پاورپوینت درس ریاضی پایه پنجم جمع و تفریق اعداد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 8
محتوای آموزشی درس ریاضی پایه پنجم
عنوان محتوا: جمع و تفریق اعداد اعشاری
دانلود پاورپوینت درس ریاضی پایه پنجم جمع و تفریق اعداد اعشاری ..
پاورپوینت درس ریاضی پایه پنجم جمع و تفریق اعداد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 8
محتوای آموزشی درس ریاضی پایه پنجم
عنوان محتوا: جمع و تفریق اعداد اعشاری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 53
تجزیه ی اعداد به عوامل اول
مقدمه
مجموعه اعداد اول زیر مجموعهای از اعداد طبیعی است که هر کدام از عضوهای آن فقط دو مقسوم علیه مثبت دارند که یکی از مقسوم علیهها 1 و دیگری خود آن عدد میباشد. با این تعریف معلوم میشود که عدد اول نیست، چون فقط یک مقسوم علیه دارد. مجموعه اعداد اولی که عدد طبیعی m بر آنها بخشپذیر باشد عاملهای اول m نامیده میشوند. هر عدد طبیعی بزرگتر از 1 را میتوان به حاصلضرب عاملهای اول تجزیه کرد.
شرایط بخش پذیری اعداد طبیعی به چند عدد نخست مجموعه اعداد اول
بخشپذیری بر 2: شرط لازم برای آن که یک عدد بر 2 بخشپذیر باشد، آن است که رقم یکان آن زوج باشد مانند 30 ، 1996 ، 204.
بخشپذیری بر 3: شرط لازم برای آن که عددی بر 3 بخشپذیر باشد آن است که مجموع ارقام آن عدد بر 3 بخش پذیر باشد. مانند 192 (زیرا مجموع ارقام آنها برابر 12 میباشد).
بخشپذیری بر 5: شرط لازم برای آن که یک عدد بر 5 بخشپذیر باشد آن است که رقم یکان آن صفر یا 5 باشد، مانند 205 ، 410.
بخشپذیری بر 7: عددی بر 7 بخشپذیر است که اگر رقم اول سمت چپ آن را در 3 ضرب کرده و با رقم دوم سمت چپ جمع کنیم وحاصل را بر 7 تقسیم کنیم، سپس باقیمانده تقسیم را دوباره در 2 ضرب کرده و با رقم سوم از سمت چپ جمع و حاصل را بر 7 تقسیم کنیم و همین عملها را تا آخرین رقم ادامه دهیم، در پایان باقیمانده بر 7 تقسیم بر 7 برابر با صفر باشد.
بخشپذیری بر 11: عددی بر 11 بخشپذیر است که اختلاف مجموع ارقام مرتبه زوج (یکان ، صدگان ، ده هزارگان و ... ) با مجموع ارقام مرتبه فرد (دهگان ، هزارگان ، صدگان و ...) بر 11 بخشپذیر باشد.
در حالت m
عددی مانند m اول است اگر و تنها اگر m بر هیچ کدام از اعداد اول تابیشتر از جذر m بخشپذیر نباشد. برای تجزیه یک عدد به حاصلضرب عاملهای اول ، آن را به کوچکترین عدد اولی که بر آن بخشپذیر باشد تقسیم میکنیم و خارج قسمت را نیز بر کوچکترین عدد اولی که بر آن بخش پذیر باشد تقسیم میکنیم و این کار را تاجایی ادامه میدهیم که خارج قسمت یک باشد. در این صورت حاصلضرب مقسوم علیهها ، حاصلضرب عاملهای اول عدد مورد نظر خواهد بود. مانند 45 = 22 + 32
کوچکترین مضرب مشترک دو عدد
کوچکترین مضرب مشترک دو عدد a و b عبارت است از کوچکترین عددی که بر هم بر a و هم بر b بخشپذیر باشد. برای پیدا کردن کوچکترین مضرب مشترک دو عدد b,a (ک.م.م) که آن را به صورت a,b نمایش میدهیم، ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه میکنیم. سپس کوچکترین مضرب مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک و غیر مشترک با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ک.م.م دو عدد 36 و45 برابر است با 22X32X5 یعنی 180 خواهد بود.
بزرگترین مقسوم علیه مشترک دو عدد
بزرگترین مقسوم علیه مشترک دو عدد a و b عبارت است از بزرگترین عددی که هم a و هم b بر آن بخشپذیر باشد. برای پیدا کردن بزرگترین مقسوم علیه مشترک دو عدد b,a را به حاصلضرب (ب.م.م) که آن را به صورت (a,b) نمایش میدهیم؛ ابتدا دو عدد a و b را به حاصلضرب عاملهای اول تجزیه میکنیم، سپس بزرگترین مقسوم علیه مشترک دو عدد عبارت است از حاصلضرب عاملهای مشترک دو عدد a و b با توان بیشتر که در تجزیه دو عدد موجود است. به عنوان مثال ب.م.م دو عدد 45 و 36 برابر با 32 یعنی 9 میباشد.
دو عدد متباین
دو عدد را نسبت به هم اول یا متباین گویند هر گاه ب.م.م آن دو عدد برابر با 1 باشد. برای مثال دو عدد 8 و 9 نسبت به هم اول هستند، زیرا 1=(9 و 8). بزرگترین مقسوم علیه مشترک n عدد نیز به همین صورت تعریف میشود. باید توجه داشت که در این حالت منظور از عاملهای مشترک ، اعداد اولی هستند که در تجزیه تمامی n عدد مشترک میباشد. برای هر دو عدد طبیعی a,b تساوی (a ,b).a,b=ab برقرار میباشد.
تعداد مقسوم علیه های مثبت یک عدد
در حالت کلی اگر عدد تجزیه به عوامل a به صورت P2α2X PnαnXP1α1 باشد، که در آن P1 ، Pn ، ... ، P2 اعداد اول متمایز می باشند، برای نوشتن یک مقسوم علیه از a میتوانیم از عاملهای P1 به تعداد 0 و1 و......و α1 و از عاملهای P2 به تعداد 0 و 1و......و α2 و.... و بالاخره از عاملهای P1 به تعداد 0 و 1 و ... αn انتخاب کنیم که طبق اصل ضرب این عدد به تعداد (α1+1)X(α2+1)….(αn+1) مقسوم علیه خواهد داشت.
اصل ضرب
اگر از A1 به m1 ، A2 مسیر ، از A2 به m2 ، A3 مسیر و ... و از An به mn ، An+1 مسیر مستقل موجود باشد، آنگاه برای اینکه از A1 به An+1 برسیم، m1Xm2X...Xmn مسیر وجود خواهد داشت.
جذر
جذر یک عدد یعنی پیدا کردن ریشه آن عدد است. جذر nm برابر است با ریشه دوم nm.
انگاره گلدباخ
انگارهی گلدباخ (حدس گلدباخ) از جمله معروفترین مسایل حل نشدهی ریاضیات میباشد.برای درک این مساله تنها کافیست با مفهوم اعداد اول آشنا باشید. این انگاره چنین است:هر عدد صحیح زوج بزرگتر از 2 حاصلجمع دو عدد اول است.صورت معادل آن چنین است:هر عدد صحیح زوج بزرگتر از 5 حاصلجمع سه عدد اول است.
تاریخچه
گلدباخ (1690 – 1764) به خاطر این حدس که آن را در سال 1742 در نامهای به اویلر مطرح کرد، نامش در تاریخ ریاضیات باقی مانده است. او ملاحظه کرد در هر موردی که امتحان میکند، هر عدد زوج را (به جز 2 و 5) میتوان به صورت مجموع سه عدد اول نوشت.اویلر حدس گلدباخ را تعمیم داد به طوریکه هر عدد زوج بزرگتر از 2 را میتوان به صورت مجموع دو عدد اول نوشت. مثلاً 4=2+2 , 6=3+3 , 8=5+3 , 10=5+5 , 12=5+7 , 14=7+7 , 16=13+3 , 18=11+7 , 20=13+7 , … , 48 = 29 +19 , … , 100 = 97 + 3 , … گلدباخ از اویلر پرسید که آیا میتواند این مطلب را برای همه عددهای زوج ثابت کند و یا اینکه مثال نقضی برای آن بیابد؟ شواهد تجربی در تایید اینکه هر عدد زوج به این صورت قابل نمایش است، کاملاً قانعکننده است و هر کسی میتواند با امتحان کردن چند عدد زوج، این موضوع را تحقیق کند. منشأ دشواری در این است که عددهای اول بر حسب ضرب تعریف میشوند در حالی که این مسأله با جمع سروکار دارد. به طور کلی، اثبات رابطه بین ویژگیهای ضربی و جمعی اعداد صحیح کار مشکلی است.
تلاشها برای اثبات
در سال 1931 اشنیرلمان (1905-1938) که در آن موقع یک ریاضیدان روس جوان و گمنام بود موفقیت مهمی در این زمینه به دست آورد که برای همه متخصصان غیرمنتظره و شگفتآور بود. او ثابت کرد هر عدد صحیح مثبت را میتوان به صورت مجموع حداکثر 300000 عدد اول نمایش داد. گر چه این نتیجه در مقایسه با هدف اصلی یعنی اثبات انگارهی گلدباخ مضحک به نظر میرسد، ولی این نخستین گام در آن جهت بود. این اثبات مستقیم و سازنده است، اما هیچ روش خاصی برای تجزیه یک عدد صحیح دلخواه به اعداد اول ارائه نمیکند.
بعدا وینوگرادوف ریاضیدان روس با استفاده از روشهای هاردی ، لیتلوود و همکار هندی برجسته آنها رامانوجان در نظریه تحلیلی اعداد ، موفق شد تعداد عددهای اول مورد لزوم را از 300000 به 4 کاهش دهد. این نتیجه به تعداد مطلوب در انگاره گلدباخ بسیار نزدیکتر است ولی تفاوت عمدهای بین حکم اشنیرلمان و حکم وینوگرادوف وجود دارد که شاید مهمتر از اختلاف میان 300000 و 4 باشد. قضیه وینوگرادوف فقط به ازای همه اعداد صحیح «به اندازه کافی بزرگ» ثابت شده است؛ به بیان دقیقتر، او ثابت کرد عدد صحیح N ای وجود دارد به طوری که هر عدد صحیح n>N را میتوان به شکل مجموع حداکثر 4 عدد اول نشان داد. اثبات وینوگرادوف راهی برای براورد کردن N به ما نشان نمیدهد، و بر خلاف اثبات اشنیرلمان، اساساً غیرمستقیم و غیرسازنده است. در حقیقت، چیزی که وینوگرادوف ثابت کرد این است که فرض نامتناهی بودن تعداد عددهای صحیحی که قابل تجزیه به حداکثر 4 عدد اول نیستند، به نتیجه نامعقولی میانجامد. در اینجا با نمونه خوبی از تفاوت عمیق میان دو نوع اثبات، مستقیم و غیرمستقیم، رو به روییم.
در سال 1956 باروتسکین با نشان دادن اینکه عدد exp(exp(16/038))=n در قضیه وینوگرادف کافیست گام دیگری در این راه نهاد.
در 1919 ویگوبرون رویکرد متفاوتی با عنوان روش غربال مطرح کرد که تعمیمی از غربال اراتستن است. او ثابت کرد هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع دو عدد است که هر کدام از آنها حاصلضرب حداکثر 9 عدد اول هستند.
در 1937 ریچی ثابت کرد هر عدد زوجی که به قدر کافی بزرگ باشد مجموع دو عدد است که یکی حاصلضرب حداکثر دو عدد اول و دیگری حاصلضرب حداکثر 366 عدد اول است.
کُن با بهرهگیری از ایدههای ترکیبیاتی بوخشتاب ثابت کرد هر عدد زوج بقدر کافی بزرگ مجموع دو عدد است که هر یک حاصلضرب حداکثر چهار عدد اول است.
در 1957 ، ونگ یوان با فرض درست بودن صورت تعمیم یافته فرضیه ریمان ثابت کرد هر عدد صحیح زوج بقدر کافی بزرگ ،مجموع یک عدد اول و حاصلضرب حداکثر سه عدد اول است.
در 1948 آلفرد بدون استفاده از صورت تعمیم یافته فرضیه ریمان ثابت کرد که هر عدد زوج بقدر کافی بزرگ مجموع یک عدد اول و حاصلضرب حداکثر c عدد اول است. ( c عددی ثابت و مجهول است).
در 1961 باربن نشان داد که c=9 برای این منظور کفایت میکند.
در 1962 ، پان چنگ دونگ این مقدار را به c=5 کاهش داد. مدت کوتاهی پس از آن باربن و پان ، مستقل از هم ،آن را به c=4 کاهش دادند.
در 1965 بوخشتاب این قضیه را به ازای c=3 کاهش داد.
در 1966 ، چن جینگ ران روش غربال را بهتر کرد و قضیه را به ازای c=2 ثابت کرد. یعنی
هر عدد صحیح زوجی که به قدر کافی بزرگ باشد ، مجموع یک عدد اول و حاصلضرب حداکثر دو عدد اول است.
قضیه پاسکال
بلز پاسکال در سن 16 سالگی قضیهای را مطرح نمود که تعمیمی از قضیهی سادهتر دیگر منسوب به پاپوس اسکندرانی بود . صورت این قضیه چنین است : اضلاع متقابل یک ششضلعی محاط در مقطعی مخروطی ، یکدیگر را در سه نقطهی همخط قطع میکنند. این قضیه در هندسهی تصویری دوگان قضیهی بریانشون میباشد.
دانلود پاورپوینت درس ریاضی پایه پنجم جمع و تفریق اعداد اعشاری
فرمت فایل: پاورپوینت
تعداد اسلاید: 8
محتوای آموزشی درس ریاضی پایه پنجم
عنوان محتوا: جمع و تفریق اعداد اعشاری
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 23
اعداد اول
اعداد اول اعدادی طبیعی هستند که بر هیچ عددی بجز خودشان و عدد ۱ بخشپذیر نباشند. تنها استثنا عدد ۱ است که جزو این اعداد قرار نمیگیرد. اگرعددی طبیعی وبزرگتر از ۱ اول نباشد مرکب است.
عدد یکان اعداد اول بزرگتر از ۱۰ فقط ممکن است اعداد ۱، ۳، ۷، ۹ باشد.
پیدا کردن ضابطه ای جبری برای اعداد اول جزو یکی از معماهای ریاضی باقیمانده است و هنوز کسی به فرمولی برای آنها به دست نیاورده است.
دنبالهٔ اعداد اول به این صورت شروع میشود: ۲، ۳، ۵، ۷، ۱۱، ۱۳، ۱۷، ۱۹ ...
قضیه ۱: تعداد اعداد اول بینهایت است.
برهان: حکم را به روشی که منسوب به اقلیدس است اثبات میکنیم: فرض کنید تعداد اعداد اول متناهی و تعداد آنها n تا باشد. حال عدد M را که برابر حاصلضرب این اعداد به علاوه ۱ را در نظر بگیرید. این عدد مقسومعلیهی غیر از آن n عدد دارد که با فرض در تناقض است.
قضیه ۲ (قضیه اساسی حساب): هر عدد طبیعی بزرگتر از ۱ را می توان به شکل حاصلضرب اعدادی اول نوشت.
قضیه ۳ (قضیه چپیشف):اگر n عددی طبیعی و بزرگتر از ۳ باشد، حتما" بین n و ۲n عدد اولی وجود دارد. قضیه ۴ هر عدد زوج را میتوان بصورت جمع سه عدد اول نوشت.
قضیه ۵ هر عدد فرد (شامل اعداد اول) را میتوان به صورت جمع سه عدد اول نوشت (اثبات بر پایه قضیه ۴)
قضیه 6-هر عدد فرد را میتوان به صورت دو برابر یک عدد اول بعلاوه یک عدد اول دیگر نوشت (برهان آن را بنویسد).
خواص اعداد اول:
1- هر عدد اول برابر است با 6n+1 یا 6n-1 که n یک عدد صحیح است.
2-مجذور هر عدد اول برابر است با 24n+1.
3-تفاضل مجذورهای دو عدد اول مضربی از 24 است.
4-حاصلضرب هر دو عدد اول بجز 2و3 مضربی از 6 بعلاوه یا منهای یک است.
توان چهارم هر عدد اول بجز 2و3 مضربی از 240 بعلاوه یک است.
بزرگترین عدد اول کشف شده برابر دو به توان ۳۰میلیون و ۴۰۲هزار و ۴۵۷منهای یک است.این عدد یک عدد مرسن است. عدد مرسن عددی است که برابر 2 به توان n منهای یک است.
لازم به ذکر است که تعداد 3000 عدد اول در سایت مگاسندر www.megasender.org وجود دارد و افرادی که مایل به دریافت بیشتر این اعداد هستند می توانند با سایت مذکور تماس گرفته و تعداد بیشتری از آنها را بر روی لوح فشرده دریافت نمایند و طراحان این سایت خودشان این اعداد را محاسبه نموده اند
تاریخچه اعداد اول
در سال ۲۰۰۱دو تن از دانشجویان او یعنی کایال و سکسنا به یک نکته بسیار حساس و فنی توجه کردند. ابتدا این مساله سبب شد تا گروه سه نفره در آبهای عمیق نظریه اعداد غوطه ور شوند، اما اندک اندک برایشان روشن شد که تنها یک مانع در راه تکمیل روشی جهت آزمودن دقیق و سریع اعداد اول وجود دارد. مانع از این قرار بود که روش آنان تنها در صورتی کار میکرد که عدد اول مورد نظر که با pنمایش داده میشود همواره در محدوده خاصی جای داشته باشد که با اعدادی که در آزمون شرکت داده میشوند مرتبط باشد. مشخصه ویژه این مانع آن است که عدد " p-1 " باید یک مقسوم علیه یا بخشیاب بسیار بزرگ باشد. گروه سه نفر ریاضی دانان هندی برای غلبه بر مشکل به هر دری زدند و با بررسی مقالات مختلف بالاخره دریافتند که در سال ۱۹۸۵یک ریاضیدان فرانسوی به نام اتن فووری از دانشگاه پاریس ۱۱این نکته را به صورت ریاضی اثبات کرده است. به این ترتیب آخرین بخش معما حل شد و آلگوریتم پیشنهادی این سه نفر با موفقیت پا به عرصه گذارد. اما این موفقیت "مشروط" بود. به این معنی که این روش برای اعداد اولی که انسان در حال حاضر میتوان به سراغ آنها برود از کارآیی چندانی برخوردار نیست. در روایت اولیه روش پیشنهادی، زمان لازم برای محاسبات که متناسب با ارقام عدد اول مورد نظر بود، با آهنگ ۱۰۱۲ازدیاد پیدا می کرد. در روایتهای بهبود یافته اخیر این روش، سرعت ازدیاد زمان لازم برای محاسبات به ۱۰۷.۵کاهش یافته اما حتی در این حالت نیز این روش در مقایسه با روش آ پی آر تنها در هنگامی موثر تر خواهد بود که تعداد ارقام عدد اولی که قصد شکار و یافتن آن را داریم در حدود ۱۰۱۰۰۰باشد. اعدادی تا این اندازه بزرگ در حافظه هیچ کامپیوتر جای نمیگیرند و حتی آن را نمیتوان در کل کیهان جای داد. اما حال که ریاضی دانان توانستهاند یک طبقه خاص از آلگوریتمهای توانی را برای شناسایی اعداد اول مشخص کنند، این امکان پدید آمده که به دنبال نمونههای بهتر این روش بگردند. پومرانس و هندریک لنسترا از دانشگاه کالیفرنیا در برکلی با تلاش در همین زمینه توانستهاند زمان لازم برای محاسبات را از توان ۷.۵به توان ۶کاهش دهند. این دو از همان استراتژی کلی گروه هندی موسسه کانپور استفاده کردند اما تاکتیهای دیگری را به کار گرفتند. اگر فرضیههای دیگری که درباره اعداد اول مطرح شده درست از کار درآید آنگاه میتوان زمان محاسبه را از توان ۶به توان ۳تقلیل داد که در این حد این روش کارآیی عملی پیدا خواهد
First Friends 1 American English
نویسنده / مترجم : Susan Iannuzzi
شابک : 9780194433433
ناشر : جنگل
توضیحات:
این مجموعه در سه سطح (First Friends 1,2,3) و مطابق با سیستم آمریکایی تدوین شده که شامل آموزش حروف الفبا و اعداد همراه با شعر و آهنگ می باشد . این سری آموزشی همراه با کتاب کار و سی دی صوتی به شما عزیزان ارایه می شود .
فروشنده: انتشارات تلاش
روش خرید: برای خرید First Friends 1 American English، پس از کلیک روی دکمه زیر و تکمیل فرم سفارش، ابتدا محصول یا محصولات مورد نظرتان را درب منزل یا محل کار تحویل بگیرید، سپس وجه کالا و هزینه ارسال را به مامور پست بپردازید.