لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 15
تاریخچه /
اصول نخستین ترانسفورماتور نخستین بار در سال 1831 توسط مایکل فارادی و در نتیجه ی اثبات نظریه ی القای الکترومغناطیسی اعلام شد.اما در آن زمان هنوز نقش القای الکترومغناطیسی در تولید نیروی محرکه ی مغناطیسی مشخص نشده بود.اولین سیم پیچ های الکترومغناطیسی به روشی که استفاده ی آنها متدوال شد توسط نیکولاس کالان یکی از نخستین محققانی که پی برد افزایش تعداد دور در ثانویه ی یک ترانسفورماتور در تولید نیروی محرکه ی مغناطیسی بیشتر در اولیه ربط دارد در ایرلند و در سال 1936اختراع شد.بوبین های مغناطیسی به کوشش دانشمندان و مخترعان برای گرفتن ولتاژ بیشتر از باطری ها بهبود پیدا کردند.بین سالهای 1830 و 1870تلاش هایی که برای ساختن سیم پیچ های بهتر که بیشتر بر پایه ی روش سعی و خطا بود رفته رفته قوانین اساسی ترانسفورماتور ها را آشکار کرد.تا سال 1880 هیچ گونه طراحی موثر و کارآمد انجام نشد.اما در یک دهه مشخص شد که ترانسفورماتور ها در سیستمهای توزیع جریان متناوب نسبت به جریان
در سال 1876 یک مهندس روسی به نام پاول یابلوچکوف سیستم روشنایی بر پایه ی چندین سیم پیچ الکتریکی اختراع کرد که در آن سیم پیچ اولیه به منبعی با جریان متناوب متصل شده بود و سیم پیچ ثانویه می توانست به چندین لامپ متصل شود.سیم پیچ هایی که در این سیستم استفاده شده بود به عنوان ترانسفورماتور اولیه رفتار می کردند.این اختراع اذعان می کرد که این سیستم می تواند چندین منبع ولتاژ جداگانه را از تنها یک منبع برق به لامپ های با قدرت های متفاورت تامین کند.
اصول پایه
به طور کلی یک ترانسفورماتور بر دو اصل استوار است:
اول اینکه، جریان الکتریکی متناوب میتواند یک میدان مغناطیسی متغیر پدید آورد (الکترومغناطیس)
و دوم اینکه، یک میدان مغناطیسی متغیر در داخل یک حلقه سیمپیچ میتواند موجب به وجود آمدن یک جریان الکتریکی متناوب در یک سیم سیمپیچ شود.
سادهترین طراحی برای یک ترانسفورماتور در شکل 2 آمدهاست. جریان جاری در سیمپیچ اولیه موجب به وجود آمدن یک میدان مغناطیسی میگردد. هر دو سیمپیچ اولیه و ثانویه بر روی یک هسته که دارای خاصیت نفوذپذیری مغناطیسی بالایی است (مانند آهن) پیچیده شدهاند. بالا بودن نفوذپذیری هسته موجب میشود تا بیشتر میدان تولید شده توسط سیمپیچ اولیه از داخل هسته عبور کرده و به سیمپیچ ثانویه برسد.
قانون القا
میزان ولتاژ القا شده در سیمپیچ ثانویه را میتوان به وسیله قانون فاراده به دست آورد:
/
در فرمول بالا VS ولتاژ لحظهای, NS تعداد دورهای سیمپیچ در ثانویه و Φ برابر مجموع شار مغناطیسی است که از یک دور از سیمپیچ میگذرد. با توجه به این فرمول تا زمانی که شار در حال تغییر از دو سیم پیچ اولیه و ثانویه عبور کند ولتاژ لحظهای در اولیه یک ترانسفورماتور آرمانی از فرمول زیر بدست میآید:
/
و با توجه به تعداد دور سیمپیچهای اولیه و ثانویه و این معادله ساده میتوان میزان ولتاژ القایی در ثانویه را بدست آورد:
/
/
/
شکل-2 یک ترانسفورماتور کاهنده آرمانی و مسیر عبور شار در هسته
معادله ایدهال توان
اگر سیمپیچ ثانویه به یک بار متصل شده باشد جریان در سیمپیچ ثانویه جاری خواهد شد و به این ترتیب توان الکتریکی بین دو سیمپیچ منتقل میشود. به طور ایدهآل ترانسفورماتور باید کاملاً بدون تلفات کار کند و تمام توانی که به ورودی وارد میشود به خروجی برسد و به این ترتیب توان ورودی و خروجی باید برابر باشد و در این حالت داریم:
/
و همچنین در حالت ایدهآل خواهیم داشت:
/
بنابر این اگر ولتاژ ثانویه از اولیه بزرگتر باشد جریان ثانویه باید بههمان نسبت از جریان اولیه کوچکتر باشد. همانطور که در بالا اشاره شد در واقع بیشتر ترانسفورماتورها بازده بسیار بالایی دارند و به این ترتیب نتایج به دست آمده از این معادلات به مقادیر واقعی بسیار نزدیک خواهد بود.
مبحث فنی
تعاریف ساده شده بالا از بسیاری از مباحث پیچیده درباره ترانسفورماتورها گذشتهاست.
در یک ترانسفورماتور آرمانی، ترانسفورماتور دارای یک هسته بدون مقاومت مغناطیسی و دو سیمپیچ بدون مقاومت الکتریکی است. زمانی که ولتاژ به ورودیهای اولیه ترانسفورماتور اعمال میشود برای به وجود آمدن شار در مدار مغناطیسی هسته، جریانی کوچکی در سیمپیچ اولیه جاری میشود. از آنجایی که در ترانسفورماتور ایدهآل هسته فاقد مقاومت مغناطیسی است این جریان قابل چشم پوشی خواهد بود در حالی که در یک ترانسفورماتور واقعی این جریان بخشی از تلفات ترانسفورماتور را تشکیل خواهد داد.
ملاحظات عملی
شار پراکندگی
در یک ترانسفورماتور آرمانی شار مغناطیسی تولید توسط سیمپیچ اول به طور کامل توسط سیمپیچ دوم جذب میشود اما در واقع بخشی از شار مغناطیسی در فضای اطراف پراکنده میشود. به شاری که در حین انتقال از مسیر خود جدا میشود شار پراکندگی (leakage flux) میگویند. این شار پراکندگی موجب به وجود آمده اثر خود القا در سیمپیچها میشود و به این ترتیب موجب میشود که در هر سیکل، انرژی در سیمپیچ ذخیره شده و در نیمه پایانی سیکل آزاد شود. این اثر به طور مستقیم باعث ایجاد افت توان نخواهد شد اما به دلیل ایجاد اختلاف فاز موجب ایجاد مشکلاتی در تنظیم ولتاژ خواهد شد و به این ترتیب باعث خواهد شد تا ولتاژ ثانویه دقیقاً نسبت واقعی خود با ولتاژ اولیه حفظ نکند؛ این اثر به ویژه در بارهای
دانلود مقاله ترانسفورماتور