پرتو X از لحظه کشف به استفاده عملی گذاشته شد, و در طی چند سال اول بهبود در تکنیک و دستگاه به سرعت پیشرفت کرد. برعکس, اولتراسوند در تکامل پزشکیش بطور چشمگیری کند بوده است. تکنولوژی برای ایجاد اولتراسوند و اختصاصات امواج صوتی سالها بود که دانسته شده بود. اولین کوشش مهم برای استفاده عملی در جستجوی ناموفق برای کشتی غرق شده تیتانیک در اقیانوس اطلس شمالی در سال 1912 بکار رفت سایر کوششهای اولیه برای بکارگیری ماوراء صوت در تشخیص پزشکی به همان سرنوشت دچار شد. تکنیکها, بویژه تکنیکهای تصویرسازی تا پژوهشهای گسترده نظامی در جنگ دوم بطور کافی بسط نداشت. سونار, Sonar (Sound Navigation And Ranging) اولین کاربرد مهم موفق بود. کاربردهای موفق پزشکی به فاصله کوتاهی پس از جنگ, در اواخر دهة 1940 و اوایل دهة 1950 شروع شد و پیشرفت پس از آن تند بود.
اختصاصات صوت
یک موج صوتی از این نظر شبیه پرتو X است که هر دو امواج منتقل کننده انرژی هستند. یک اختلاف مهمتر این است که پرتوهای X به سادگی از خلاء عبور میکنند درحالیکه صوت نیاز به محیطی برای انتقال دارد. سرعت صوت بستگی به طبیعت محیط دارد. یک روش مفید برای نمایش ماده (محیط) استفاده از ردیفهای ذرات کروی است, که نماینده اتمها یا ملکولها هستند که بوسیله فنرهای ریزی از هم جدا شده اند (شکل A 1-20). وقتی که اولین ذره جلو رانده میشود, فنر اتصالی را حرکت میدهد و می فشرد, به این ترتیب نیرویی به ذره مجاور وارد می آورد (شکل 1-20). این ایجاد یک واکنش زنجیره ای میکند ولی هر ذره کمی کمتر از همسایه خود حرکت میکند. کشش با فشاری که به فنر وارد میشود بین دو اولین ذره بیشترین است و بین هر دو تایی به طرف انتهای خط کمتر میشود. اگر نیروی راننده جهتش معکوس شود, ذرات نیز جهتشان معکوس میگردد. اگر نیرو مانند یک سنجی که به آن ضربه وارد شده است به جلو و عقب نوسان کند, ذرات نیز با نوسان به جلو و عقب پاسخ می دهند. ذرات در شعاع صوتی به همین ترتیب عمل میکنند, به این معنی که, آنها به جلو و عقب نوسان میکنند, ولی در طول یک مسافت کوتاه فقط چند میکرون در مایع و حتی از آن کمتر در جامد.
اگر چه هر ذره فقط چند میکرون حرکت میکند, از شکل 1-20 می توانید ببینید که اثر حرکت آنها از راه همسایگانشان در طول خیلی بیشتری منتقل میشود. در همان زمان, یا تقریباً همان زمانی که اولین ذره مسافت a را می پیماید, اثر حرکت به مسافت b منتقل میشود. سرعت صوت با سرعتی که نیرو از یک ملکول به دیگری منتقل میشود تعیین میگردد.
امواج طولی
ضربانات اولتراسوند در مایع به صورت امواج طولی منتقل میشود. اصطلاح «امواج طولی» یعنی اینکه حرکت ذرات محیط به موازات جهت انتشار موج است. ملکولهای مایع هدایت کننده به جلو و عقب حرکت میکنند و ایجاد نوارهای انقباض و انبساط (شکل 2-20) میکنند. جبهه موج در زمان 1 در شکل 2-20, وقتی طبل لرزنده ماده مجاور را می فشارد آغاز میشود. یک نوار انبساط, در زمان 2, وقتی که طبل جهتش معکوس میگردد, پیدا میشود. هر تکرار این حرکت جلو و عقب را یک سیکل (Cycle) یا دوره تناوب گویند و هر سیکل ایجاد یک موج جدید میکند. طول موج عبارت است از فاصله بین دو نوار انقباض, یا دو نوار انبساط, و بوسیلة علامت نشان داده میشود. وقتی که موج صوتی ایجاد شد, حرکت آن در جهت اولیه ادامه می یابد تا اینکه منعکس شود, منکسر شود یا جذب گردد. حرکت طبل لرزان که برحسب زمان رسم شده است, یک منحنی سینوسی را که در طرف چپ شکل 2-20 نشان داده شده است تشکیل میدهد. اولتراسوند, برحسب تعریف, فرکانسی بیش از 20000 سیکل بر ثانیه دارد. صوت قابل شنیدن فرکانسی بین 15 و 20000 سیکل بر ثانیه دارد (فرکانس میانگین صدای مرد در حدود 100 سیکل بر ثانیه و از آن زن در حدود 200 سیکل بر ثانیه میباشد). شعاع صوتی که در تصویرسازی تشخیصی بکار می رود فرکانسی از 000/000/1 تا 000/000/20 سیکل بر ثانیه دارد. یک سیکل بر ثانیه را یک هرتس (Hertz) گویند. یک میلیون سیکل بر ثانیه یک مگاهرتس (مختصر شده آن (MHz) است. اصطلاح هرتس به افتخار فیزیکدان مشهور آلمانی Heinrich R.Hertz میباشد که در سال 1894 وفات یافت.
سرعت صوت
برای بافتهای بدن در محدودة اولتراسوند پزشکی, سرعت انتقال صوت مستقل از فرکانس میباشد و عمدتاً بستگی به ساختمان فیزیکی ماده ای دارد که از میان آن صوت عبور میکند. خواص مهم محیط منتقل کننده عبارتند از : (1) قابلیت انقباض (compressibility) و (2) چگالی (Density). جدول 1-20, سرعت صوت را در بعضی از مواد شناخته شده, از جمله چندین نوع بافت بدنی, نشان میدهد. مواد به ترتیب افزایش سرعت انتقال مرتب شده اند, و می توانید ببینید که صوت در گازها از همه کندتر, در مایعات با سرعت متوسط, و از همه تندتر در اجسام جامد حرکت میکند. ملاحظه کنید که تمام بافتهای بدن, جز استخوان, مانند مایعات رفتار میکنند و بنابراین همگی صوت را تقریباً با یک سرعت منتقل میکنند. یک سرعت 1540 متر بر ثانیه به عنوان میانگین برای بافتهای بدن بکار می رود.
قابلیت انقباض: سرعت صوت با قابلیت انقباض ماده منتقل کننده نسبت معکوس دارد, به این معنی که هرچه ماده کمتر قابل انقباض باشد, صوت در آن تندتر منتقل میشود. امواج صوتی در گازها آهسته حرکت میکنند زیرا ملکولها از هم دورند و به آسانی قابل انقباضند. آنها به گونه ای رفتار میکنند که گویی بوسیلة فنر سستی بهم بسته اند. یک ذره باید فاصله نسبتاً طویلی را بپیماید پیش از اینکه بوسیله یک همسایه تحت تأثیر قرار گیرد. مایعها و جامدها کمتر قابل انقباضند زیرا ملکولهایشان به یکدیگر نزدیکترند. آنها فقط نیاز به طی مسافت کوتاهی دارند تا در همسایه اگر گذارند, بنابراین مایعها و جامدها صوت را تندتر از گاز منتشر میکنند.
• پایان نامه کارشناسی ارشد مهندسی عمران گرایش سازه با عنوان: بررسی سه بعدی اثر خصوصیات ساختگاه روی بزرگنمایی امواج زلزله
• دانشگاه تهران
• استاد راهنما: دکتر بابک امیدوار
• پژوهشگر: تکتم محمدنژاد
• سال انتشار: بهمن 1383
• فرمت فایل: PDF و شامل 188 صفحه
چکیــــده:
در این مطالعه اثر توپوگرافی سطحی و لایه بندی بر روی بزرگنمایی امواج زلزله مورد بررسی قرار میگیرد. روش حل بر مبنای روش المان مرزی در فضای فرکانسی میباشد. این روش برای محیط های نامحدود بدلیل آن که المان بندی فقط در مرز حوزه انجام میگیرد و در نتیجه حجم مدلسازی و محاسبات لازم به شدت کاهش مییابد، بسیار مناسب است. از طرفی در این روش شرط تشعشع در بی نهایت به طور کامل ارضا میشود.
در این بررسی کلیه پارامترهای موثر نظیر شکل ناهمواری، لایه بندی و ضخامت هر لایه، خواص مکانیکی مصالح (جرم حجمی، ضریب پوآسون، مدول برشی) ، فرکانس تحریک، نوع موج برخوردی ( P، SH، SV و رایله )، آزیموت و زاویه برخورد آن در نظر گرفته شده است. به منظور تحلیل واقع بینانه این اثرات و رسیدن به پاسخهای واقعی مسائل در حالت سه بعدی مدلسازی و آنالیز شدهاند.
برای بررسی اثر خصوصیات ساختگاه بر روی دامنه تحریکات زمین، نرم افزاری بر اساس روش المان مرزی تهیه شده است. نرم افزار نوشته شده قابلیت تحلیل استاتیکی و همچنین دینامیکی مسائل سه بعدی در فضای فرکانسی را داراست.
______________________________
** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **
** توجه: در صورت مشکل در باز شدن فایل PDF ، نام فایل را به انگلیسی Rename کنید. **
** درخواست پایان نامه:
با ارسال عنوان پایان نامه درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن پایان نامه در سایت به راحتی اقدام به خرید و دریافت پایان نامه مورد نظر خود نمایید. **
مقدمه
روش های ارتباطات ماوراء افق
ارتباطات HF و MF
ترکش های شهابی
تروپواسکاتر
ماهواره ها
جایگاه فعلی ارتباطات تروپواسکاتر
مشخصات و کاربردهای اصلی
مزایای سیستم های تروپواسکاتر
انتشار امواج تروپوسفر
هندسه مسیر امواج تروپواسکاتر
پارامترهای هندسی
محاسبه شعاع مؤثر زمین
قدرت سیگنال دریافتی
تقسیم بندی مناطق جهان
محاسبات تلفات امواج تروپواسکاتر
مقدمه
تلفات انتشار امواج
تلفات در دشوارترین ماه
انتشار امواج پخش همگانی
کلیات
مقدمه
ویژگی های سرویسهای پخش همگانی
شبکه های پخش همگانی
باندهای فرکانس
باند فرکانس تا MHz 30
باند فرکانس VHF/UHF
باند فرکانس ماهواره ای
پخش همگانی در باند LF/MF/HF
پدیده های عام
پدیده های خاص
پخش همگانی ماهواره ای
کاربردها
پارامترهای فنی
پایانه TVRO
انتشار امواج ماهواره ای
پدیده های عام
پدیده های خاص
پخش همگانی در باند VHF/UHF – پخش محلی
مقدمه
انتشار امواج پخش همگانی در باند VHF/UHF
محیط انتشار
پدیدهای انتشار امواج
پدیده های عام
افت مسیر
بازتاب امواج و نمودار تداخل
تداخل امواج مسیرهای چندگانه
اثر داپـر
محوطه های سرپوشیده
اثر پهنای باند کانال
تخمین پوشش
معیار دریافت
حداقل سطح سیگنال
نواحی پوشش و تداخل
تلفات مسیر امواج
نمودارها
مبانی و اصول پایه
حداکثر میدان دریافتی
ارتفاع آنتن فرستنده
باز بودن مسیر امواج
تعمیم روابط
تعمیم ارتفاع آنتن
تعمیم فرکانس کانال RF
تعمیم درصد زمانی
تعمیم فاصله
ضرایب اصلاح
ارتفاع آنتن گیرنده
مسیرهای درون و حومه شهر
زاویه ترخیص گیرنده
نمودار ضریب اصلاح برحسب زاویه ترخیص
درصد مکان و زمان
منابع