فرمت:word(قابل ویرایش)
تعداد صفحات:143
فصل اول- مقدمه
۱-مقدمه
۱-۱-متابولسیم روی
۱-۱-۱ پیشگفتار
۱-۱-۱-۲-خصوصیات فیزیکی و شیمایی روی
۱-۱-۱-۳تاریخچه
۱-۱-۲متابولسیم روی
۱-۱-۳-کمبود روی در بدن
۱-۱-۳-۱چطور کمبود روی را معالجه کنیم؟
۱-۱-۴-مسموم کنندگی ZinC
۱-۱-۶-استفادههای پزشکی
۱-۱-۷-دیدگاه فیزیولوژیکی
۱-۱-۷-۱-عملکردها و فار موکولوژی
۱-۱-۷-۲-مکانیسم فعالیت
۱-۱-۸-محرکهای دارویی
۱-۱-۹-نتیجه
۱-۱-۹-۱فعل و انفعالات
۱-۱-۹-۲مکملهای مغذی Nutritinal supplement
۱-۱-۹-۳-نحوه مصرف روی
۱-۱-۲-متابولیسم آهن در بدن (Iron Metabolism)
۱-۲-۱-توزیع آهن در بدن
۱-۲-۲-هموگلوبین
۱-۲-۳-ذخیره آهن
۱-۲-۴-جایگاه انتقالی آهن
۱-۲-۵-جذب آهن (Iron absorption)
۱-۲-۵-۱مکانیسم جذب آهن
۱-۲-۶-فریتین سرم (serum ferritin)
۱-۲-۶-ساختمان فریتین
۱-۲-۶-۲برداشت و آزاد سازی آهن توسط فریتین
۱-۲-۶-۳-عمل فریتین در بدن
۱-۲-۶-۴-فریتین سرم و مقدار آن در افراد طبیعی
مقادیر نرمال آهن سرم
۱-۲-۷-۱تغییرات روزانه در آهن سرم
۱-۲-۸-اندازه گیری مقدار آهن سرم
۱-۲-۸-۱- ملاحضات کلی
۱-۲-۸-۲ اندازه گیری آهن سرم با رسوب پروتئینی
۱-۲-۸-۳ اندازه گیری آهن سرم بدون رسوب پروتئینی
۱-۲-۹ اندازه گیری ظرفیت پذیرش آهن سرم
۱-۲-۹- روش اول
۱-۲-۹-۲-روش دوم (روش رزین)
۱-۲-۹-۳- روش سوم
فصل دوم- مواد و روشها
۲- مواد، وسایل، روشها
۲-۱ مواد
۲-۲- وسایل و دستگاههای آزمایشگاهی مورد استفاده
۳-۳- روشهای دستگاهی
۲-۴ آزمایشات تیتراسیون اسپکتروفتومتری
۲-۴-۱ تعیین طول موج ماکزیمم
۲-۴-۲- بررسی چگونگی جذب آهن توسط آپوترانسفرین
۲-۴-۲-۱ اثر غلظت مختلف آهن بر روی باندینگ با ترانسفرین
۲-۴-۲-۲ اثر زمان بر روی باندینگ آهن با ترانسفرین
۲-۴-۲-۳ اثر یون بیکربنات بر روی باندینگ آهن با ترانسفرین
۲-۴-۲-۴ اثر سیترات بر روی باندینگ آهن با ترانسفرین
۲-۴-۲-۵ اثر غلظت مختلف اکسالات بر روی باندینگ آهن با ترانسفرین
۲-۴-۲-۶ اثر PH بر روی باندینگ آهن با ترانسفرین
۲-۴-۳ بررسی اثر روی
۲-۴-۳-۱ اثر غلظتهای مختلف آهن وروی بر ترانسفرین
۲-۴-۳-۲ تعیین اثر غلظت مشخصی از بی کربنات بر باندینگ غلظتهای مختلف آهن با ترانسفرین
۲-۴-۳-۳ اثر غلظت مشخص بی کربنات بر روی باندینگ روی با ترانسفرین
۲-۴-۳-۴ اثر غلظت مشخص بی کربنات بر باندینگ آهن با ترانسفرین در حضور روی
۲-۴-۳-۵ اثر غلظتهای مختلف روی در باندینگ باترانسفرین در حضور یون بی کربنات
۲-۵- آزمایشات دیالیز تعادلی
۲-۵-۱ محلولهای لازم
۲-۵-۲- طرز کار با دستگاه
۲-۵-۳- اثر روی بر برداشت آهن توسط ترانسفرین
۲-۵-۴- روش کنترل PH
۲-۵-۵- طرز اندازه گیری آهن
۲-۵-۵-۱- روش کار
۲-۵-۶- تعیین ثابت باندینگ آهن با ترانسفرین
فصل سوم-نتایج
۳- نتایج
۳-۱ تیتراسیون اسپکتروفتومتری
۳-۱-۱ تعیین طول موج ماکزیمم
۳-۱-۱-۲- اثر روی بر روی متالوتایونین
۳-۱-۱-۳ اثر روی بر روی جذب ماکزیمم اسیدهای آمینه
۳-۱-۲ بررسی چگونگی جذب آهن توسط آپوترانسفرین
۳-۱-۲-۱ اثر غلظتهای مختلف آهن بر روی باندینگ با ترانسفرین
۳-۱-۲-۲ اثر زمان
۳-۱-۲-۳ اثر یون بیکربنات
۳-۱-۲-۴ اثر اسید سیتریک
۳-۱-۲-۶ اثر PH
۳-۱-۳ بررسی اثر روی
۳-۱-۳-۱ اثر تغییرات غلظت روی
۳-۱-۳-۲ اثر رقابتی روی با آهن
۳-۲ نتایج حاصل از آزمایشات دیالیز تعادلی
۳-۲-۱ تعیین ثابت باندینگ آهن به ترانسفرین
فصل چهارم- بحث
بحث
آزمایشات Invitro
Refrences
پیشگفتار
در طبیعت دهها عنصر وجود دارند که با مقادیری هر چند اندک، در بدن موجودات زنده اعمال و وظایف بسیار حیاتی را انجام می دهند و همچنین وجود این عناصر در رژیم غذایی موجدات زنده برای رشد و ابقاء حیات امری ضروری است همچنین میزان این عناصر در رژیم غذایی بایستی در یک حد مطلوب و متعادل باشد تا حیات موجودات زنده دچار اختلال نگردد. متابولیسم و نقش این عناصر و ماهیت بیماریهای ناشی از کمبود یا ازدیاد آنها بر موجودات زنده توسط متخصصین بیوشیمی پزشکی و تغذیه مورد مطالعه قرار گرفته است. از آنجایی که مقادیر آهن سوم (Capacity total Iron binding) TIBC در وضعیتهای گوناگون انسانی، جغرافیایی، جنسی و … بر حسب عادات غذایی (Food habit) مردم متفاوت است. لذا هدف از این تحقیق مطالعه اثرات تداخلی فلز روی در جذب و انتقال آهن سرم میباشد.
روی به عنوان یک عنصر حیاتی و مهم در تغذیه روزانه انسان و حیوان به شمار می رود نقش بیولوژیکی بزرگی در طبیعت ایفا می کند. روی نقشهای کاتالیکی ، ساختاری و اثر گذاری در بیش از 200 متالوآنزیم روی که در سیستمهای بیولوژیکی شناسایی شده اند را ایفا می کند. این آنزیمها در متابولیسم نوکلئیک اسید و پروتئین و تولید انرژی وبسیاری مواد دیگر دخیل هستند (83) روی به عنوان یکی از مواد معدنی موجود در بدن انسان که دارای اثرات و ویژگیهایی در بافتهای مختلف است، به عنوان بخشی مهم از 300 آنزیم مختلف عمل می کند. به همین دلیل این ماده معدنی نقش مهمی در پروسههای فیزیولوژیکی و مسیرهای متابولیسمی زیست شیمی ایفا می کند. بیش از90% این ماده معدنی به صورت ذخیره در بدن : (30% آن در استخوانها 60% آن در ماهیچهها) موجود است (82) غنی ترین منابع غذایی روی مرکب از جانوران دریایی علی الخصوص صدفهای خوراکی، گوشت، ماهی، مرغ و تخم مرغ است. ترمیم و التیام زخمها، حمایت ایمنی بدن، کاهش توان و سختی بیماری سرماخوردگی، حمایت و مراقبت از غده پروستات، افزایش باروری و تولید اسپرم از مهمترین وظایف و کار کردها و اثرات ماده معدنی روی در بدن می باشد.به این دلیل روی دارای نقش مهمی در سی صد میسر متابولیسی و عملکردهای مختلف بیوشیمی دارا می باشد. این ادعا بر اساس نقش و وظیفه تغذیه، در ترکیب وسیعی از پروسهها و فعالیتهای بدن که شامل هضم، ترمیم، زخم، تولید انرژی در بدن، رشد عضلات، ترمیم بافتهای سلولی، سنتز کولاژن، استقامت استخوانها، عملکردهای هوشی وذهنی، متابولسیم کربوهیدارتها و عملکردهای تناسلی می باشد. حتی کمبود متوسط و معمولی روی در بدن باعث تاثیر منفی بر روی سیستم ایمنی بدن کاهش میزان اسپرم و عملکرد نادرست حافظه همراه است. شاید مشهورترین ادعایی که اخیرا درباره کارایی روی در بدن ارائه گردیده، نقش مهم آن در رابطه با سیستم ایمنی بدن است.
خصوصیات فیزیکی و شیمایی روی:
روی فلزی با وزن ملکولی 4/65 گرم بر مول می باشد و در گروه IIB و ردیف چهارم از جدول تناوبی قرار گرفته است. روی را با علامت اختصاری Zn نمایش می دهند و دارای عدد اتمی 30، وزن اتمی 38/65، چگالی gr/cm3 14/7 در oc 20، انرژی نخستین یونش آن 394/9 و دارای 5 ایزوتوپ رادیواکتیوی طبیعی و یا حاصل شکافت هسته ای دیگر می باشد، فراوانترین ایزوتوپهای آن Zn 64 با فراوانی 6/48% و Zn 66 با فراوانی 9/27و Zn 68 با فراوانی 8/18% می باشد نیمه عمر روی d 244 65 می باشد. جزء عناصر احیاء کننده قوی و خود اکسید می شود 763/0 و بیشتر در حالت دو ظرفیتی موجود می باشد. یکی از عناصر کمیاب و ضروری بدن است. زیرا در اعمال اساسی مولکولی زیادی شرکت می کند. دسته ای از نمکهای کم محلول روی شامل هیدروکسید ، اکسالات و سولفید می باشد. روی با برخی از ترکیبات معدنی شامل سیترات لیدروکسید تولید کمپلکسهای محلول می کند.
تاریخچه
ضرورت این عنصر برای میکروارگانیسمها اولین بار در سالها 1869و 1926 مورد توجه قرار گرفت. کمبود این عنصر عملا در حیوانات آزمایشگاهی مشاهده شد. (115) ولی در انسان کمبود این عنصر نادرست است، زیرا روی در همه جا موجود است. روی بعد از آهن فراوانترین عنصر کمیاب با میزان حدود 5/1 تا 5/2 گرم در کل بدن است. غلظت این عنصر در کروئید چشم (لایه عروقی میان کره چشم که بین صلبیه و شبکیه واقع است) و غده پروستات بالا است ولی بیشترین میزان این عنصر در بدن در استخوانها و عضلات یافت می شود. غلظت زیاد آن مخصوصا در ناحیه مغز، پانکراس و غده آدرنالین میباشد همچنین در تمام سلولها واعصاب وجود دارد. روی ساختمان شیمیایی کاتالیستی (آنزیمی) و قوانین خاصی دارد و بیشتر از 60 آنزیم برای فعالیت خود به روی نیاز دارند که RNA پلیمراز هم شامل آنهاست. روی فعالانه به وسیله حفرههای سیناپسی جذب می شود و فعالیت نورونها و حافظه را حمایت می کند. متابولیسم روی در مدت بیماری و استرسهای فیزیکی با هورمونها سازگار می شود. احتمالا سیتوکسینها و توکسینها قسمتی از سیستم دفاعی را به عهده دارند (3) این عنصر در لوزالمعده دارای فعالیت زیادی می باشد و مرتبا از طریق شیره لوزالمعده مقداری از آن به خارج ترشح می گردد. میزان روی در پلاسما دستخوش تغییرات روزانه است. منحنی تغییر غلظت این عنصر نسبت به ساعات روز به شکل u می باشد. ماکزیمم غلظت در صبح و کمترین آن در اواسط عصر است. بطور متوسط میزان روی در پلاسما 98 و یا 15 می باشد که آن با الفا -2- ماکروگلوبین و باقیمانده آن با آلبومین باند شده است. در خون تنها 10% تا 20% میزان روی در پلاسما و باقیمانده آن در گلبولهای قرمز موجود است. همچنین غشاء گلبولهای قرمز دارای مقداری روی می باشد. غلظت عنصر روی در نطفه 100 برابر میزان آن در پلاسما است. روی تشکیل دهنده تعداد زیادی از آنزیمها در پستانداران (بیش از 150 آنزیم) است که به عنوان جایگاه فعال یا به عنوان جزئی از ساختمان آنها یا هر دو عمل می کند. تعدادی از این آنزیمها عبارتند از : کربنیک انیدراز، کربوکسی پتیپداز، آلکالین فسفاتاز، ترانس فرازها، لیگازها، لیازها، ایزومرازها، DNA,RNA پلیمرازها و سوپر اکسیدویس موتاز (115)
روی در فرآیندهای متابولیکی که شامل سنتز اسید نو کلئیک و پروتئین باشند دخالت دارد و همچنین برای سنتز و فعالیت انسولین ضروری است و به ثابت بودن هگزامرهای پروانسولین و انسولین به وسیله تشکیل کمپلکسهایی با آنها کمک می کند. روی همچنین در تشکیل پروتئین zinc finger نقش دارد. (115) این پروتیئن در نواحی خاصی با DNA باند می شود. روی یک عنصر ضروری برای باند شدن این پروتئین با DNA است.
فرمت:word(قابل ویرایش)
تعداد صفحات:77
پایان نامه دوره کارشناسی معدن
فهرست مطالب
فصل اول: تعریف پارامترهای طراحی انفجار
مقدمه 7
1-1- تعریف پارامترهای طراحی انفجار 8
1-2- روش های طراحی پارامترهای انفجار 14
1-2-1- ضخامت بار سنگ 14
1-2-2- روشهای محاسبه بردن 15
1-2-3- فاصله ردیفی چالها 16
1-2-4- ارتفاع پله 17
1-2-5- اضافه چال 18
1-2-6- گل گذاری 19
1-2-7- شیب چال 20
1-2-8- محاسبه وزن ستون ماده منفجره 21
1-2-9- خرج گذاری منقطع یا چند مرحله ای 22
1-2-10- انرژی ویژه 23
1-2-11- خرج ویژه 25
1-2-12- خرج ته چال 27
1-2-13- خرج میان چال 28
فصل دوم : بهینه سازی چالهای انفجاری 29
1-2- انواع مواد منفجر 30
2-2- مواد منفجره معمول در معادن 31
2-3- مواد منفجره ژله ای 32
2-4- تئوریهای انفجار 35
2-4-1- تئوری long forse 35
2-4-2- تئوری ASH 36
2-4-3- تئوری nitronobel 39
2-4-4- تئوری اندرسون 40
2-4-5- تئوری پیرس 41
2-4-6- تئوری کوینا 42
2-4-7- تئوری اولافسون 43
فصل سوم : بهینه سازی آتشبازی در معدن سنگ آهن چغارت 48
3-1- بررسی وضعیت خاص معدن سنگ آهن چغارت 49
3-2- آبشناسی معدن چغارت 50
3-3- بررسی پارامترهای انفجار معدن چغارت 51
3-4- بهینه سازی سیستم حفاری آتشبازی 57
فصل چهارم : بهینه سازی آتشباری در معدن سنگ آهن گل گهر 64
4-1- بررسی وضعیت معدن سنگ آهن گل گهر 65
4-1-1- مشخصات معدن گل گهر 65
4-1-2- مراحل کار معدن گل گهر 66
4-2- بررسی سیستم انفجار و بهینه سازی آن در معدن 67
4-3- طراحی نقشه انفجار گل گهر با روشهای تئوریک 71
4-4- بررسی هزینه های انفجار در معدن گل گهر 72
4-5- نتایج حاصل از تحقیقات 72
ضمائم 75
چکیده
این پروژه در ارتباط با بهینه سازی انفجار در معادن سنگ آهن می باشد در ابتدا به بررسی اجزای انفجار و پارامترهای آن پرداخته شده است سپس انواع تئوریهای انفجار به همراه معرفی انواع مواد منفجره آورده شده است.
در قسمت آخر پروژه بهینه سازی انفجار در دو معدن سنگ آهن چغارت و گل گهر مورد ارزیابی قرار گرفته
بنام خدا
مقدمه
با توجه به اینکه انتخاب روش مناسب جهت انفجار باعث کاهش هزینه های معدن، خردایش مناسب سنگها، ایمنی بیشتر و بسیاری مزایای دیگر می شود، در این تحقیق با شناخت درست اجزای انفجار و تئوریهای مختلف با بهینه سازی انفجار آشنا می شویم. در این تحقیق انواع مواد منفجره و خواص آنها مورد ارزیابی قرار گرفته است بعلاوه بهینه سازی آتشباری در دو معدن بزرگ آهن ایران، چغارت و گل گهر بررسی شده است.
فصل اول:
تعریف پارامترهای طراحی انفجار
1-1- تعریف پارامترهای طرحی انفجار
طراحی انفجار، با طراحی اجزای خاص انجام می شود که این اجزا به طور کلی عبارتند از:
1- قطر چال (hole diameter) :
که با علامتهای Q , d, D نمایش داده می شود و واحد آن میلیمتر یا اینچ می باشد.
2- بردن (burden) :
فاصله بین دو ردیف چال موازی با هم است . واحد آن متر یا فوت می باشد و با B یا V نشان داده می شود .
فاصله اولین ردیف چال تا سطح آزاد بردن ماکزیمم نامیده می شود و مقدار آن از دیگر بردنها بیشتر است. (Vmax QV) که V مربوط به ردیفهای عقب تر است.
3- فاصله ردیفی چالها (spacing) :
فاصله دو چال را در یک ردیف گویند و با E نشان داده می شود و با واحدهای متر یا فوت معین می شود.(ft-m).
4- طول چال (height) :
ارتفاع چالی است که برای خرج گذاری حفر می کنیم و واحد آن متر یا فوت است.
(ft-m). در واقع ارتفاع کلی چال زده شده است.
5- اضافه چالی (sub drilling):
ارتفاعی از چال است که در زیر پله حفر می شود تا کف پله بعدی که از آتشبازی ایجاد می شود، مسطح شود و واحد آن متر یا فوت است (ft-m). و با علامت U نشان می دهند. این مقدار تفاوت طول کلی چال و ارتفاع پله می باشد.
6- ارتفاع پله (height of stop) :
ارتفاع پله مورد استخراج است و عموماً با K نمایش می دهند. واحد آن متر یا فوت است(ft-m)
7- ارتفاع گل گذاری (stemming) :
ارتفاعی از چال است که با گل پر می کنند و با T نشان می دهند و واحد آن متر یا فوت است (ft-m) و تاثیر زیادی در راندمان آتشباری دارد ولی در معدن چادرملو اصلاً به آن توجهی نمی شد.
8- ارتفاع خرج گذاری (height of explosive) :
میزان ماده منفجره به ازای واحد طول چال است که آنرا با (Qc , n) و تراکم خرج ته چال (Qc , n) می باشد و واحد آن کیلوگرم بر متر یا پوند بر فوت می باشد (1b/ft-kg/m).
9- تراکم خرج گذاری (accumulation of explosive):
میزان ماده منفجره به ازای واحد طول چال است که آنرا با Q , n نمایش می دهند و خود شامل تراکم خرج وسط چال(Qc , nc ) و تراکم خرج ته چال (Qb ,nb ) می باشد و واحد آن کیلوگرم بر متر ویا پوند بر فوت می باشد. (1b/ft-kg/m).
10- مصرف ویژه (specific charge) :
که با q نشان داده میشود و عبارتست از میزان ماده ناریه لازم که به ازای آن یک تن یا یک مترمکعب ماده معدنی بدست می آید.
11- حفاری ویژه (specific drilling) :
که با d نشان داده می شود و عبارتست از مقدار طول چال حفر شده به ازای هر تن یا هر مترمکعب استخراج ماده معدنی.
12- YR وزن مخصوص ماده معدنی :
در فرمولهای برحسب بیان می شود.
13- ye وزن مخصوص ماده منفجره :
در فرمولهای بر حسب بیان می شود.
لازم به توضیح است که بین اجزاء فوق روابطی منطقی جهت طراحی آنها وجود دارد که این روابط تحت عنوان تئوریهای طراحی توسط دانشمندان مختلف ارائه شدند و در ادامه به توضیح آنها می پردازیم.
این روابط تابع شرایط زیر هستند:
الف- هدف از انفجار
ب- نوع و ساختمان سنگ
ج- نوع و کیفیت ماده منفجره
د- شرایط محیط کار معدن
ه- شیب چال
و- شیب پله
ز- تناژ استخراجی
ح- ابعاد لازم برای سنگی که استخراج می شود
ط- پایداری پله
ی- ایمنی
ک- آرایش چالها
ل- عرض پله
م- سطح آزاد
ن- زاویه شکست سنگ
س- لرزش زمین
ع- لرزش هوا
ف- پرتاب سنگ (fly rock)
ظ- فاصله زمانی تأخیر
لازم به ذکر است که شرایط فوق نیز متقابلاً بر هم و بر روش آتشباری چالها تأثیر گذارند . از عوامل و شرایطی که در بالا به آنها اشاره شد برخی را باید مربوط به قبل از انفجار و برخی دیگر را باید مربوط به بعد از انفجار دانست . البته برخی را نیز باید قبل و بعد از انفجار مورد بررسی قرار داد .
1-2- روش های طراحی پارامترهای انفجار
1-2-1- ضخامت بارسنگ: (burden)
نزدیک ترین فاصله سطح آزاد هنگام انفجار تا محل چاه ضخامت بار سنگ نامیده می شود که مهمترین پارامتر هندسی در طراحی الگوی انفجار معادن روباز می باشد. این پارامتر در ارتباط مستقیم با سایر عوامل طراحی بوده و تغییرات آن روی پیامدهای انفجار بسیار موثر است و چنانچه در محاسبه آن خطا وجود داشته باشد ، باعث بوجود آمدن نتایج نامناسب (خردایش ناجور سنگ) و پیامدهای نامطلوب (پرتاب سنگ، لرزش زمین و لرزش هوا) در عملیات انفجار خواهد شد. اگر ضخامت بارسنگ یا به عبارت دیگر فواصل بین چالها در عرض ، کمتر از مقدار واقعی و بهینه خود در نظر گرفته شود ، پرتاب سنگ و لرزش هوا زیاد شده و سنگ بیش از اندازه خرد می شود و عملیات انفجار توام با سر و صدای زیاد خواهد بود و در نتیجه عملاً بخش مهمی از انرژی ماده منفجره به هدر می رود . در این صورت به دلیل افزایش میزان حفاری و مصرف ماده منفجره هر دو پارامتر حفاری ویژه و خرج ویژه اضافه خواهند شد .
ازطرف دیگر چنانچه اندازه ضخامت بار سنگ بیش از مقدار مورد نیاز باشد پدیده ها و پیامدهای نامطلوبی نظیر شکست بیش از حد( back break) یا عقب زدگی، ایجاد قطعات درشت سنگ (over size) ، شکل گیری سکو در پای پله و لرزش زمین بروز خواهد کرد.
همچنین اگر این پارامتر خیلی بیش تر از مقدار بهینه باشد ، توده سنگ در بخشهای جلوی چالها جابجا نمی شود و لذا انفجار منجر به تشکیل حفره می گردد که به همراه آن لرزش زمین و پرتاب سنگ وجود دارد.
بنابراین بهینه سازی ضخامت بارسنگ در عملیات حفاری و انفجار معادن روباز، بسیار اهمیت دارد که در این راستا خواص فیزیکی و ژئو مکانیکی توده سنگ ، کمک موثری برای ما خواهد بود.
1-2-2- روشهای محاسبه burden :
برای محاسبه ضخامت بار سنگ یا فواصل بین چالها در عرض پله در دهه گذشته تحقیقات زیادی انجام و روشها و روابط متفاوتی توسط محققین ارائه شده است . بعضی از این روشها اطلاعات زیادی برای محاسبه این پارامتر نیاز دارند که با توجه به شرایط متغیر زمین و محیط کار، چه بسا جمع آوری این اطلاعات آسان و مقرون به صرفه نباشد.
از طرف دیگر ممکن است استفاده از هر یک از این روابط به تنهایی برای تعیین ضخامت بار سنگ ، نتایج خوبی را به دنبال نداشته باشد.
روش مهندسی این است که از چندین روش که شرایط کاربرد آنها اهم تر است استفاده شده و سپس از مقادیر بدست آمده میانگین گیری پیراسته (trimmed mean) بعمل آید.
اندازه ای که از این طریق بدست می آید ، بار سنگ پیراسته (B) نامیده می شود. یادآوری می شود در میانگین پیراسته a درصد از کمترین مقادیر کنار گذاشته شده و از بقیه مقادیر میانگین گرفته می شود.
1-2-3- فاصله ردیفی چالها (spacing ) :
فاصله بین چالها در جهتی عمود بر ضخامت بار سنگ را فاصله ردیفی چالها می گویند. اگر با انتخاب چاشنی کم تاخیری مناسب مقدار بار سنگ عوض شود ، فاصله ردیفی چالها نیز خود به خود تغییر می کند.
اگر فاصله ردیفی چال بیش از مقدار مورد نیاز انتخاب شود یعنی فاصله بین چالها زیاد باشد محل شکستن سنگ ناهموار خواهد شد و خرد شدگی نامناسب خواهیم داشت.
سنگها در اطراف چال خرد می شوند اما سنگهای واقع مابین دو چال درشت خواهند شد که در آتشکاری های کنترل شده مانند smoth blasting و پیش شکافی presplitling فاصله ردیفی چالها خیلی کم انتخاب می شود و در این حالت مواد منفجره مخصوص به کار می رود تا این مشکل برطرف شود . فاصله ردیفی چالها معمولاً در آتشباری ها 1 تا 2 برابر ضخامت بار سنگ (Burden) می باشد. هر چه ضریب سفتی [ارتفاع پله / ضخامت بار سنگ] بیشتر باشد ، ضریب ما به 2 نزدیکتر می شود و حتی بزرگتر هم می توان در نظر گرفت.
در چالهای قطور در حالی که با چاشنی کم تاخیری آتش شوند نسبت تا 1/5 و در چالهای کم با چاشنی کم تاخیر آتش شوند نسبت تا 1/8 و در غیر آتشکاری کنترل شده و در بقیه حالات این نسبت به بیشتر از یک می رسد. برای
تخمین های اولیه مقدار نسبت فوق را 5/1 در نظر می گیرند.
بعلت تغییرات زمین شناسی ، نوع ماده منفجره ، کیفیت سنگ و اثر چالها بر هم ، برای تعیین مقدار مطلوب دریک عملیات آتشکاری میزان را از عدد کم شروع کرده و ادامه می دهند تا به نتیجه نهایی برسند . اگر نسبت پله به بار سنگ کمتر از 4 باشد از فرمول استفاده می شود . لازم به ذکر است که اکثر فرمولهای آتشکاری دارای ریشه تجربی هستند و برای آنها خطایی معادل 15% در نظر گرفته می شود .
1-2-4- ارتفاع پله :
هر چه ارتفاع پله بیشتر طول چال حفر شده بایستی بیشتر شود و حفر چالهای طویل معمولا در اشکال اساسی به همراه دارد :
1- انحراف چال
2- کندی سرعت حفاری
مسائل و مشکلات ریزش سنگ در پله های بزرگ بسیار بیشتر از بروز اینگونه مشکلات در پله های کوچک است . هر چه پله بزرگ تر باشد یعنی ارتفاع آن بیشتر باشد ، عملاً ستون سنگی مقابل چال درازتر است و با توجه به این که مقاومت ستون با اضافه شدن طول ستون کم می شود ، ستون سنگی در این حالت بهتر شکسته می شود . هر چه ضریب سفتی (stiffness ratio) بزرگتر باشد ، پله بزرگتر است و ستون سنگی ضعیف تر می باشد و بالعکس در پله های کوتاه ستون سنگی قوی تر است .
هرگونه تغییراتی که در ضخامت بار سنگ (B) یا ارتفاع پله (K) داده می شود بایستی با توجه به دیگری از آن نتیجه گیری نمود.
در صورتی که در یک معدن ضخامت بار سنگ کم شود ، نسبت افزایش می یابد و در نتیجه سنگ خوب خرد می شود. وقتی نسبت فوق کمتر از 5/1 شود باید چاشنی حتما در پای پله یعنی هم تراز کف پله کار گذاشته شود چرا که قرار دادن چاشنی در کف چال سبب لرزش بسیار شدید در این حالت خواهد شد .
1-2-5- اضافه چال (subdrilling) :
در انفجار هر چال محدوده ای بوجود می آید که ماکزیمم تنش های ناشی از انفجار در آن واقع اند . این ناحیه از کف پله بالاتر است . در صورتیکه حفر چال ادامه داده شود ناحیه ماکزیمم تنش نیز گستره شده و به کف پله نزدیکتر می شود و در حالت اول کف پله پس از انفجار ناصاف می شود و نیاز به آتشکاری ثانویه بعضاً می باشد .
در حالی که در حالت دوم بعلت وجود ماکزیمم تنش در کف پله این وضعیت بوجود نخواهد آمد . لازم به ذکر است که اضافه حفاری (اضافه چالی) چال اگر بیش از اندازه باشد موجب لرزش زمین می شود . بطوریکه کف پله پایین را شکسته و حفر چال پله پایین را با مشکل مواجه می سازد . در چالهای قائم میزان اضافه حفاری چال 2% تا 5% مقدار (burden) می باشد و برای چالهای مایل فرمول زیر پیشنهاد می شود :
U = B cotg a
که در این فرمول a شیب چال می باشد .
1-2-6- گل گذاری :
طول گل گذاری تابعی از ضخامت بار سنگ است و به طور غیرمستقیم تابع شرایط دیگر مانند قطر چال و وزن مخصوص ماده منفجره می باشد . اگر طول گل گذاری زیاد باشد قسمت بالای چال شکسته نمی شود ، خرد شدن سنگ خوب نیست ، لرزش زمین زیاد است و عقب زدگی (back break) بوجود می آید. اگر طول گل گذاری کم باشد پرتاب زیاد و لرزش هوا خواهیم داشت . پرتاب سنگ ممکن است در حالات زیر تشدید شود :
1- سنگ هوا زده باشد
2- سنگ دارای ترکهای ریز و درشت ناشی از انفجار چال قبلی واقع روی این چال باشد . اگر ضخامت گل گذاری به اندازه مطلوب باشد پس از انفجار قسمت بالائی چال به آرامی بلند شده و روی قسمت خرد شده زیرین می افتد که در این صورت قطعات درشت سنگ حاصل می شود .
1-2-7- شیب چال :
با این مقدمه که در حفر چال قائم حفظ امتداد راحت تر از چال مایل صورت می گیرد ذکر این نکته حائز اهمیت است که امکان خرد نشدن سنگ ته چال در چال قائم ، بیش از چال مایل است و این امر مخصوصاً وقتی که چند سری چال آتش می شوند پیش می آید . در این صورت سکوی ایجاد شده تدریجاً بزرگتر شده و ایجاد مشکل می کند .
با حفر چالهای مایل این مشکل تا حدودی برطرف می شود و این بدان معناست که مقدار بیشتری سنگ می توان استخراج کرد و بدین ترتیب عقب زدگی نیز در چال مایل کمتر از چال قائم است.
حفر چال مایل موجب می شود که پله بشکل مایل درآید و این امر از نظر ایمنی واجد اهمیت است زیرا کمتر امکان ریزش سنگ پیش می آید . طول چال شیب دار بیش از چال قائم خواهد بود و فرمولهای ارائه شده مربوط به محاسبه طول چال در وضعیتهای قائم و مایل باشد .
H = K+U : طول چاه در وضعیت قائم
: طول چاه در وضعیت مایل با شیب a
برای انجام محاسبات مربوطه به طول چال در وضعیت مایل می توان از جدولی که ارائه شده است استفاده کرد .
1-2-8- محاسبه وزن ستون ماده منفجره :
با توجه به این نکته که ماده منفجره بصورت یک ستون در چال قرار دارد و بعلت اینکه دیواره چال ناصاف است حجم چال حدود 6% بیش از حجم تئوریک آن می گردد لذا موقع خرج گذاری بایستی دقت بعمل آید که حفره های خالی و ناهمواری های موجود در جدار چال نیز خرج گذاری شوند . این امر معمولا با مواد منفجره فلزی بهتر امکان پذیر است زیرا مواد منفجره بسته بندی شده را هر قدر هم بفشاریم احتمال پر نشدن تمام گوشه ها و زوایای چال می باشد . به هر حال برای بیان کمیت خرج در چال یکی از راههای متداول ، خرج بازاء واحد طول چال خواهد بود که بر اساس قطر تئوری چال محاسبه می شود.
Q : مقدار خرج موجود در چال
: طول خرج در چال
: قطر چال
: چگالی خرج
و مقدار خرج در یک متر چال برابر است با:
به ازای هر مقدار خرج ریخته شده در چال ، طول خالی و طولی از چال که پر شده است مشخص است . بدین ترتیب با داشتن مقدار خرج در یک متر چال و کنترل نهایی طول خالی چال در هر زمان ، می توان به صحت خرج گذاری پی برد . دستورالعملهای ارائه شده در زیر ، روشی برای اطمینان از صحت خرج گذاری می باشد .
1- اگر طول خالی چال بیش از مقدار محاسبه شده باشد دلیل بر این است که خرج به طریقی از چال خارج شود که آنهم معمولاً بدلیل وجود حفره یا شکاف در چال است . وجود حفره در شکاف می بایست در حین حفره چال مشخص می گردید و حال برای جبران این نقیصه بایستی آن قسمت از چال را که مظنون به وجود حفره و شکاف است با خاکریزی پر کرد و مجدداً خرج گذاری را ادامه داد .
2- اگر طول خالی چال کمتر از مقدار محاسبه شده باشد ، دلیل برگیر کردن ماده منفجره حین خرج گذاری در بین راه است . اینگونه گیر کردن را می توان با فشار سمبه چوبی برطرف کرد و اگر به این طریق نتوان رفع گیر کرد بهتر است عملیات خرج گذاری بقیه چال را با دقت بیشتر ادامه داده و اقدام به انفجار نمود .
1-2-9- خرج گذاری منقطع یا چند مرحله ای :
لزوم تقسیم خرج در طول چال سبب می شود که هر قسمت به طور جداگانه عمل کند به این منظور بین قسمتهای مختلف خرج ، مواد باطله قرار می دهد. یعنی به تناوب خرج و مواد باطله در چال قرار می دهند . این گونه موارد به دو منظور صورت می گیرد.
1- خرج در جای مناسب چال قرار می گیرد مثلاً اگر لایه ای نرم در چال وجود و امکان گریز گازهای حاصل از انفجار می باشد این قسمت از چال را خاک می ریزند و خرج گذاری در محل مقاوم چال انجام می گیرد بدین ترتیب بهره برداری از انرژی ماده منفجره بهتر صورت می گیرد .
2- لرزش زمین و مصرف ماده منفجره کاهش می یابد و ماده منفجره در طول چاه تقسیم می شود . ضخامت باطله در خرج گذاری چند مرحله ای از فرمول زیر حساب می شود :
: قطر چال
: ضخامت باطله
در چالهای مرطوب بعلت اینکه انتقال انفجار بهتر از خاک خشک صورت می گیرد ، لازم است که مقدار دو برابر شود و اگر مواد منفجره حساس مثل برخی دینامیت ها استفاده شود ضخامت باطله را باید بیش از 6 برابر قطر چال در نظر گرفت .
چاشنی ها معمولاً همزمان نیستند و برای پایین آوردن لرزش زمین چاشنی ها با تأخیرهای متفاوت می سازند .
1-2-10- انرژی ویژه :
پیش از اختراع مواد منفجره ژله ای و امولسیون ، خرج ویژه معیار خوبی برای تعیین مقدار انرژی بکار رفته در خرد کردن سنگ به حساب می آمد. زیرا معمولاً انرژی انفجاری با بالا رفتن وزن مخصوص ماده منفجره افزایش می یابد . اما با داشتن مواد منفجره جدید انرژی بطور قابل ملاحظه ای تغییر می کند . هر چند که وزن مخصوص هر یک مساوی دیگری باشد . بدین ترتیب مقدار ماده منفجره نمی تواند مبنا قرار گیرد زیرا انرژی انواع مواد منفجره با هم متفاوتند . و انرژی حاصل انفجار است که برای خرد کردن سنگ مقیاس مصرف قرار می گیرد .
انفجار ، یک فعل و انفعال شیمیایی است که مقدار قابل ملاحظه ای انرژی حرارتی بصورت انبساط سریع گاز بسیار داغ آزاد می کند . در مواد منفجره ، انرژی می تواند محاسبه یا اندازه گیری شود و بازدهی ترمو دینامیکی را در زمان انفجار بدست آورد .
ملاک عمل برای مصرف ماده منفجره ، انرژی حرارتی آزاد شده در نظر گرفته می شود. برای محاسبه انرژی آزاد شده از انفجار ماده منفجره ، از فرمول زیر استفاده می شود :
: انرژی حرارتی حاصل از انفجار
: حرارت متشکل از محصولات انفجار
: حرارت متشکل از مواد منفجره
بدیهی است که برای خرد کردن مقدار معین سنگ ، مقدار معینی انرژی مورد نیاز است . که اگر برای تامین این انرژی بتوانیم از چند نوع ماده منفجره استفاده کنیم مواد منفجره قوی تر باید با وزن کمتر برای خرج گذاری مصرف شوند . انرژی ویژه ضریبی مطمئن تر از خرج ویژه برای خرد کردن سنگهاست .
انرژی ویژه = (حرارت حاصل از انفجار) / ( وزن سنگ )
واحد انرژی ویژه ، کالری بر تن و کالری بر متر مکعب است . تغییر نوع ماده منفجره در آتشباری منتج به تغییر مقدار انرژی حاصل از انفجار می گردد و لازم می شود که آرایش چالها نیز تعویض گردند.
1-2-11- خرج ویژه :
خرج ویژه مصرف ماده منفجره برای واحد حجم یا وزن سنگ را در یک عملیات آتشباری نشان می دهد و مقدار آن ممکن است با ضریب ثابت سنگها نامساوی باشد . خرج ویژه برای محاسبات اقتصادی بکار گرفته می شود. واحدهای آن عبارتند از :
گرم خرج بر متر مکعب سنگ
پوند بر یارد مکعب
متر مکعب سنگ بر گرم خرج
یارد مکعب سنگ بر پوند
پوند بر تن
تن بر پوند
گرم خرج بر تن سنگ
تن سنگ بر گرم خرج
مقدار خرج ویژه تابع نوع ماده منفجره ، وزن مخصوص سنگ و زمین شناسی منطقه است و معمولا هرچه مقدار و قدرت ماده منفجره قوی تر باشد خرج ویژه کمتر می شود .
هرچه وزن مخصوص سنگ بیشتر است خرج ویژه بیشتر است .
تا حدودی خرج ویژه در چالهای قطور کمتر از چالهای کم قطر است . هر چه تعداد سطح آزاد بیشتر باشد خرج ویژه کمتر است. اگر تعداد درزه و شکاف در سنگ زیاد باشد باعث می شود که سنگ در برابر ضربات حاصل از انفجار سست شده و قدرت حاصل از انفجار خرج ویژه نیز کم بشود.
چنانچه وضعیت درزه و شکاف به صورتی باشند که موجب اتلاف گازهای حاصل از انفجار و افت فشار آنها بشود خرج ویژه زیاد می شود .
برای محاسبه خرج ویژه کافیست که حجم سنگ مربوط به هر چال را حساب کرده و وزن ماده منفجره مصرف شده در چال را بر آن تقسیم کنیم .
1-2-12- خرج ته چاه :
خرج ته چاه انرژی زیادی را در ته چاه توزیع کرده که باعث شکسته شدن و از جا درآمدن بار سنگ می گردد . طول خرج ته چال از رابطه زیر حساب می شود :
که در آن hb طول خرج ته چال است .
تراکم خرج ته چال از رابطه تجربی زیر حاصل می شود:
که در آن
: تراکم خرج ته چال بر حسب کیلوگرم بر متر است .
: قطر چال به میلیمتر
: وزن مخصوص خرج گذاری بر حسب کیلوگرم بر متر مربع است .
در چال خشک انرژی ماده منفجره برای خرج گذاری ته چال بایستی 30 تا 50 درصد بیش از خرج بقیه چال باشد . مثلا اگر خرج مصرفی آنفو است انرژی خرج ته چال نسبت به آنفو باید 130 تا 150 درصد باشد . در چال مرطوب خرج ته چال باید 50 تا 70 درصد بیش از بقیه چال باشد که در این حالت انرژی خرج ته چال نسبت به آنفو 150 تا 170 درصد می گردد . اعداد ذکر شده دارای خطایی معادل 15 تا 10 درصد می باشند .
1-2-13- خرج میان چال :
طول خرج میان چال از رابطه زیر حساب می شود:
hc : طول خرج میان چال
H : طول چال
hb : طول خرج ته چال
S1 : طول گل گذاری
خرجی که بعد از خرج ته چال مصرف می شود نیز سنگ را خواهد شکست اما لازم نیست که همان قدرت لازم را داشته باشد .
اگر تراکم خرج میان چال Vc بنامیم مقدار آن از رابطه زیر قابل محاسبه است :
Qc = Vc .hc
و کل خرج مصرفی از رابطه زیر محاسبه می شود :
Q = Qb+Qc ...
منابع
1- Nitro Nobel, Rock Blasting Technigue, General Principel Of
Rock Blasting .
2- Jimeno, C.L & Jimeno, e.L. & caredo, f. J. a, Drilling and blasting of rock, Balkema. 1995
3- طراحی برنامه ریزی و روشهای استخراج معادن سطحی- دکتر مرتضی اصانلو 1374
4- م. نوری ، بررسی مقدماتی آبهای زیر زمینی معدن چغارت
5- گزارشات تهیه شده توسط شرکت سنگ آهن گل گهر
6- ع. دهقانی فیروز آبادی ، شناخت منشاء آبهای مزاحم در معدن چغارت
7- آتش کاری در معادن- مهندس رحمت ا... استوار- 1383
8- جزوه درس چالزنی و آتشباری - دکتر اردشیر سعد محمدی- 1384
این فایل در قالب ورد و قابل ویرایش در 138 صفحه می باشد.
پایان نامه برای دریافت درجه کارشناسی ارشد در رشته شیمی تجزیه
فهرست مطالب
1-1-1-2-خصوصیات فیزیکی و شیمایی روی:. 2
1-1-3-1چطور کمبود روی را معالجه کنیم؟. 6
1-1-7-1-عملکردها و فار موکولوژی:. 8
1-1-9-2مکملهای مغذی (83) Nutritinal supplement 11
1-1-2-متابولیسم آهن در بدن (Iron Metabolism) 12
1-2-5-جذب آهن (Iron absorption) 14
1-2-6-فریتین سرم (serum ferritin) 15
1-2-6-2برداشت و آزاد سازی آهن توسط فریتین. 16
1-2-6-4-فریتین سرم و مقدار آن در افراد طبیعی. 16
1-2-7-1تغییرات روزانه در آهن سرم. 17
1-2-8-اندازه گیری مقدار آهن سرم. 17
1-2-8-2 اندازه گیری آهن سرم با رسوب پروتئینی: 18
1-2-8-3 اندازه گیری آهن سرم بدون رسوب پروتئینی: 18
1-2-9 اندازه گیری ظرفیت پذیرش آهن سرم:. 18
1-2-9-2-روش دوم (روش رزین):. 18
2-2- وسایل و دستگاههای آزمایشگاهی مورد استفاده: 21
2-4 آزمایشات تیتراسیون اسپکتروفتومتری :. 22
2-4-1 تعیین طول موج ماکزیمم:. 22
2-4-2- بررسی چگونگی جذب آهن توسط آپوترانسفرین: 22
2-4-2-1 اثر غلظت مختلف آهن بر روی باندینگ با ترانسفرین 22
2-4-2-2 اثر زمان بر روی باندینگ آهن با ترانسفرین 22
2-4-2-3 اثر یون بیکربنات بر روی باندینگ آهن با ترانسفرین 22
2-4-2-4 اثر سیترات بر روی باندینگ آهن با ترانسفرین 23
2-4-2-5 اثر غلظت مختلف اکسالات بر روی باندینگ آهن با ترانسفرین: 23
2-4-2-6 اثر PH بر روی باندینگ آهن با ترانسفرین 23
2-4-3-1 اثر غلظتهای مختلف آهن وروی بر ترانسفرین 23
2-4-3-2 تعیین اثر غلظت مشخصی از بی کربنات بر باندینگ غلظتهای مختلف آهن با ترانسفرین. 24
2-4-3-3 اثر غلظت مشخص بی کربنات بر روی باندینگ روی با ترانسفرین 24
2-4-3-4 اثر غلظت مشخص بی کربنات بر باندینگ آهن با ترانسفرین در حضور روی:. 24
2-4-3-5 اثر غلظتهای مختلف روی در باندینگ باترانسفرین در حضور یون بی کربنات. 24
2-5- آزمایشات دیالیز تعادلی:. 24
2-5-3- اثر روی بر برداشت آهن توسط ترانسفرین:. 26
2-5-5- طرز اندازه گیری آهن:. 26
2-5-6- تعیین ثابت باندینگ آهن با ترانسفرین. 27
فصل سوم-نتایج
3-1 تیتراسیون اسپکتروفتومتری:. 30
3-1-1 تعیین طول موج ماکزیمم:. 30
3-1-1-2- اثر روی بر روی متالوتایونین. 31
3-1-1-3 اثر روی بر روی جذب ماکزیمم اسیدهای آمینه: 31
3-1-2 بررسی چگونگی جذب آهن توسط آپوترانسفرین: 47
3-1-2-1 اثر غلظتهای مختلف آهن بر روی باندینگ با ترانسفرین 47
3-1-3-1 اثر تغییرات غلظت روی. 48
3-1-3-2 اثر رقابتی روی با آهن. 48
3-2 نتایج حاصل از آزمایشات دیالیز تعادلی:. 49
3-2-1 تعیین ثابت باندینگ آهن به ترانسفرین:. 49
-1 متابولسیم روی
1-1-1 پیشگفتار
در طبیعت دهها عنصر وجود دارند که با مقادیری هر چند اندک، در بدن موجودات زنده اعمال و وظایف بسیار حیاتی را انجام می دهند و همچنین وجود این عناصر در رژیم غذایی موجدات زنده برای رشد و ابقاء حیات امری ضروری است همچنین میزان این عناصر در رژیم غذایی بایستی در یک حد مطلوب و متعادل باشد تا حیات موجودات زنده دچار اختلال نگردد. متابولیسم و نقش این عناصر و ماهیت بیماریهای ناشی از کمبود یا ازدیاد آنها بر موجودات زنده توسط متخصصین بیوشیمی پزشکی و تغذیه مورد مطالعه قرار گرفته است. از آنجایی که مقادیر آهن سوم (Capacity total Iron binding) TIBC در وضعیتهای گوناگون انسانی، جغرافیایی، جنسی و ... بر حسب عادات غذایی (Food habit) مردم متفاوت است. لذا هدف از این تحقیق مطالعه اثرات تداخلی فلز روی در جذب و انتقال آهن سرم میباشد.
روی به عنوان یک عنصر حیاتی و مهم در تغذیه روزانه انسان و حیوان به شمار می رود نقش بیولوژیکی بزرگی در طبیعت ایفا می کند. روی نقشهای کاتالیکی ، ساختاری و اثر گذاری در بیش از 200 متالوآنزیم روی که در سیستمهای بیولوژیکی شناسایی شده اند را ایفا می کند. این آنزیمها در متابولیسم نوکلئیک اسید و پروتئین و تولید انرژی وبسیاری مواد دیگر دخیل هستند (83) روی به عنوان یکی از مواد معدنی موجود در بدن انسان که دارای اثرات و ویژگیهایی در بافتهای مختلف است، به عنوان بخشی مهم از 300 آنزیم مختلف عمل می کند. به همین دلیل این ماده معدنی نقش مهمی در پروسههای فیزیولوژیکی و مسیرهای متابولیسمی زیست شیمی ایفا می کند. بیش از90% این ماده معدنی به صورت ذخیره در بدن : (30% آن در استخوانها 60% آن در ماهیچهها) موجود است (82) غنی ترین منابع غذایی روی مرکب از جانوران دریایی علی الخصوص صدفهای خوراکی، گوشت، ماهی، مرغ و تخم مرغ است. ترمیم و التیام زخمها، حمایت ایمنی بدن، کاهش توان و سختی بیماری سرماخوردگی، حمایت و مراقبت از غده پروستات، افزایش باروری و تولید اسپرم از مهمترین وظایف و کار کردها و اثرات ماده معدنی روی در بدن می باشد.به این دلیل روی دارای نقش مهمی در سی صد میسر متابولیسی و عملکردهای مختلف بیوشیمی دارا می باشد. این ادعا بر اساس نقش و وظیفه تغذیه، در ترکیب وسیعی از پروسهها و فعالیتهای بدن که شامل هضم، ترمیم، زخم، تولید انرژی در بدن، رشد عضلات، ترمیم بافتهای سلولی، سنتز کولاژن، استقامت استخوانها، عملکردهای هوشی وذهنی، متابولسیم کربوهیدارتها و عملکردهای تناسلی می باشد. حتی کمبود متوسط و معمولی روی در بدن باعث تاثیر منفی بر روی سیستم ایمنی بدن کاهش میزان اسپرم و عملکرد نادرست حافظه همراه است. شاید مشهورترین ادعایی که اخیرا درباره کارایی روی در بدن ارائه گردیده، نقش مهم آن در رابطه با سیستم ایمنی بدن است.
1-1-1-2-خصوصیات فیزیکی و شیمایی روی:
روی فلزی با وزن ملکولی 4/65 گرم بر مول می باشد و در گروه IIB و ردیف چهارم از جدول تناوبی قرار گرفته است. روی را با علامت اختصاری Zn نمایش می دهند و دارای عدد اتمی 30، وزن اتمی 38/65، چگالی gr/cm3 14/7 در oc 20، انرژی نخستین یونش آن 394/9 و دارای 5 ایزوتوپ رادیواکتیوی طبیعی و یا حاصل شکافت هسته ای دیگر می باشد، فراوانترین ایزوتوپهای آن Zn 64 با فراوانی 6/48% و Zn 66 با فراوانی 9/27و Zn 68 با فراوانی 8/18% می باشد نیمه عمر روی d 244 65 می باشد. جزء عناصر احیاء کننده قوی و خود اکسید می شود 763/0 و بیشتر در حالت دو ظرفیتی موجود می باشد. یکی از عناصر کمیاب و ضروری بدن است. زیرا در اعمال اساسی مولکولی زیادی شرکت می کند. دسته ای از نمکهای کم محلول روی شامل هیدروکسید ، اکسالات و سولفید می باشد. روی با برخی از ترکیبات معدنی شامل سیترات لیدروکسید تولید کمپلکسهای محلول می کند.
1-1-1-3تاریخچه
ضرورت این عنصر برای میکروارگانیسمها اولین بار در سالها 1869و 1926 مورد توجه قرار گرفت. کمبود این عنصر عملا در حیوانات آزمایشگاهی مشاهده شد. (115) ولی در انسان کمبود این عنصر نادرست است، زیرا روی در همه جا موجود است. روی بعد از آهن فراوانترین عنصر کمیاب با میزان حدود 5/1 تا 5/2 گرم در کل بدن است. غلظت این عنصر در کروئید چشم (لایه عروقی میان کره چشم که بین صلبیه و شبکیه واقع است) و غده پروستات بالا است ولی بیشترین میزان این عنصر در بدن در استخوانها و عضلات یافت می شود. غلظت زیاد آن مخصوصا در ناحیه مغز، پانکراس و غده آدرنالین میباشد همچنین در تمام سلولها واعصاب وجود دارد. روی ساختمان شیمیایی کاتالیستی (آنزیمی) و قوانین خاصی دارد و بیشتر از 60 آنزیم برای فعالیت خود به روی نیاز دارند که RNA پلیمراز هم شامل آنهاست. روی فعالانه به وسیله حفرههای سیناپسی جذب می شود و فعالیت نورونها و حافظه را حمایت می کند. متابولیسم روی در مدت بیماری و استرسهای فیزیکی با هورمونها سازگار می شود. احتمالا سیتوکسینها و توکسینها قسمتی از سیستم دفاعی را به عهده دارند (3) این عنصر در لوزالمعده دارای فعالیت زیادی می باشد و مرتبا از طریق شیره لوزالمعده مقداری از آن به خارج ترشح می گردد. میزان روی در پلاسما دستخوش تغییرات روزانه است. منحنی تغییر غلظت این عنصر نسبت به ساعات روز به شکل u می باشد. ماکزیمم غلظت در صبح و کمترین آن در اواسط عصر است. بطور متوسط میزان روی در پلاسما 98 و یا 15 می باشد که آن با الفا -2- ماکروگلوبین و باقیمانده آن با آلبومین باند شده است. در خون تنها 10% تا 20% میزان روی در پلاسما و باقیمانده آن در گلبولهای قرمز موجود است. همچنین غشاء گلبولهای قرمز دارای مقداری روی می باشد. غلظت عنصر روی در نطفه 100 برابر میزان آن در پلاسما است. روی تشکیل دهنده تعداد زیادی از آنزیمها در پستانداران (بیش از 150 آنزیم) است که به عنوان جایگاه فعال یا به عنوان جزئی از ساختمان آنها یا هر دو عمل می کند. تعدادی از این آنزیمها عبارتند از : کربنیک انیدراز، کربوکسی پتیپداز، آلکالین فسفاتاز، ترانس فرازها، لیگازها، لیازها، ایزومرازها، DNA,RNA پلیمرازها و سوپر اکسیدویس موتاز (115)
روی در فرآیندهای متابولیکی که شامل سنتز اسید نو کلئیک و پروتئین باشند دخالت دارد و همچنین برای سنتز و فعالیت انسولین ضروری است و به ثابت بودن هگزامرهای پروانسولین و انسولین به وسیله تشکیل کمپلکسهایی با آنها کمک می کند. روی همچنین در تشکیل پروتئین zinc finger نقش دارد. (115) این پروتیئن در نواحی خاصی با DNA باند می شود. روی یک عنصر ضروری برای باند شدن این پروتئین با DNA است. روی در تشریع ترمیم زخمها دخالت دارد و برای رشد طبیعی عنصری ضروری است. این عنصر در قوه چشایی تاثیر می گذارد و می تواند خطر تغییرات شبکیه را در افراد مسن
تعلیل کند.