انتخاب آنهاست.
بدلایل فوق ترانسفورماتورهای اندازه گیری در مقایسه با ترانسفورماتورهای قدرت از دقت بالاتر و پیچیدگی بیشتری در ساخت برخوردار هستند .
در این فصل ساختمان ترانسفورماتورهای اندازه گیری وانواع آنها را بطور خلاصه شرح دهیم .
2-2- معرفی ترانسفورماتورهای اندازه گیری
ترانسفورماتورهای اندازه گیری وسایلی هستند که سطح جریان و ولتاژ شبکه را با دقت مناسب و بالایی به سطوح قابل اندازه گیری توسط رله های حفاظتی کاهش می دهند این ترانسفورماتورها در صورت تغییر در سطح جریان بنام ترانسفورماتور جریان و در صورت تغییر در سطح ولتاژ به نام ترانسفورماتور ولتاژ شناخته می شوند و به دسته های زیر تقسیم می شوند :
1ـ ترانسفورماتور جریان با علامت اختصاری CT
2ـ ترانسفورماتور ولتاژ
ـ القایی با علامت اختصاریPT
ـ خازنی با علامت اختصاری CVT
وظایف اصلی ترانسفورماتورهای اندازه گیری عبارتند از :
1ـ کاهش مقدار جریان یا ولتاژ فشار قوی به مقداری که قابل تحمل رله های حفاظتی و مدارهای اندازه گیری باشد
2ـ مجزا نمودن مدار اندازه گیری از ولتاژ فشار قوی اولیه
3ـ فراهم کردن امکان استاندارد نمودن رله ها و تجهیزات در چند مقدار نامی جریان و ولتاژ .
2-3 ترانسفورماتورهای ولتاژ و انواع آن
ترانسفورماتورهای ولتاژ را می توان به دو دسته مغناطیسی و خازنی تقسیم کرد .
2-3-1 ترانسفور ماتور ولتاژ القایی
ترانسفورماتوری است که در آن با استفاده از خاصیت القاء الکترومغناطیسی، ولتاژ مدار ثانویه را به مقدار مناسب برای وسایل اندازه گیری و رله ها تبدیل می کند . این نوع از ترانسفورماتورهای ولتاژ برای ولتاژهای متوسط دارای عایق خشک رزینی هستند. در ولتاژهای بالا از ترانس های ولتاژ مغناطیسی نوع غوطه ور در روغن استفاده می شود که البته معمولاً تا ولتاژ 132 کیلو ولت رایج بوده و در ولتاژهای بالاتر استفاده از آن مقرون به صرفه نمی باشد و بهتر است که از ترانسفورماتور خازنی استفاده شود .
مقدمه
فصل اول
۱-۲ مقدمه
فصل دوم
۲-۲- معرفی ترانسفورماتورهای اندازه گیری
۲-۳ ترانسفورماتورهای ولتاژ و انواع آن
۲-۳-۱ ترانسفور ماتور ولتاژ القایی
۲-۳-۲ ترانسفورماتور ولتاژ خازنی (CVT)
۲-۴ مسایل جنبی ترانسفورماتورهای ولتاژ
۲-۴-۱ ضریب ولتاژ
۲-۴-۲ آلودگی
۲-۴-۳ ظرفیت پراکندگی
فصل سوم
۳-۱ مقدمه
۳-۲ ماهیت نور
۳-۳ بررسی نور پلاریز ه شده
۳-۳-۱ نور پلاریزه شده خطی
۳-۳-۲ نورپلاریزه شده دایره ای
۳-۳-۳ نورپلاریزه شده بیضوی
۳-۴ پدیده دو شکستی
۳-۵ فعالیت نوری
۳-۶ اثرهای نوری القائی
۳-۶-۱ اثر فارادی
۳-۶-۲ اثر کر
۳-۶-۳ اثر پاکلز
۳-۷ معرفی المانهای مهم نوری
۳-۷- ۱ منابع نور
۳-۷-۲ تار نوری
۳-۷-۳ قطبشگر
۳-۷-۴ تیغه ربع موج و نیمه موج
۳-۷-۵ آشکار سازی نور
فصل چهارم: بررسی ترانس های ولتاژ نوری
۴-۱ مقدمه
۴-۲ OPT براساس اثر کر
۴-۳ OPT بر اساس اثر پاکلز
۴-۳- ۱ اصول کار OPT
۴-۳-۲ سیستم مدولاسیون شدت نور در OPT
۴-۳-۳ مدار پردازش سیگنال در OPT
۴-۲-۴ مواد سازنده سلول پاکلز
۴-۴ مشخصات OPT
۴-۴-۱ مشخصه خروجی OPT
۴-۴-۲ مشخصه حرارتی OPT
۴-۵ مسئل عملی OPT
۴-۶ بررسی مدار پردازش سیگنال در OCT
۴-۶- ۱ مدار پردازش سیگنال بر اساس روش AC/DC
۴-۶-۲ مدار پردازش سیگنال به روش +/-
۴-۶-۳ مدار پردازش سیگنال با استفاده از متوسط شدت نور
فصل پنجم
۵-۱ مقدمه
۵-۲- مزایا
۵-۳- تحلیل نوع تجاری
۵-۳-۱ هزینههای سرمایه پست و هزینههای ساخت
۵-۳-۲ بازده کارآیی عملکرد
۵-۳-۳ صرفهجوییهای نگهداری و تعمیرات
نسبت دور قابل انتخاب خریدار منجر میشود به
۵-۳-۴ صرفهجوییهای مصرف دوره نهایی
۵-۳-۵ مثال عملکرد IPP، MW600 در KV230
۵-۴ نتیجهگیری
فصل ششم
۶-۱ مقدمه
۶-۲ مشکلات و معایب ترانسفورماتورهای اندازه گیری معمولی
۶-۲-۱ احتمال انفجار
۶-۲-۲ اشباع شدن هسته ترانسفورماتور
۶-۲-۳ اثر فرورزونانس
۶-۲-۳-۱ ترانسفورماتورهای ولتاژ خازنی
۶-۲-۳-۲ ترانسفورماتورهای جریان و ولتاژ القایی
۶-۲-۴ شار پس ماند
۶-۲-۵ وزن و حجم زیاد
۶-۲-۶ محدود بودن دقت آنها
۶-۳ مزایای ترانسفورماتورهای اندازه گیری نوری
۶-۳-۱ عدم احتمال انفجار
۶-۳-۲ عدم ایجاد پدیده فرورزونانس در آنها
۶-۳-۳ بدون اثر شار پس ماند
۶-۳-۴ وزن و حجم کم
۶-۳-۵ داشتن دقت بالا
۶-۳-۶ داشتن سرعت پاسخ دهی بالا
۶-۴ کاربردهای عملی ترانسفورماتورهای اندازه گیری نوری
۶-۵ نتیجه گیری
۶-۶ پیشنهادات
فصل هفتم
۷-۱ مبدل ولتاژ نوری KV 230 توسط سنسور نوری پخش میدان الکتریکی
۷-۱-۱ مقدمه
۷-۱-۲ طرح OVT
۷-۱-۳ برپایی آزمایش
۷-۲ مبدلهای ولتاژ نوری بدون باند پهن ۱۳۸ کیلوولت و ۳۴۵ کیلوولت
۷-۲-۱ مقدمه:
۷-۲-۲ اصول طرح و کارکرد
۷-۲-۳ نتایج تستهای آزمایشگاهی ولتاژ بالا:
۷-۲-۳-۱ بازدهی در مورد دقت
B- عایقکاری
۷-۳ ترانس اندازهگیری ولتاژ فشار قوی نوری توسط تداخل نسبی نور سفید
۷-۳-۱ مقدمه
۷-۳-۲ سنسور پاکلز فشار قوی و ترانسفورماتور ولتاژ نوری بر پایه سیستم WLI
الف- مدولاتورهای الکترونوری در تنظیمات طولی
ب- سنسورهای پاکلز ولتاژ بالا بر اساس مدولاسیون طولی:
ج – تکنیک WLI اعمالی برای سنسورهای پاکلز ولتاژ بالا جهت ساخت یک ترانسفورماتور نوری ولتاژ بالا :
د- ترانسفورماتور ولتاژ بالا نوری با استفاده از تنظیمات WLI
۷-۴ نتایج تجربی
۷-۵ نتیجهگری
ضمیمه
تحلیل ماتریس پلاریزاسیون نور
۱ـ بردار جونز
۲ـ پارامترهای استوکس
۳- ماتریسهای جونز
۴- ماتریسهای مولر
۵ـ معرفی ماتریسهای فارادی، کروپاکلز
ضمیمه ۲: جدول استاندارد ترانسفور ماتور ولتاژ