لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 75
تحقیق درباره انرژی الکتریکی
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 75
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 13
اقدانات اولیه در انواع ســوختگى شامل حرارتی شیمیایی برق گرفتی یا الکتریکی و درمان آن
هرساله تعداد زیادى از مردم دچار سوختگى مى شوند که نیمى از این موارد در کودکان و خردسالان پیش مى آید. هر چند پیشرفت هاى عمده اى در درمان سوختگى حاصل شده است اما بسیارى از عوارض جسمى سوختگى تا مدتها گریبانگیر نجات یافتگان است. سوختگى ها از نظر شدت آسیب رسانى به بافت هاى بدن به سه درجه تقسیم مى شوند :
سوختگى درجه یک که در آن فقط لایه سطحى پوست آسیب مى بیند و علامت آن تنها سوزش و قرمزى پوست است. سوختگى درجه دو که در آن لایه هاى زیرى پوست هم آسیب مى بینند و همراه با درد و سوزش و تاول است.
سوختگى هاى درجه سوم که پوست بطور کامل آسیب مى بیند و بافت هاى زیر آن مانند عضلات و استخوان ها نیز ممکن است دچار آسیب شوند و اغلب نیازمند پیوند زدن و جراحى است.
علاوه بر درجه سوختگى درصدى از سطح بدن که سوخته است نیز وخامت وضعیت مصدوم مؤثر است.
در مواقع مواجهه با مصدوم سوختگى اقدامات اولیه زیر را قبل از رساندن او به مراکز درمانى انجام دهید :
- متوقف کردن سوختگى با جدا کردن مصدوم از منبع سوختگى
- در سوختگى هاى ناشى از عوامل حرارتى یا شیمیایى غیر خشک از آب خنک براى شستن پوست آسیب دیده استفاده کنید.
- اگر تنفس بیمار متوقف است او را احیاء کنید.
- محل سوختگى را با گاز استریل یا در صورت نبودن آن با پارچه تمیز بپوشانید.
- مصدوم را سریعاً به مراکز درمانى نزدیک براى اقدامات پزشکى لازم برسانید.
مواردى که سوختگى از درجه یک باشد یا سطح سوختگى پوست خیلى کم و ازدرجه دوم باشد
مى توان به صورت خانگى با استفاده از پمادهاى سوختگى و پانسمان مناسب آن را درمان کرد.
لازم به تذکر است سوختگى ناشى از برق گرفتگى معمولا از نوع درجه ۳ است و احتیاج به مراقبت هاى ویژة پزشکى دارد.
مشخصات و درمان
۱ – هرگز روغن یا پمادهای روغنی روی سوختگی نمالید . این موارد موجب عدم دفع حرارت در محل آسیب شده و باعث عفونت شود .
۲ – همیشه در موارد زیر باید به مرکز طبی مراجعه کرد :
· اگر قربانی یا صدمه دیده کودک و یا سالخورده باشد .
· سوختگی بیش از یک قسمت از بدن را درگیر کرده باشد .
· سوختگی در قسمتهای حساس بدن رخ داده باشد . ( دستها – صورت – پاها و … )
· سوختگی درجه ۳ باشد
· سوختگی با مواد شیمیایی
انواع سوختگی :
· درجه ۱
·درجه ۲
·درجه ۳
سوختگیهای شیمیایی
- سوختگی درجه ۱ : آسیب به لایه خارجی پوست وارد می شود .
علائم و مشخصات سوختگی :
۱. قرمزی
۲. درد متوسط
۳. تورم و آماس
درمان :
۱. قسمت آسیب دیده را فوراً در آب سرد فرو ببرید .
۲. آنرا در زیر آب سرد و یا یک پارچه مرطوب نگهدارید تا زمانی که درد کاهش یابد .
۳.برای محافظت از محل سوختگی آنرا با یک گاز خشک و تمیز بپوشانیم .
- سوختگی درجه ۲ : سوختگی به دومین لایه پوست نفوذ می کند .
مشخصات وعلائم :
۱. تاول
۲. پوست زبر و خشن و قرمز
۳. تورم و آماس
۴. درد خیلی شدید
درمان :
۱. فرو بردن موضع آسیب دیده به داخل آب سرد و یا استفاده از پارچه مرطوب در اسرع وقت .
۲. خیلی ملایم و آهسته منطقه آسیب دیده را خشک کنید . هرگز آنجا را مالش ندهید زیرا خراشیدن و مالیدن محل باعث پاره شدن تاولها و مساعد کردن زمینه عفونت می شود .
۳. محل آسیب دیده را با یک باند خشک و استریل بپوشانید .
۴. اگر سوختگی در ناحیه بازو و یا پاها قرار دارد عضو مربوطه را تا جای ممکن بالا نگهدارید .
۵. « سوختگی درجه ۲ باید طی چند هفته بهبود یابد . »
- سوختگی درجه ۳ :
درد در سوختگی درجه ۳ کمتر از سوختگی درجه ۲ می باشد زیرا سلولهای عصبی در بافت آسیب دیده در حقیقت تخریب می شوند . اما با این حال آسیب و صدمه خیلی شدیدتر از نوع ۲ می باشد .
در اینحالت سوختگی به لایه سوم پوست نیز نفوذ می کند .
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 22
انرژی الکتریکی چیست ؟
میدانیم که هر ماده از تعداد بسیار اتم تشکیل شده است که هر اتم نیز از سه قسمت 1-نوترون 2- پروتن 3-الکترون تشکلیل شده است تعداد الکترونها با تعداد پروتنها در حالت عادی (خنثی) برابر است الکترون دارای بار منفی و پروتن دارای بار مثبت میباشند که الکترونها به دور(( پروتن و نوترون )) (هسته اتم) با سرعت بسیار زیادی میچرخند در اثر این چرخش نیروی گریز از مرکزی بوجود می آید که مقدار این نیرو با مقدار نیروی جاذبه بین الکترونها و هسته برابر است پس این برابری نیرو الکترونها را در حالت تعادل نگه میدارد و نمیگذارد که از هسته دور شوند . یک سیم مسی هم دارای تعداد زیادی اتم و در نتیجه الکترون است هر گاه ما بتوانیم توسط یک نیرویی الکترونهای در حال چرخش به دور هسته را از مدار خود خارج کنیم و در یک جهت معین به حرکت در آوریم جریان الکتریکی برقرار میشود. پس این نکته را دریافتیم که جریان برق چیزی جز حرکت الکترونها نیست البته این حرکت بصورت انتقالی انجام میشود یعنی یک اتم تعدادی الکترون به اتم کناری خود میدهد و اتم کناری نیز به همین ترتیب تعدادی الکترون به اتم بعدی میدهد و بدین صورت جریان برقرار میشود. پس هر گاه که میگوئیم جریان برق کم یا زیاد است یعنی تعداد الکترونهایی که در مسیر سیم در حال حرکت هستند کم یا زیاد است . نیروهایی که باعث جدا شدن الکترون از هسته میشوند: 1- نیروی مغناطیسی خارجی هرگاه یک سیم را در یک میدان مغناطیسی حرکت دهیم نیروی این میدان باعث حرکت الکترونهای سیم میشود . 2- ضربه فرض کنید یک اتوبوس کنار خیابان ایستاده و تمام مسافران آن محکم روی صندلیها نشستند بعد یک اتومبیل دیگر با سرعت زیاد به جلوی این اتوبوس برخورد میکند حال اتوبوس با سرعت به عقب پرتاب میشود و مسافران که در آنها اینرسی سکون ذخیره شده تمایل دارند که به همان حالت سکون باقی بمانند در نتیجه اتوبوس به عقب رفته ولی مسافران در همان نقطه مکانی باقی میمانند در نتیجه مسافران از صندلیهای خود جدا شده و از شیشه اتوبوس به بیرون پرتاب میشوند پس این نیروی ضربه بود که مسافران را از اتوبوس جدا کرد به همین صورت نیز ضربه میتواند الکترونها را از مدار خود خارج کند. نمونه این تولید برق در فندکها. 3- انرژی خورشیدی انرژی خورشیدی نیز دارای نیرویی است که قادر است الکترونها را از مدار خود جدا کند. 4-حرارت و ... میدانیم که حرارت باعث میشود که جنبش ملکولی اجسام زیاد شود در اثر این جنبش تعداد زیادی ملکول به شدت با هم برخورد میکنند که همان نیروی ضربه را بوجود می آوردند و باعث جدا شدن الکترون از اتم میشوند . نکته : یک سیم مانند دالانی میماند که در یک دوره زمانی مشخص تعداد معینی از افراد میتوانند از آن عبور کنند یعنی برای اینکه در دوره زمانی مشخص مثلا در 1 دقیقه افراد بیشتری بتوانند از این دالان عبور کنند باید سرعت حرکت آنها بیشتر شود در نتیجه در اثر برخورد با هم و با دیواره دالان باعث ایجاد اصطکاک و گرما میشوند برای سیم نیز چنین اتفاقی می افتد یعنی اگر بخواهیم تعداد الکترونهای در حال حرکت را افزایش دهیم (جریان را افزایش دهیم ) سرعت حرکت الکترونها و نیز تعداد الکترونهایی که همراه با هم از مقطع سیم عبور میکنند افزایش می یابد در نتیجه اصطکاک افزایش یافته و تولید گرما میکند که اگر جریان بیش از حد مجاز خود از سیم عبور کند گرمای تولید شده باعث ذوب شدن سیم میشود (سیم میسوزد). برداشت کلی از این قسمت : حرکت الکترونها در یک هادی (سیم) را جریان الکتریکی گویند . تا اینجا معنی جریان را فهمیدیم اما در مورد ولتاژ چه باید گفت ؟ آیا یک منبع که ولتاژش بیشتر باشد برق بیشتری تولید میکند یا منبعی که جریانش بیشتر باشد ؟ هر گاه یک اتم الکترنهایش را از دست دهد بار منفی آن کم میشود و اصطلاحاً میگوئیم بار دار مثبت شده است میدانیم که بین بار مثبت و منفی نیروی جاذبه وجود دارد و نیروی جاذبه یک عدد الکترون با نیروی جاذبه یک عدد پروتن برابر است به همین جهت است که در اتم هر پروتن برای خود یک الکترون اختیار میکند تا اینکه بار الکتریکی اتم خنثی شود در حالت عادی تمام اتمهای یک سیم از نظر بار الکتریکی خنثی هستند وقتی ما توسط نیروی خارجی الکترونهای اتمهای سیم را جدا میکنیم و آنها را به یک سمت هدایت میکنیم آن طرف سیم که الکترونها به آنجا هدایت شده اند دارای زیادی الکترون است پس بارش منفی میشود و طرف دیگر که کمبود الکترون دارد بارش مثبت میشود در نتیجه بین دوسر سیم یک اختلاف بوجود می آید این اختلاف بصورت انرژی پتانسیل در دو سر سیم ذخیره میشود تا زمانیکه راهی برای خنثی شدنش پیدا کند پس در این حالت هیچ گونه جریانی در سیم و جود ندارد و فقط یک انرژی پتانسیل دو سر سیم ذخیره شده است که به این نیروی پتانسیل ولتاژ الکتریکی گوییم حال چنانچه نیروی خارجی را قطع کنیم الکترونها به سرعت به جای قبلی خود برمیگردند و در یک لحظه چریان برقرار میشود پس متوجه شدیم تا زمانیکه نیروی خارجی وجود دارد نمیگذارد که الکترونها از مسیر همان سیم به جای خود برگردند پس باید راه دیگری پیدا کنند برای همین اگر توسط یک سیم دیگر که میدان خارجی آن را تحت تاثیر خود قرار نداده باشد دو سر سیم قبلی را به هم وصل کنیم الکترونها راهی برای حرکت به سمت مکان کمبود الکترون پیدا میکنند در نتیجه جریان در سیم برقرار میشود . پس نتیجه گرفتیم که در یک مدار الکتریکی کار اصلی را جریان انجام میدهد و ولتاژ فقط یک نیروی ذخیره شده است که باعث به حرکت در آوردن الکترونها میشود . حال برای اینکه بهتر متوجه شوید که ولتاژ چگونه باعث به حرکت در آوردن الکترونها (برقراری جریان ) میشود یک مثال میزنیم . فرض کنید دو لیوان داریم که یکی پر و دیگری نصفه است لیوانها را در کنار هم قرار میدهیم میدانیم که بین این دولیوان اختلاف مقدار آب وجود دارد همانگونه که بین دو سر سیم اختلاف مقدار الکترون وجود داشت اگر این لیوانها چندین ساعت هم در کنار هم قرار بگیرند هیچ اتفاقی نمی افتد اما چنانچه توسط یک لوله ته دو لیوان را به هم وصل کنیم آب از طرف لیوان پر تر به سمت لیوان نصفه حرکت میکند تا زمانیکه سطح آب درون دو لیوان به یک اندازه شود . پس در اینجا اختلاف آب است که باعث حرکت میشود و در آنجا اختلاف الکترون (اختلاف پتانسیل) که این اختلاف پتانسیل خود دارای مقدار است که به آن مقدار ولتاژ میگوئیم .
منبع :s-ta-p.persianblog.com
قانون بقای بار الکتریکی
یک توپ را با میله پلاستیکی و دیگر را میله شیشهای باردار کنید سپس آنها را به هم بچسبانید. گاهی دوبار ناپدید میشوند و همدیگر را از بین میبرند. برای بیان این مساله میتوان از یک قانون ریاضی مبنی بر اینکه اگر حاصل جمع دو کمیت صفر شود، یکی از آن دو مثبت و دیگری منفی است، استفاده نمود. طبق قرارداد به میله پلاستیکی را بار منفی و میله شیشهای را بار مثبت نسبت دادهاند. بیان ساده ای از قانون بقای بار وقتی که یک میله پلاستیکی را با خز مالش میدهیم، میله بار منفی و خز بار مثبت پیدا میکند. آزمایش را با دو جسم خنثی شروع میکنیم، یعنی مجموع بار آن دو برابر صفر است. بعد از مالش دادن ، یکی بار مثبت و دیگری بار منفی مییابد که باز هم بار کل برابر صفر میشود. همچنین وقتی میلهای بار مثبت بیابد، بار جسم پلاستیکی که میله شیشهای را با آن مالش میدهیم منفی میشود. هیچ کس نمی تواند یکی از این دو بار را خلق کند، بدون آنکه همزمان دیگری را نیز تولید کرده باشد در یک چنین فرایندی مقدار کل بار تغییر نمیکند. این مطلب بیانگر قانون بقای بار الکتریکی است. این قانون همانند قوانین پایستگی جرم و انرژی ، اندازه حرکت خطی ، اندازه حرکت زاویه ای و ... در فیزیک یک قانون بنیادی است. قانون بقای بار الکتریکی در اتم همه اجسام دارای ذراتی با بار الکتریکی مثبت و منفی هستند. این ذرات هماناتمهایی هستند که جهان مادی را میسازند. ابعاد این اتمها از مرتبه آنگستروم است. چندین میلیون از این اتمها ، در کنار هم ، چیزی در حدود یک نقطه نمایان میشوند. هر اتم از لحاظ بار الکتریکی خنثی است، زیرا به تعداد مساوی بار مثبت و منفی دارد. بار مثبت اتم و تقریبا تمامی جرم آن ، در مرکز آن ، یعنی در هسته متمرکز شده است. ابعاد هسته ده هزار برابر کوچکتر از ابعاد کل اتم است. هسته یک خوشه محکم به هم چسبیده متشکل از دو نوع ذره پروتونها و نوترونهاست. تراکم جرم در این ذرات غیر قابل تصور است. یک تفاوت مهم بین پروتونها و نوترونها این است که پروتونها دارای بار الکتریکی مثبت بوده ولی نوترونها از نظر بار الکتریکی خنثی هستند. تعداد پروتونها هسته ، عنصر شیمیایی را که هسته به آن تعلق دارد، مشخص میکند، با این حال قسمت اعظم فضای اتم خالی است، در ناحیه اطراف هسته تعدادی ذره با بار الکتریکی منفی به نام الکترون وجود دارد. جرم الکترون کم است، اما بار آن منفی و مقدارش برابر مقدار بار روی پروتون است. از اینرو در یک اتم خنثی تعداد الکترونها در فضای اطراف هسته درست برابر تعداد پروتونها در داخل هسته است. الکترونها توسط نیروی جاذبه الکتریکی در نزدیکی هسته به آن مقید میشوند. مبادله بار و قانون بقای بار الکتریکی گاهی یک تماس ساده میان اجسام ممکن است باعث شود که تعدادی الکترون از یک جسم به جسم دیگر منتقل شود. وقتی میله پلاستیکی با خز مالش داده میشود، برخی الکترونها از خز به میله پلاستیکی منتقل میشوند. ممکن است تعداد الکترونهایی که به میله پلاستیکی منتقل میشوند، در حدود ( 9 ^ 10 ) باشد که ظاهرا زیاد است. تعداد کل الکترونهای موجود در میله پلاستیکی در حدود 24 ^ 10 است. در فلزات بستگی الکترونها به هسته ضعیف است و الکترونها میتوانند آزادانه در داخل ماده حرکت کنند. چون بار به راحتی در داخل میله فلزی به هم وصل نماییم، هر دو کره خنثی میشوند. ماده ای که بار الکتریکی را از خود عبور میدهد رسانا نامیده میشود. در جامدات ، فقط الکترونها میتوانند حرکت کنند. اما محلول الکترولیت ، آب شور یا گاز داخل لامپ فلوئورسانس رساناهای بسیار خوبی هستند. زیرا حاملین بار مثبت و منفی هردو تحت تاثیر نیروی الکتریکی میتوانند آزادانه حرکت کنند. در تمام فرایندهای مبادله بار و انتقالات اخیر قانون بقای بار الکترکی به دقت ملاحظه میشود. به عبارتی نحوه مبادله بار به توسط قانون بقای بار صورت میگیرد. در واکنشهای شیمیایی این قانون همانند قانون بقای جرم ظاهر می شود و واکنش را از نظر الکتریکی مجاز می داند که در طرفین واکنش مجموع بارهای الکتریکی برابر باشند.
ابررسانایی چیست ؟
از کشف ابررسانایی در سال 1911 میلادی تا سال 1986 ، باور عموم بر آن بود که ابررسانایی فقط می تواند در فلزاتی در دماهای بسیار پایین وجود داشته باشد، که فقط در دماهای حداکثر 25 درجه بالای صفر مطلق اتفاق می افتاد. با کشف ابررسانایی در دماهای بالاتر در سال 1986 ، در موادی که تقریبا ضد فرو مغناطیسی بودند، و در هواپیماهای شامل a nearly square array of اتم های مس و اکسیژن، فصل جدیدی در علم فیزیک باز کرد. حقیقتا، درک ظاهر شدن ابررسانایی در دماهای بالا (حداکثر دمای 160 کلوین) یک مساله ی بزرگ برای بحث کردن می باشد. تا آن جا که امروزه بیش از ده هزار محقق روی این موضوع تحقیق و بررسی انجام می دهند. پس از مقدمه ای بر مفاهیم پایه ی فلزات معمولی و مرسوم، دمای پایین، و ابررسانایی، مروری بر نتایج مشاهدات انجام شده در دهه ی گذشته خواهم داشت ، که نشان می دهند ابررساناهای دمای بالا فلزات عجیبی با خواص غیرعادی بسیار بالای ابررسانایی می باشند. سپس، پیشرفت های نظری اخیری را شرح خواهم داد که طبیعت چنین فلزات عجیب را آشکار می سازد، و به شدت این پیشنهاد را که "تعامل مغناطیسی بین تحریکات ذره ی quasi مسطح است که رفتار حالت عادی آن ها را به هم می زند و باعث روی دادن حالت ابررسانایی در دماهای بالا می شود" پشتیبانی و تایید می کنند. مقدمه : در سال 1911 ، H. Kamerlingh-Onnes هنگام کار کردن در آزمایشگاه دمای پایین خود کشف کرد که در دمای چند درجه بالای صفر مطلق، جریان الکتریسیته می تواند بدون هیچ اتلاف اختلاف پتانسیل در فلز جیوه جریان پیدا کند. او این واقعه ی منحصر به فرد را "ابررسانایی" (Superconductivity) نامید. هیچ نظریه ای برای توضیح این رخداد در طول پنجاه و شش سال بعد از کشف ارائه نگردید. تا وقتی که در 1957 ، در دانشگاه الینویس ، سه فیزیکدان : John Bardeen ، Leon Cooper ، و Robert Schrieffer نظریه ی میکروسکوپی خود ارائه کردن که بعدا با نام تئوری BCS (حروف ابتدایی نام محققان ) شناخته شد. سومین رخداد مهم در تاریخ ابررسانایی در سال 1986 اتفاق افتاد، وقتی که George Bednorz و Alex Mueller ، در حال کار کردن در آزمایشگاه IBM نزدیک شهر زوریخ سوئیس، یک کشف مهم دیگر کردند : ابررسانایی در دماهای بالاتر از دماهایی که قبلا برای ابررسانایی شناخته شده بودند در فلزاتی کاملا متفاوت از آنچه قبلا فلز ابررسانا شناخته می شود. این کشف باعث ایجاد زمینه ی جدید ی در علم فیزیک شد : مطالعه ابررسانایی دمای بالا، یا . در این مقاله، که برای غیر متخصص ها تنظیم گشته است، این را که ما چقدر در فهم دمای بالا پیشرفت کرده ایم را توضیح خواهم داد و درباره چشم انداز های آینده ی توسعه ی یک نظریه ی میکروسکوپی بحث خواهم کرد. من با مروری بر برخی مفاهیم پایه ی نظریه ی فلزات شروع می کنم؛ برخی اقدامات که منجر به ارائه ی نظریه BCS گشت را توضیح می دهم؛ و کمی در باره ی تئوری BCS بحث خواهم کرد و آن را توضیح خواهم داد. سپس مختصرا در باره ی پیشرفت هایی که به فهم ما از ابررسانایی و ابرسیالی، در جهان ارائه شده است، بحث خواهم کرد، پیشرفت هایی که بوسیله الهام از تئوری BCS بدست آمده اند. که شامل کشف رده های زیادی از مواد ابرسیال می باشد، از هلیوم 3 مایع که چند میلی درجه بالاتر از صفر مطلق به حالت ابرسیالی در می آید تا ماده ی نوترون موجود در پوسته ی سیاره ی نوترون، که در چند میلیون درجه به حالت ابرسیالی در می آید. سپس درباره ی تاثیرات کشف مواد ابررسانای دمای بالا بحث خواهم کرد ، و برخی نتایج تجربی کلیدی را جمع بندی خواهم کرد. سپس یک مدل برای ابررسانایی دمای بالا ارائه خواهم داد ، نزدیک به نظریه ی ضد فرومغناطیسی مایع فرمی ، که به نظر دارای توانایی ارائه ی مقدار زیادی از خواص غیرعادی حالت معمولی مواد ابررسانای سطح بالا می باشد. من با یک توضیح تجربی برای خواص جالب توجه حالت عادی ابررساناهای پیش بینی شده و در دست بررسی جمع بندی و نتیجه گیری می کنم، که یک رده جالب از مواد را معرفی می کند : مواد قابل تطبیق پیچیده . که در آن بازخورد غیرخطی طبیعی، چه مثبت و چه منفی، نقشی حیاتی در تعیین رفتار سیستم باز ی می کنند. ابررساناهای مرسوم : از کشف تا درک ... در سخنرانی نوبل خود در سال 1913 ، Kammerlingh-Onnes گزارش داد که "جیوه در 4.2 درجه کلوین به حالت جدیدی وارد می شود، حالتی که با توجه به خواص الکتریکی آن، می تواند ابررسانایی نام بگیرد. او گزارش داد که این حالت می تواند به وسیله ی اعمال میدان مغناطیسی به اندازه ی کافی بزرگی از بین برود. در حالی که یک جریان القاء شده در یک حلقه بسته ابررسانا به مدت زمان فوق العاده زیادی باقی می ماند و از بین نمی رود. او این رخداد را به طور عملی با آغاز یک جریان ابررسانایی در یک سیم پیچ در آزمایشگاه لیدن، و سپس حمل سیم پیچ همراه با سرد کننده ای که آن را سرد نگه می داشت به دانشگاه کمبریج به عموم نشان داد. این موضوع که ابررسانایی مساله ای به این مشکلی ارائه کرد که 46 سال طول کشید تا حل شود، خیلی شگفت آور می باشد. دلیل اول این می تواند باشد که جامعه ی فیزیک تا حدود بیست سال مبانی علمی لازم برای ارائه ی راه حل برای این مسئله را نداشت : تئوری کوانتوم فلزات معمولی. دوم اینکه، تا سال 1934 هیچ آزمایش اساسی در این زمینه انجام نشد. سوم اینکه، وقتی مبانی عملی لازم بدست آمد، به زودی واضح شد انرژی مشخصه وابسته به تشکیل ابررسانایی بسیار کوچک می باشد، حدود یک میلیونیم انرژی الکترونیکی مشخصه ی حالت عادی. بنابراین، نظریه پردازان توجه شان را به توسعه ی یک تفسیر رویدادی از جریان ابررسانایی جلب کردند. این مسیر را Fritz London رهبری می کرد. کسی که در سال 1953 به نکته ی زیر اشاره کرد : "ابررسانایی یک پدیده کوانتومی در مقیاس ماکروسکوپی می باشد ... با جداسازی حالت حداقل انرژی از حالات تحریک شده بوسیله ی وقفه های زمانی." و اینکه "diamagntesim یک مشخصه بنیادی می باشد." اجازه بدهید کمی درباره ی مبانی علمی کوانتومی بحث کنیم. الکترون ها در فلز در پتانسیل متناوب تولید شده از نوسان یون ها حول وضعیتشان حرکت می کنند. حرکت یون ها را می توان بوسیله ی مد های جمعی کوانتیزه شده ی آنها، فونون ها، توجیه کرد. سپس در طی توسعه ی نظریه ی کوانتوم، نظریه ی پاولی اصل انفجار وجود دارد ، که معنای آن بیانگر مفهوم آن است و آن اینکه - الکترونها به صورت اسپین نیمه کامل ذاتی (half integral intrinsic spin) قرار می گیرند، و در نتیجه هیچ الکترونی نمی تواند طوری قرار بگیرد که عدد کوانتوم آنها با هم یکی باشد. ذراتی که به صورت اسپین نیمه کامل ذاتی قرار می گیرند با نام فرمیون ها (fermions) شناخته می شوند، به خاطر گرامیداشت کار
لینک پرداخت و دانلود در "پایین مطلب"
فرمت فایل: word (قابل ویرایش و آماده پرینت)
تعداد صفحات:35
اصولاً قسمتهای عایق ماشینهای الکتریکی ، ترانسفورماتور ها ،خطوط هوایی و غیره به صورتی طراحی می شود که بتوانند به طور مداوم تحت ولتاژ معینی کارکرده و ضمناً قدرت تحمل ضربه های ولتاژ را در لحظات کوتاه داشته باشند .
هر نوع تغییرات ناگهانی و شدید در شرایط کاری شبکه، موجب ظهور جهشها یا پالسهای ولتاژ می شود . برای مثالمی توان اضافه ولتاژ های ناشی از قطع و یا وصل بارهای زیاد به طور یکجا ، جریانهای اتصال کوتاه ، تغییر ناگهانی مدار و غیره رانام برد .
رعد و برق نیز هنگامی که روی خطوط شبکه تخلیه شود ، باعث ایجاد پالسهای فشار قوی با دامنه زیاد و زمان کم می شود .
لذا عایق های موجوددر ماشینهای الکتریکی و تجهیزات فشار قوی باید از نظر استقامت در مقابل این نوع پالسها نیز طبقه بندی شده و مشخص شوند . عایقهای الکتریکی با گذشت زمان نیز در اثر آلودگی و جذب رطوبت فاسد شده و خاصیت خود را از دست می دهند .
در مهندسی برق سطوح مختلفی از مقاومت عایقی تعریف شده است که هر کدام بایستی در مقابل ولتاژ معینی استقامت نمایند . (ولتاژ دائمی و ولتاژ لحظه ای هر کدام به طور جداگانه مشخص می شوند )و البته طبیعی است که ازدیاد ولتاژ بیشتر از حد مجاز روی عایق باعث شکست آن می شود . در عمل دو نوع شکست برای عایق ها می توان باز شناخت ،حرارتی و الکتریکی .
زمانی که عایق تحت ولتاژ قرار دارد ، حرارت ناشی از تلفات دی الکتریکی می توان باعث شکست حرارتی شود . باید توجه نمود که افزایش درجه حرارت باعث کاهش مقاومت اهمی عایق و نتیجتاً افزایش تصاعدی درجه حرارت آن خواهد شد .
خلاصه اینکه عدم توازن بین حرارت ایجاد شده در عایق با انچه که به محیط اطراف دفع می نماید ، موجب افزایش درجه حرارت آن شده و این پروسه تا زمانیکه عایق کاملاً شکسته شده و به یک هادی الکتریسته در آید ، ادامه می باید .
شکست الکتریکی در عایق ها به دلیل تجزیه ذرات ان در اثر اعمال میدان الکتریکی نیز صورت می گیرد .
با توجه به آنچه گذشت ، عایقهای الکتریکی عموماً در معرض عواملی قرار دارند که باعث می شود در ولتاژ نامی نیز حالت نرمال خود را از دست بدهند . لذا در انتخاب عایقها ، عایق با کلاس بالاتر انتخاب می شود . اندازه گیریهای مختلفی که جهت شناسایی نواقص موجود در عایق ها انجام می گیرند عبارتند از :
اندازه گیری مقاومت D.C عایق یا جریان نشتی ان ، تلفات دی الکتریک ، ظرفیت خازنی عایق ، توزیع ولتاژ در عایق ، دشارژهای جزئی در عایق و میزان پارازیتهای حاصل از آن و تست استقامت الکتریکی عایق .
تعیین میزان و تلفات یک عایق ومقایسه آن با مقادیر اولیه ، معیار خوبی برای ارزیابی وضعیت آن می باشد . اصولاً افزایش تلفات در عایق های جامد ناشی از جذب رطوبت و در روغن ها به دلیل افزایش در صد آب یا آلودگیهای دیگر درآن می باشد .
باید دانست که مقدار تلفاتی که در مورد یک ترانس اندازه گیری می شود ، جمع تلفات روغن و ایزولاسیونجامد سیم پیچ بوده و هرگاه تلفات عایق یک ترانس از مقدار مجاز تجاوز نماید ، ابتدا باید روغن را به طور جداگانه مورد آزمایش قرار داد تا بتوان وضعیت ایزولاسیون سیم پیچی را ارزیابی نمود .
با توجه به انکه با تعیین مقدار تلفات به طور مطلق و بدون در نظر گرفتن ابعاد فیزیکی و جنس عایق نمی توان قضاوت صحیحی در مورد ان به عمل آورد ، بهترین پارامتری که می تواند وضعیت ایزولاسیون را مشخص نماید نسبت مولفه اکتیو به راکتیو جریان نشتی عایق می باشد . با اندازه گیری ظرفیت تلفات عایق می توان وضعیت ان را از نظر استقامت حرارتی ، میزان رطوبت جذب شده و عمر عایق ارزیابی نمود .
تجربه نشان داده است که در موارد زیر خطر اتصال کوتاه در ایزولاسیون تجهیزات الکتریکی که مستقیماً به فساد عایق مربوط باشد ، وجود ندارد :
الف : وقتیکه ایزولاسیون دارای ضریب تلفات عایق ثابتی است و با مروز زمان افزایش نمی یابد .
ب: وقتیکه ضریب تلفات عایق روغن بوشینگ دژنکتورهای روغنی که مستقیماً روی کلید اندازه گیری شده است ، بدون توجه به اندازه گیری قبلی در حد استاندارد باشد .
با اندازه گیری ظرفیت خازنی ایزولاسیون تجهیزات الکتریکی در دوفرکانس و یا دو درجه حرارت مختلف می توان اطلاعاتی مشابه با نتیجه تست تلفات دی الکتریک از وضعیت عایق بدست آورد .
وجه تمایز تست ظرفیت خازنی در دو فرکانس مختلف با دستگاههایی که جهت همین کار ساخته شده اند در این است که در هر درجه حرارتی قابل انجام بوده و احتیاجی به گرم کردن ترانس و یا تجهیزات دیگر نیست و به همین جهت پرسنل را از حمل و نقل دستگاهها و ادوات نسبتاً سنگین که برای گرمایش بکار می روند بی نیاز می سازد .
در این روش اساس کار بر این اصل مبتنی است که ظرفیت خازن با تغییر فرکانس تغییر می نماید . تجربه نشان داده است که در مورد ایزولاسیون سیم پیچ هایی که آب زیادی به خود جذب نموده اند نسبت بین ظرفیت خازنی در فرکانسهای 2 و 50 هرتز حدود دو بوده و در مورد ایزولاسیون خشک این نسبت حدود یک خواهد بود .
اندازه گیری فوق معمولاً بین سیم پیچ هر یک از فازها و بدنه در حالتیکه بقیه سیم پیچ ها نیز ارت شده اند انجام می گیرد . دقیقترین روش برای بررسی نتایج بدست امده در هر آزمایش مقایسه آن با مقادیر کارخانهای و یا تستای مشابه قبلی می باشد که البته در این عمل باید ارقام بر اساس یک درجه حرارت واحد اصلاح شد باشند . چنانچه مقایسه فوق به عللی تحقیق پذیر نباشد ، می توان به بعضی از اتسانداردهایی که در این زمینه موجود است مراجعه نمود . برای مثال پس از انجام تعمیرات ، میزان مقاومت D.C عایق نباید کاهش بیش از 40 در صد (برای ترانس 110 کیلو ولت به بالا 30 در صد ) ،
لینک دانلود و خرید پایین توضیحات
فرمت فایل word و قابل ویرایش و پرینت
تعداد صفحات: 7
بررسی تأثیر تحریک الکتریکی عصب از طریق پوست بر دامنه حرکتی و خشکی صبحگاهی مفصل زانو در بیماران مبتلا به استئوآرتریت زانو
کمال صالحی*، سعید حمیدی زاده**1، دکتر عیسی محمدی***، دکتر گیتی ترکمان†، سید محسن حسینی††
*کارشناس ارشد پرستاری داخلی و جراحی- دانشگاه آزاد اسلامی مهاباد، **کارشناس ارشد پرستاری دانشکده بروجن- دانشگاه علوم پزشکی شهرکرد، ***استادیار گروه پرستاری- دانشگاه تربیت مدرس، †استادیار گروه فیزیوتراپی - دانشگاه تربیت مدرس، ††مربی گروه پرستاری- دانشگاه آزاد اسلامی واحد شهرکرد.
تاریخ دریافت:30 /4/85 تاریخ تأیید: 21/12/85
مقدمه:
استئوآرتریت شایع ترین بیماری مفصلی در انسانها به شمار میرود (1،2) کــــه در90-60 درصــد
افراد بالای 65 سال ایجاد می شود و در اکثر جوامع شایع ترین علت ناتوانی مزمن می باشد (3). در آمریکا حدود یکصد هزار نفر به علت استئوآرتریت زانو یا ران بدون کمک قادر به رفت و آمد بین رختخواب و دستشوئی نیستند (4). خشکی صبحگاهی و کاهش دامنه حرکتی مفصل از مشخصات مهم این بیماری می باشد (5). هیچ داروئی یافت نشده است که باعث جلوگیری، تأخیر بیماری یا برگشت تغییرات پاتولوژیک ناشی از استئوآرتریت در انسان شود (6). با این حال استئوآرتریت که شایع ترین وضعیت محدود کننده فعالیت در بین افراد مسن است، نسبت به تعداد زیادی از بیماریها که جدی تر تلقی می شوند مانند سرطان یا سکته مغزی، می توان آن را مسئول موارد بیشتری از ناتوانی کامل در افراد مسن در نظر گرفت (7).
شکیبی در سال 2004 با بررسی 200 بیمار مبتلا به استئوآرتریت در کرمان به این نتیجه رسید که شاخص توده بدنی بالا، سن بالا و زندگی در روستا، عوامل مؤثر بر ناتوانی در این بیماران می باشد (8).
در سالهای اخیر علاقه و گرایش به سمت درمانهای غیر داروئی بیشتر از درمانهای داروئی بوده و روز به روز بر آمار داوطلبین استفاده از این روشها نیز افزوده می شود (9). تحریک الکتریکی عصب از طریق پوست یکی از روشهای درمانی غیر دارویی می باشد که قدمت و ریشه استفاده ازآن به یونان باستان و روم قدیم بر می گردد. اولین تحریک الکتریکی ثبت شده به 46 سال بعد از میلاد مسیح بر می گردد زمانی که یک پزشک ایتالیائی، اهل روم، به نام اسکری بوینرس لارگوس با گذاشتن ماهی های الکتریکی روی مفاصل به درمان بیماری نقرس پرداخت. مکانیسم اصلی اثر TENS (Transcutaneous Electrical Nerve Stimulation) هنوز بطور کامل مشخص نیست ولی از جمله مکانیسم هایی که اکثر صاحبنظران بر آنها اتفاق نظر دارند این است که این جریان الکتریکی ریشه های اعصاب آوران زیادی را فعال میکند که به تحریک
اعصاب مهاری شاخ خلفی یا رهایی آندورفین یا هر دو منجر می شود (10).
در سال 2003 Gaines تأثیر تحریک الکتریکی را بر توانایی عضله چهار سر ران در بیماران مبتلا به استئوآرتریت زانو بررسی کرد و نشان داد که تحریک الکتریکی باعث افزایش قدرت و توان این عضله شده بدون اینکه بر درد آنها تأثیری داشته باشد (11). همچنین بکارگیری TENS تا 70 درصد میتواند نسبت به عدم بکارگیری آن در کاهش درد بیماران مبتلا به استئوآرتریت مؤثر باشد (12).
از آنجا که استئوآرتریت زانو می تواند منجر به محدودیت فیزیکی و ناتوانی شدید شود و اهداف درمانی در این بیماری شامل کاهش ضعف، بهبود عملکرد، کاهش درد، افزایش دامنه حرکتی، کاهش خشکی صبحگاهی مفاصل و تسهیل عملکرد فعالیت های روزانه می باشد و از آنجایی که تحریک الکتریکی عصب از طریق پوست دارای مزایایی از جمله ساده بودن تکنیک کار، نداشتن عارضه جانبی، کاهش مصرف نارکوتیکها، ارزان و مقرون به صرفه بودن می باشد، ضمناً آماده کردن بیمار در این روش از روشهای دیگر درمانهای غیر داروئی مثل انحراف فکر و آرامسازی عضلانی راحت تر می باشد (9). این مطالعه با هدف تعیین تأثیر TENS، به عنوان یک روش غیر دارویی، بر دامنه حرکتی مفصل زانو و میزان خشکی صبحگاهی در بیماران مبتلا به استئوآرتریت زانو انجام شد.
روش بررسی:
مطالعه حاضر یک مطالعه نیمه تجربی از نوع یک سوکور می باشد که پس از کسب مجوز از کمیته اخلاق دانشگاه تربیت مدرس انجام گرفت. جامعه این مطالعه، کل بیماران مبتلا به استئوآرتریت زانو، مراجعه کننده به درمانگاه روماتولوژی بیمارستان امام خمینی
تهران بودند. تعداد 60 بیمار (30 نفر برای هر گروه) که دارای شرایط ورود به مطالعه بودند با استفاده روش نمونه گیری تصادفی انتخاب شدند. معیارهای ورود به مطالعه شامل، تایید بیماری آنها توسط پزشک متخصص، سلامتی پوست ناحیه مورد مطالعه، حداقل شش ماه و حداکثر 5 سال از تشخیص بیماری استئوآرتریت آنها توسط پزشک متخصص گذشته باشد، محل زندگی آنها در شهر تهران و حداقل نزدیک به بیمارستان امام خمینی (ره) باشد تا امکان سه بار مراجعه به بخش فیزیوتراپی در طول هفته را داشته باشند و دادن گواهی کتبی مبنی بر رضایت انجام تحریک الکتریکی عصب از طریق پوست، بود. معیارهای خروج از مطالعه شامل داشتن ضربان ساز قلبی، حامله بودن، نقص در درک حس و داشتن بیماری آرتریت روماتوئید و سایر بیماریهای عصبی- عضلانی- اسکلتی بوده اند. در طی تحقیق دو نفر از گروه شاهد و یک نفر از گروه آزمون از مطالعه خارج شدند. پس از انتخاب نهایی افراد و تخصیص تصادفی آنها در دو گروه آزمون و شاهد و دادن توضیحات لازم به هر دو گروه، طی چهار هفته و هر هفته سه جلسه به گروه آزمون جریان الکتریکی 100 هرتز توسط دو الکترود را بر با ابعاد 8×4 سانتی متر در دو طرف راست و چپ مفصل زانو، به مدت 20 دقیقه با استفاده از دستگاه NEW TENSداده شد، شدت جریان با توجه به آستانه حسی خود بیماران تنظیم می شد. گروه شاهد هم دارای همین شرایط بود ولی دستگاه خاموش بود و از آن به عنوان پلاسبو استفاده میشد. دامنه حرکتی مفصل زانو در وضعیت فلکشن در حالت خوابیده بر روی زمین توسط گونیا متر اندازه گیری شد و میزان خشکی صبحگاهی مفصل به کمک چک لیست خود گزارش دهی که توسط بیماران تکمیل میگردید بررسی شد. میزان خشکی صبحگاهی و دامنه حرکتی مفصل زانو در هر
دو گروه در جلسه اول، ششم و دوازدهم اندازه گیری شد و مورد مقایسه قرار گرفت. پس از جمع آوری داده ها، تجزیه و تحلیل آماری با استفاده از آزمونهای آماری آنالیز واریانس با اندازه گیری مکرر، کروسکال والیس و t مستقل انجام شد.
یافته ها:
90 درصد بیماران در هر دو گروه زن بودند. میانگین سنی بیماران در گروه آزمون 2/6(1/54 و شاهد 18/7(07/57 سال بوده است. میانگین شاخص توده بدنی در گروه آزمون 1/27 و در گروه شاهد 2/26 بود که آزمون آماری t مستقل اختلاف معنی داری را بین میانگین متغیرهای فوق و سایر متغیرهایی دموگرافیک در دو گروه آزمون و شاهد قبل از مداخله نشان نداد.
آزمون آنالیز واریانس (ANOVA) از نوع اندازه گیری مکرر نشان داد دامنه حرکتی مفصل زانو در گـــروه آزمون رو بـــه افـــزایش میبـاشــد ولی در
نمودار شماره 1: میانگین دامنه حرکتی مفصل زانو در دو گروه
-001/0 p<در گروه آزمون درجلسه ششم و دوازدهم نسبت به قبل از مداخله.
گروه آزمون: تحریک الکتریکی عصب از طریق پوست.
گروه شاهد: بدون تحریک الکتریکی پوست.
گروه شاهد تغییر معنی داری از نظر آماری نداشته، بین میانگین دامنه حرکتی مفصل زانو در دو گروه قبل از مداخله، اختلاف معنی داری وجود نداشت ولی پس از شش هفته مداخله این میزان در گروه آزمون از 26/2(2/82 به 07/3(1/89 رسید (001/0p<) و پس از اتمام مداخله این میزان به 52/4(117 افزایش یافت (001/0p<). ولی در گروه شاهد این میزانها تفاوت معنی داری در زمانهای مشابه نداشت (نمودار شماره 1).
سایر یافته های پژوهش نشان میدهد که میزان خشکی صبحگاهی مفاصل زانو در اندازه گیری مکرر در زمانهای مختلف در بین دو گروه اختلاف معنی داری وجود نداشت و بعلاوه در گروه آزمون نیز اختلاف معنی داری بین میزان خشکی صبحگاهی مفاصل زانو در زمانهای مختلف مداخله نبود (جدول شماره 1).
بحث:
با توجه به نتایج این مطالعــه تحریک الکتریکی عصب از طریق پوست بر دامنه حرکتی مفصل زانو اثر
چشمگیری داشته ولی بر میزان خشکی صبحگاهی اثری ندارد. TENS با فعال کردن سیستم مهاری نزولی برای جلوگیری از انتقال درد عمل میکند، که این مسئله کاربرد بالینی تئوری کنترل دریچهای درد را نشان می دهد، همچنین مکانیسم های بیوشیمیایی نیز می توانند دخیل باشند چون TENS سطوح ماده پی و 5-هیدروکسی تریپنامین را در مایع مغزی نخاعی افزایش می دهد از سویی دیگر این تحریک ممکن است جریان خون نزدیک الکترودها را افزایش دهد که به طور غیر مستقیم به فرآیند التیام یا رفع اسپاسم و شل شدن ماهیچه ها کمک میکند (9).
در سال 2003 Gaines تأثیر تحریک الکتریکی عضله چهار سر ران را بر توانایی عضله چهار سر ران در بیماران مبتلا به استئوآرتریت زانو بررسی کرد. به همین منظور 34 بیمار مبتلا به استئوآرتریت زانو را به دو گروه تقسیم نمود در گروه آزمون به مدت 12 هفته هر هفته سه روز از تحریک الکتریکی استفـــاده کرد. نتایج نشان داد که در گروه آزمون قدرت و توان عضله چهار سر ران بیشتر از گروه شاهد