فرمت فایل: doc
تعداد صفحات فایل: 350
مقدمه:
انسان از آغاز آفرینش به منظور استمرار حیات ، به کار و کوشش مجبور بوده و در این راه سختی های بسیاری را متحمل شده است . امروزه به علت رشد روزافزون جمعیت و مصرف بیش از اندازه و برپایی صنایع بزرگ ، استفاده از انواع ماشین آلات ، تجهیزات ، فرآیندها ، موادشیمیایی و . . . امری گریزناپذیر شده است . صنعتی شدن و تولید فزاینده ، مخاطراتی گوناگون را برای نیروی کار به ارمغان آورده و موجب شده نیروی کار در معرض عوامل زیان آور بسیار قرار گیرد ، عواملی که جزء جدایی ناپذیر صنعت و تولید به شمار می آیند و همواره تندرستی نیروی کار را تهدید می کنند .
نیروی کار هر کشور ، بویژه کشورهای در حال توسعه ، بخشی پراهمیت از سرمایه ملی دانسته شده و از پایه های توسعه اقتصادی و اجتماعی انگاشته می شود . ازاین رو ، حفاظت از تندرستی نیروی کار و بهسازی محیط کار از اهمیتی شایان توجه برخوردار است . بی گمان ، اقتصادی شکوفا و صنعتی خودکفا بدون داشتن نیروی کار سالم و تندرست امکان پذیر نخواهد بود .
مفهوم کارورزی عبارت از پروراندن و تعلیم است و هدف آن ایجاد مهارت در کار می باشد . باتوجه به اینکه اساسی ترین هدف هر دوره آموزشی تربیت افراد براساس نیازهای کاری است , کارورزیبه عنوان یک فاکتور تکمیل کننده از اهمیت بسزایی در رسیدن به این هدف برخوردار میباشد.
از جمله مواردی که در کارورزی , فرد کارورز به آنها آگاهی پیدا می کند عبارت است از :
– ایجاد مهارت تخصصی
– آشنایی با معیارهای سازمانی
– برانگیختن حس خلاقیت
– آشنایی با محیط کار
– آماده شدن جهت پذیرش مسئولیت
باتوجه به این مسئله اهمیت موضوع کارورزی بیشتر نمایان می شود . پیداست که رسیدن به موارد ذکرشده فوق در گرو تلاش و همت شخص کارورز می باشد .
بهداشت حرفه ای و اهمیت آن :
بی شک نیروی انسانی به عنوان یکی از ارکان اصلی تولید نقش مهمی در پیشرفت صنعت و اقتصاد هر جامعه ایفا می کند . دستیابی به توسعه پایدار بدون توجه به این عامل ممکن نخواهد بود
از سوی دیگر در دنیای امروز صنایع و تولید کنندگان برای ورود به بازار جهانی نیازمند دریافت استانداردهای مختلفی می باشند که حراست از نیروی انسانی از ارکان اصلی آنهاست . در این میان بهداشت حرفه ای وظیفه صیانت از این سرمایه بزرگ را عهده دار است .
با نگاهی کوتاه به گذشته ای نچندان دور و مقایسه آن با وضعیت فعلی می توان به اهمیت بهداشت حرفه ای در دنیای امروز بیشتر پی برد :
در نیمه اول قرن بیستم کارگران معدن آرسنیک و کبالت در اروپای مرکزی بعلت وجود مواد رادیو اکتیو در این معادن در اثر سرطان ریه در جوانی می مردند . در سال 1929 جمعا در این منطقه 323 نفر کارگر معدن وجود داشته که از هر دو نفر یک نفر از سرطان ریه ، از هر سه نفر یک نفر از سل و از هر ده نفر یک نفر از سیلیکوز مرده اند . وضع سایر کارگران در دنیا از این معدنچیان بهتر نبود ، در انگلستان از هر ده نفر که با آسبست کار می کردند بعد از ده سال تنها یک نفر زنده می ماند و همگی آنها قبلاز سی سالگی فوت شده اند . البته امروزه در سایه خدمات بهداشت حرفه ای این دورانهای سیاه سر آمده است، بااینحالهنوزبرای رسیدن به شرایط ایده آل در محیط های کاری تلاش زیادی نیازاست.
طبق آخرین گزارش منتشر شده توسط سازمان ایمنی و بهداشت انگلستان ) 04/2003HSE: ) به طور متوسط سالیانه 6000 نفر در اثر سرطانهای ناشی از کار جان خود را از دست می دهند . در طی سالهای 2001-2003 در انگلستان سالیانه بالغ بر 23000 نفر بعلت بیماریهای ناشی از کار به پزشک متخصص مراجعه کرده اند که از این تعداد 8000 نفر مشمول دریافت غرامت شده اند . همچنین در طی سال 2002 حدود 2.3 میلیون نفر از بیماریهایی رنج می بردند که گمان می رود از شرایط کاری گذشته آنها ناشی می شود .
طبق آخرین آمار منتشر شده توسط وزارت کار آمریکا در سال 1998 در کل صنایع خصوصی امریکا در حدود 104 میلیون نفر مشغول به کار بوده ند که میزان شدت حادثه بین آنها 6.2 بوده (به ازاء هر 100 نفر کارگر ) در روزهای کاری از دست رفته 2.9می باشد.
همچنین بر طبق گزارش انجمن ملی ایمنی در امریکا در سال 1990 از حوادث شغلی 10400 مورد و تعداد یک میلیون و هفتصد هزار صدمه ناشی از حوادث شغلی منتهی به ناتوانی و بالغ بر 75 میلیون روز کاری از دست رفته اتفاق افتاده است. هزینه های مربوط به اینگونه حوادث که شامل دستمزد و مراقبتهای پزشکی،بازتوانی، بیمه و سایر هزینه های غیر مستقیم و مستقیم بوده است بالغ بر 9/4 میلیارد دلار می باشد. بر طبق آمار سال 1375 (فروردین لغایت دی ماه) از کل حوادث ثبت شده، تعداد 138 مورد فوت ناشی از کار و 168 مورد از کارافتادگی ناشی از کار اتفاق افتاده است و همچنین سرانه غرامت نقص عضو در سال 1370 در کشور بالغ بر 247441 ریال و در سال 1375 این میزان 897226 ریال افزایش یافته است که در نرخ رشد 3.62 درصد برخوردار بوده است. قطعا هزینه پیشگیری از حوادث بسیار کمتر از هزینه های مواجهه با آنهاست .
فرمت فایل :docx(قابل ویرایش)
تعداد صفحات:37
چکیده:
علائم ترسیمی دارای اقسام گوناگون بسیاری است. تعدادی ساده، داستانی و مصورند. اغلب آنها که بسادگی اشیا و تصورات را تجسم می کنند تصویری با شمایلی می باشند (شکل 1) . ولی تصویری بودن علائم ترسیمی الزامی نیست. برخی از آنها را که بسیار مفید و موثر نیز می باشند میتوان تصوری نامید این علائم در حالیکه تا اندازه ای تجریدی هستند رابطه عینی معینی را با شیئی یا فعلی که نشانگر آنها می باشند در بر ندارند. برای مثال دو خط افقی موجدار نشانگر آب است. شکل 1: علائم ترسیمی می توانند ساده و داستانی باشند. طرح از: گرادارنتز بالاخره علائم "تجریدی " یا "اختیاری" هستند هیچ رابطۀ عینی را با اشیا و تصوراتی که نشانگر آنها باشند ندارند. بیشتر حروف، اعداد، علائم نشانه گذاری و علائم ریاضی ما مانند علامت های جمع و تفریق به این دسته تعلق دارند. علائم ترسیمی میتوانند در بسیاری از موارد برای ما قابل استفاده باشند. داده های کمی رامیتوان بوسیله تکرار آنها بیان کرد. بطور مثال دسته ای از این علائم را میشود برای نشان داده فواصل تاریخ (زمان) و تقسیمات پیچیدۀ آماری و نیز تقسیم بندی اطلاعات جغرافیایی بکاربرد (شکل 2و3و4). هم چنین علائم ترسیمی را می توان برای نشان دادن فرآیندها Process مورد استفاده قرار داد. ...
فهرست مطالب :
-عنوان
- مقدمه ای بر علائم ترسیمی
-تاریخچه از علائم ترسیمی
-آشنایی با ارتباط تصویری (گرافیک)
-طراحی دست آزاد
-نشانه تصویری
-استفاده از رنگ
-حرکت ارتباط شکل و زمینه
-ترکیب بندی
از هزار و یک رمز طراحی نشانه
-بررسی نشانه فارابی بر اساس جدول و فرمول تجربی مقاله
1 -اداره پارک ملی . NNR
2- بازیهای المپیک توکیو 1964
3- بازیهای المپیک مکزیک 1968
4- بازیهای المپیک مونیخ1972
5- خطوط تصویری
6- علائم استاندارد تفریحی سوئد
7- بازیهای ورزشی
8- بازیهای زمستانی المپیک ساپورو 1972
9- اداره جهانگردی نوا اسکوتیا
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:143
رساله کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی)
پایان نامه حاوی منابع و ماخذ فارسی و لاتین + تصاویر + فرمول + جدول می باشد.
فهرست مطالب:
عنوان صفحه
1 – مقدمه…………………………………………………………………………………………………………………………………. 1
2- تاریخچه تحقیقات و مطالعات انجام شده…………………………………………………………………………………… 4
2-1-شواهد تجربی ومطالعات درخصوص اثرات ساختگاه تیز گوشه و مثلثی شکل بر پاسخ زمین………4
2-2- مطالعات نظری و تحلیلهای عددی عارضه مثلثی شکل……………………………………… ……………..19
2-3- مطالعات انجام شده در رابطه با تحلیلهای پارامتریک عوارض تیزگوشه و مثلثی شکل……………. 26
3- پدیده انتشار امواج دو بعدی و حل عددی معادلات آن . …………………………………………………..37
3-1- مقدمه ………………………………………………………………………………………………………………..37
3-2- انواع مختلف ناهمواریها ……………………………………………………………………………………….38
3-3- علل تقویت امواج لرزه ای ……………………………………………………………………………. …….04
3-3-1- اثر سطحی( Surface Effect) …………………………………………………………. ……..04
3-3-2- اثر کانونی شدن (Focusing Effect ) ………………………………………………………42
3- 3 -3- اثر گهواره ای (Rocking Effect ) …………………………………………………… …..44
3-3-4 – اثر عبور پراکنش موج (Scattering & Passage effect)……………….. ……..54
3-4- معادلات انتشار امواج الاستیک ……………………………………………………………………………..45
3-5- حل عددی معادله انتشار امواج …………………………………………………………………. …………49
3-6- روش عددی مورد استفاده و دامنه مطالعات پارامتریک …………………………………………….54
3-7- تعیین ابعاد المان در روش اجزای مرزی ………………………………………………. ……………….56
3-8- معرفی نرم افزار Hybrid …………………………………………………………………………………59
3-8-1- مقدمه ……………………………………………………………………………………………… ………..59
3-8-2- بررسی اعتبار و دقت نرم افزار Hybrid …………………………………………………………..61
3-8- 2-1- حرکت میدان آزاد نیم فضا ……………………………………………………………………….61
3-8-2-2- دره خالی با مقطع نیم دایره …………………………………………………………………………62
3-8-2-3- دره آبرفتی با مقطع نیم دایره ……………………………………………………………………….62
3-8-2-4- تپه با مقطع نیم سینوسی ……………………………………………………………………………..62
3-8-2-5- تپه با مقطع نیم دایره …………………………………………………………………………………..63
4-ااف-رفتار لرزه ائی تپه های مثلثی شکل………………………………….. ……………………………………….64
4-1- مقدمه …………………………………………………………………………………………………………….64
4-2- متدلوژی مطالعات ………………………………………………………………………………. …………..65
4-3- اعتبار سنجی مدل…………………………………………….. ………………………………………………67
4-3-1- ابعاد مش بندی………………………………………………… ………… …………………………..68
4-3-2- طول گام زمانی………… ………………………………………………… ………… …………… …68
4 -4- تاریخچه زمانی دامنه مولفههای افقی و قائم تغییر مکان برای کل محدوده….. …… … ….69
4-5- تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی ) ……………………. . 69
4-6- بزرگنمایی تپه در فضای فرکانسی ………………………………………………… ………… ………….71
4-6-1 تفسیر کلی نمودارهای بزرگنمایی ……………………………………………. ………… ……….71
4-6-2 بزرگنمایی راس تپه………………. ……………………………………………. ………… ……….72 4-7-تغییرات بزرگنمائی بر روی یال تپه ……………………………………………. ……….. .. . …………73
4-8-ضریب تقویت عوارض تپه ای مثلثی شکل……………………………………………. ………………75
4-ب-رفتار لرزه ائی دره های مثلثی شکل………………………………….. ………………………. …………….104
4-9- متدلوژی مطالعات ……………………………………………… …………………………………………..104
4-10- اعتبار سنجی مدل…………………………………………….. ……………………………….. ……….105
4-10-1- ابعاد مش بندی……………………………………………………………………………………105
4-10-2- طول گام زمانی………… ………………………………………………… ………………….. .106
4 -11- تاریخچه زمانی دامنه مولفههای افقی و قائم تغییر مکان برای کل محدوده………. . …106
4-12 تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی ) ……………………. 106
4-13- بزرگنمایی دره در فضای فرکانسی ………………………………………………………………..108
4-13-1 تفسیر کلی نمودارهای بزرگنمایی…….. …………………………………. ………….108
4-13-2 بزرگنمایی قعردره………………………………………………………………………………110 4-14-تغییرات بزرگنمائی بر روی یال دره ………………………………………. ………. . ………111
4-15-ضریب تضعیف عوارض دره ای مثلثی شکل…………… ……………………………………112
5 – جمعبندی و نتیجهگیری ….. ……………………………………….. …………………………….. .. 141
5-1- نتایج مطالعه پاسخ تپه ها در حوزه زمان 141
5-2- نتایج مطالعه پاسخ تپه ها در حوزه فرکانس 141
5-3- نتایج مطالعه پاسخ دره ها در حوزه زمان 141
5-4- نتایج مطالعه پاسخ دره ها در حوزه فرکانس 142
5-5-زمینه های پیشنهادی برای ادامه این تحقیق 142
مراجع ………………………………………………………………………………………………………………143
فهرست اشکال
عنوان صفحه
شکل (2-1)- کوه کاگل، توپوگرافی، زمینشناسی و محل ایستگاهها ……………………………..……..… 5
شکل (2-2)- کوه ژوزفین پیک، توپوگرافی، زمینشناسی در محل ایستگاهها ………………………………..6
شکل (2-3)- کوه باتلر، توپوگرافی، زمینشناسی و محل ایستگاهها …………………………………………….. 6
شکل (2-4)- کوه پاول و ایستگاههای انتخاب شده ……………………………………………………………. 8
شکل (2-5)- کوه بیز و ایستگاههای انتخاب شده ……………………. ………………………………………… ….. 8
شکل(2-6)-. کوه گپ و ایستگاههای انتخاب شده………………………………………….. ………. …… ………..8
شکل(2-7)- کوه پاول، ضریب بزرگنمایی حرکت افقی زمین، به روش بور…………………………………… 9
شکل (2-8)- کوه بیز، ضریب بزرگنمایی حرکت افقی زمین، به روش بور…………………………………….. 9
شکل (2-9)- کوه گپ، ضریب بزرگنمایی حرکت افقی زمین، به روش بور………………………………….10
شکل (2-10)- ضریب بزرگنمایی سطح زمین براساس فاصله از قله برای کوههای پاول ، بیز و گپ……11
شکل (2-11)- شتابهای ماکزیمم نرمال شده در کوه Matsuzaki ژاپن…………………… ……………. 12
شکل (2-12)- هندسه کوه Sourpi و ایستگاههای اندازهگیری ………………………. …………………….14
شکل (2-13)- مقایسه نسبتهای طیفی نظری (خطوط توپر) و نسبتهای طیفی مشاهده شده بعلاوه و منهای
انحراف معیار(ناحیه سایه زده شده)…………………. ……………………………… …………………… …………..14
شکل(2-14)- هندسه کوه Mt. St. Eynard و ایستگاههای اندازهگیری …………………………… 15
شکل(2-15)- نسبتهای طیفی نظری S2/S3 (خطچینها) نسبتهای طیفی مشاهده شده (خطوط توپر) و
انحراف معیار نسبتهای طیفی مشاهده شده (نواحی سایه خورده) (a ) گروه T ، مولفه Z ،) (b گروه
T ، مولفه(c) , E-W گروه R، مولفه (d) , Z گروه R ، مولفهE-W ………………………………….16
شکل (2-16)- بالا) مولفههای E-W ثبت شده توسط ایستگاههای مستقر در Castillon ، پایین)
مقطع عرضی سایت Castillon . …………………………………………. …………. …………… …………… 17
شکل (2-17)- بالا) مولفههای E-W ثبت شده توسط ایستگاههای مستقر در Piene ، پائین)
مقطع عرضی سایت Piene……………. …………………………………………. …………. ……………………..17
شکل (2-18)- نتایج تحلیلهای طیفی برای مولفه E-W سایت Castillon ……………………………18
شکل (2-19)- نتایج تحلیلهای طیفی برای مولفه E-W سایتPiene …………………………………18
شکل (2-20)- حساسیت حرکت سطحی به زاویه برخورد برای امواج SV صفحهای مایل الف)
شکل چپ- وابستگی حرکت سطحی به زاویه برخورد برای امواج SV مهاجم
(برای ضریب پواسون برابر25/0)و ب)شکل راست– تغییرات زاویه انعکاس و دامنه امواج
منعکس شده موضعی سطحی برای امواج SV مهاجم قائم …………………………… ……………………23
شکل (2-21)-. پاسخ یک دسته مشخص از گوهها به امواج SH…………………………………………. 24
شکل (2-22)- دامنههای سطحی همپایه شده برحسب تابعی از مختصات بیبعد در راستای محور xها
در امتداد رویه خارجی یک گوه با زاویه داخلی 120 درجه در سه زاویه برخوردمختلف… ……… 26
شکل (2-23)- دامنههای تغییرمکان در سطح آزاد برای پشتههای با ضرایب شکل مختلف تحت
برخورد امواج SH قائم و فرکانس بیبعد برابر50/0 … ……… … ……… .. ……… … ……… 26
شکل (2-24)- )- برخورد یک موج SV درون صفحهای با زاویه برخورد °30 به یک پشته مثلثی
شکل با SR=1.0…………………………………. ………………………………………………… ………………33
شکل (2-25)- برخورد یک موج رایلی به یک پشته مثلثی شکل باSR=1.0………………………. 33
شکل (2-26)- برخورد یک موج P درون صفحهای با زاویه برخورد °30 به یک دره مثلثی
شکل با SR= …………………………………. ………………………………………………… …………….34
شکل (2-27)- برخورد یک موج SV درون صفحهای با زاویه برخورد °30 به یک دره مثلثی
شکل با SR=…………………………………. ………………………………………………… …………….34
شکل (2-28)- برخورد یک موج SV درون صفحهای با زاویه برخورد °45 به یک دره مثلثی
شکل با SR=0.577……………………………… ………………………………………………… …………….34
شکل (2-29)- برخورد موج P,SH,SV درون صفحهای با زاویه برخورد قائم به یک دره مثلثی
شکل با SR=0.62…………………………………………….. ………………………………….. ……………….35
شکل (2-30)- برخورد یک موج SV درون صفحهای با زاویه برخورد °30 به یک دره نیم بیضی
شکل با.03SR=…………………………………………….. ………………. …………………….. ……………..36
شکل (2-31)- برخورد یک موج SV درون صفحهای با زاویه برخورد °45 به یک دره نیم بیضی
شکل با.03SR= ……………………………………………………………………………………………………..36
شکل(2-32)- برخورد موج SH درون صفحهای با زاویه برخورد قائم به یک دره مثلثی شکل..36
شکل (2-33)- برخورد موجSH درون صفحهای با زاویه برخورد قائم و ° 35 به یک تپه……….36
شکل (2-34)- برخورد موج SH درون صفحهای با زاویه برخورد قائم به یک
تپه ذوزنقه ائی شکل…………………………………………………………………………………………………..36
شکل (3-1)- نمونههایی از ناهمواریهای سطحی………………… ……………………………………………39
شکل (3-2)- نمونههایی از ناهمواریهای زیرسطحی …………………………………………………………..40
شکل(3- 3)- تغییرات بزرگنمایی ناشی از اثر سطحی در زوایای برخورد مختلف امواج
P ، SV وSH. …………………………………………………………………………………. ……………………. .42
شکل(3-4)-a) ،b) ،c) – اثر کانونی شدن موجهای انعکاسی……………………………………………….44
شکل (3-5)- مدل اثر گهواره ای……………………………………………………………………………………..44
شکل (3-6)- اثر عبور موج و پراکنش موج در تقویت و تغییر سرشت کلی یک نگاشت ثبت شده
بر روی توپوگرافی………………………………………………………………………………………………………..45
شکل (3-7)- تصاویر آنی میدان تغییر مکان ناشی از انتشار امواج رایلی از سمت چپ به راست
(Fuyuki & Motsumoto, 1980)………………………………………………………………………..51
شکل (3-8)- الف- تاریخچه زمانی موجک ریکر……………………………………………………………..56
شکل(3-8)- ب- طیف دامنه فوریه موجک ریکر……………………………………………………………..56
شکل (3-9)- نمای شماتیک نواحی اجزاء محدود و اجزای مرزی ………. ………………………….61
اشکال تپه های مثلثی شکل
شکل (4-1)- هندسه تپه مثلثی شکل…………………………………………………………………………….. 76
شکل(4-2)- تاریخچه زمانی موجک ریکر…………………………………………………………………….76
شکل4-3-)همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای x/bهای
0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج SV… ……………77
شکل (4-4)- همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج P……..78
شکل )4-5(–همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موج SV…….. ……………79
شکل) 4-6(–همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موجP………………. ……….80
شکل(4-7)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل تپه مثلثی شکل
به ازائ موج SVبا ضریب شکلهای 2.0,1.0,0.1….. ……………………………. ……………. ………. 81
شکل(4-8)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل تپه مثلثی شکل
به ازائ موج Pبا ضریب شکلهای 2.0,1.0,0.1….. ……………………………. ……………… …….. 28
شکل(4-9)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ موج SVو ضریب شکلهای 2.0,1.0,0.1…… …….83
شکل(4-10)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ موج Pو ضریب شکلهای 2.0,1.0,0.1………. ……..84
شکل(4-11)- نمودارهای بزرگنمائی افقی وقائم امواج مهاجم sv درمحدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1……………………………. 85
شکل( 4-21)نمودارهای بزرگنمائی افقی وقائم امواج مهاجم p درمحدوده ا ئی به طول
5 برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1……………………… 86
شکل(4-13)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
مختلف برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج SV………………….. 87
شکل(4-14)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
88………. ……………..p مختلف برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج
شکل(4-15) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVوV=0.33مر.بوط
به مولفه موافق…………………………………………………… ………………………………………………….89
شکل(4-16)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVو0.33 = V مربوط
به مولفه مخالف …………………………………………………… ………………………………… …………..90
شکل (4-17)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33V= مربوط
به مولفه موافق …………………………………………………… ………………………………… ………. …..91
شکل(4-18) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33=V. مربوط
به مولفه مخالف …………………………………………………… ………………………………… …………92
شکل(4-19) تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
اشکال مربوط به مولفه موافق میباشد……………………………………………….. ………………………93.
شکل(4-20)– تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
اشکال مربوط به مولفه مخالف میباشد………………………………………………………………………..4 9
شکل(4-21)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج PوV=0.33
اشکال مربوط به مولفه موافق میباشد…………………………………………………. ……………………95
شکل(4-22)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج Pو0.33= V
اشکال مربوط به مولفه مخالف میباشد………. ………………………………………………………………..96
شکل(4-23)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط در تپه های مثلثی شکل
با ضریب شکل مختلف دراثر بر خوردموج svنمودارهای نمودارهای سمت چپ مربوط به
مولفه موافق وسمت راست مربوط به مولفه مخالف میباشد…… …………….. ………………….. 97
شکل(4-24)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط در تپه های مثلثی شکل
با ضریب شکل مختلف دراثر بر خوردموج pنمودارهای نمودارهای سمت چپ مربوط به
مولفه موافق وسمت راست مربوط به مولفه مخالف میباشد……………………………………………..98
شکل(4-25)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج SVدر تپه های مثلث شکل مربوط به مولفه موافق…………….. ……..99
شکل(4-26)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج SVدر تپه های مثلث شکل مربوط به مولفه مخالف………………..100
شکل(4-27)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج pدر تپه های مثلثی شکل مربط به مولفه موافق.. ………………………101
شکل(4-28)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج pدر تپه های مثلثی شکل مربوطبه مولفه مخالف……….. …………102
شکل(4-29)- ضریب تقویت نسبی 2D/1D برای عوارض تپه ای مثلثی شکل برای مولفه
موافق و مخالف در اثر برخورد موجSV…………………………. ……………………………………….103
شکل(4-30)- ضریب تقویت نسبی 2D/1D برای عوارض تپه ای مثلثی شکل برای مولفه
موافق و مخالف در اثر برخورد موج P…………………………………………………….. ……………103
اشکال دره های مثلثی شکل
شکل (4-31)- هندسه دره مثلثی شکل……………………………………………………………. ………. 113
شکل(4-32)- تاریخچه زمانی و طیف فوریه موجک ریکر………………………. ……… …………113
شکل4-33)همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج SV. ….114
شکل (4-34)- همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج P.. . ..115
شکل )4-35(–همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موج SV…….. …………..116
شکل) 4-36(–همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موجP…………………………117
شکل(4-37)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل دره مثلثی شکل
به ازائ موج SVبا ضریب شکلهای 2.0,1.0,0.1….. ……………………………. …………………….. 118
شکل(4-38)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل دره مثلثی شکل
به ازائ موج Pبا ضریب شکلهای 2.0,1.0,0.1….. ……………………………. …………………….. 119
شکل(4-39)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ موج SVو ضریب شکلهای 2.0,1.0,0.1….. …….120
شکل(4-40)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ موج Pو ضریب شکلهای 2.0,1.0,0.1………… ……121
شکل(4-41)- نمودارهای بزرگنمائی افقی وقائم امواج مهاجم sv درمحدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1…………………………… 122
شکل( 4-24)نمودارهای بزرگنمائی افقی وقائم امواج مهاجم p درمحدوده ا ئی به طول
5 برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1……………. ….. …… 123
شکل(4-43)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
مختلف برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج SV………….. ……… 124
شکل(4-44)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
125 …… ………. ……….p مختلف برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج
شکل(4-45) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVوV=0.33مر.بوط
به مولفه موافق…………………………………………………… …………………………………. ……………..126
شکل(4-46)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVو0.33 = V مربوط
به مولفه مخالف …………………………………………………… ………………………………… …………..127
شکل (4-47)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33V= مربوط
به مولفه موافق …………………………………………………… ………………………………… ………. …..281
شکل(4-48) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33=V. مربوط
به مولفه مخالف …………………………………………………… ……………………………….. …………912
شکل(4-49) تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
اشکال مربوط به مولفه موافق میباشد……………………………………………….. ………………. ……..130
شکل(4-50)– تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
اشکال مربوط به مولفه مخالف میباشد……………………………………………….. …………………. …131
شکل(4-51)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج PوV=0.33
اشکال مربوط به مولفه موافق میباشد…………………………………………………. ………………. …..132
شکل(4-52)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج Pو0.33= V
اشکال مربوط به مولفه مخالف میباشد………. ………………………………………………………………..133
شکل(4-53)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط در دره های مثلثی شکل
با ضریب شکل مختلف دراثر بر خوردموج svنمودارهای نمودارهای سمت چپ مربوط به
مولفه موافق وسمت راست مربوط به مولفه مخالف میباشد…… ……………. . ………………….. 134
شکل(4-54)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط دردره های مثلثی شکل
با ضریب شکل مختلف دراثر بر خوردموج pنمودارهای نمودارهای سمت چپ مربوط به
مولفه موافق وسمت راست مربوط به مولفه مخالف میباشد……………… ……………………………..135
شکل(4-55)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج SVدر دره های مثلث شکل مربوط به مولفه موافق…………….. ……..136
شکل(4-56)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج SVدر دره های مثلث شکل مربوط به مولفه مخالف………. ……….137
شکل(4-57)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج pدردره های مثلثی شکل مربط به مولفه موافق.. …………… …………138
شکل(4-58)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
متوسط برای برخورد موج pدر دره های مثلثی شکل مربوطبه مولفه مخالف……….. …………139
شکل(4-59)- ضریب تضعیف نسبی 2D/1D برای عوارض دره ای مثلثی شکل برای مولفه
موافق و مخالف در اثر برخورد موجSV…………………………. ………………… …………………….140
شکل(4-60)- ضریب تضعیف نسبی 2D/1D برای عوارض دره ای مثلثی شکل برای مولفه
موافق و مخالف در اثر برخورد موج P…………………………………………………….. …………..140
مقدمه:
تجربیات بدست آمده از خرابیهای زلزله های اخیر نشان دهنده اهمیت تاثیر شرایط محلی خاک وتوپوگرافی سطحی و شرایط ساختگاه بر شدت و وسعت خرابی ساختمانها و توزیع مکانی آنها حین زلزله می باشد. بررسی تاثیر شرایط ساختگاه در برابر امواج لرزه ای، از جمله مباحث مهم در زمینه دانش مهندسی زلزله می باشد. فلسفه اهمیت این موضوع، الگوهای رفتاری پیچیده عوارض توپوگرافی بوده که منجر به ایجاد تفاوتهای قابل ملاحظه ای بین امواج گسیل شده از چشمه و امواج رسیده به سطح زمین می شود. شرایط ساختگاه و توپوگرافی می تواند بر تمام پارامترهای مهم یک جنبش نیرومند زمین از قبیل دامنه، محتوای فرکانس، مدت و غیره اثر گذار باشد.
فرمت:word(قابل ویرایش)
تعداد صفحات:50
فهرست مطالب:
فرمت:word(قابل ویرایش)
تعداد صفحات:90
فصل اول : کلیات تحقیق
مقدمه ۲
بیان مسئله ۴
اهداف تحقیق ۵
اهمیت وضرورت تحقیق ۶
فرضیات ۷
تعریف واژگان اساسی ۸
فصل دوم : پیشینه تحقیق
مقدمه ۱۱
پیشینه تحقیق ۱۲
الف : پیشینه عملی ۱۲
ب :پیشینه نظری ۱۳
فصل سوم : روشهای تحقیق
مقدمه ۱۴
روشهای مورد استفاده در تحقیق ۱۵
بیان فنون گردآوری اطلاعات وتوضیح آن ها ۱۷
فصل چهارم : یافته های تحقیق
مقدمه ۱۹
فرضیه۱: کاربرد انرژی هسته ای درپزشکی ۲۱
رادیوایزوتوپ ها چه موادی هستند و چه کاربردهای دارند ۲۲
روشهای تولید رادیوایزوتوپ ها ۲۳
کاربرد رادیوایزوتوپ ها ۲۴
کاربرد رادیو ایزوتوپ ها در تشخیص ۲۵
رادیو ایزوتوپ ها درتعیین تومور ۲۶
رادیو ایزوتوپ های تولیدی از طریق راکتور هسته ای ۲۷
ترکیبات نشان دار از چه راهی تولید ودرچه مواردی استفاده میشود ۳۱
رادیوداروها چیستند ۳۲
تصویر برداری هسته ای چگونه انجام می گیرد ۳۶
عمر سنجی باکربن ۱۴ چگونه است ۳۷
روش ها و فنون مورد استفاده در پزشکی هسته ای چیست ۳۷
مقدمه ۳۹
فرضیه ۲: کاربرد انرژی هسته ای در کشاورزی و رشته های وابسته ۴۰
تاریخچه ۴۱
کاربردهای ایزوتوپ هادر کشاورزی ۴۴
بهبود خصوصیات ژنتیکی گیاه ۴۵
تنوع گیاهان پرورش یافته ۴۵
مطالعه با رادیو فسفر ۴۶
ریشه کنی حشرات وکنترل حشرات موزی ۴۹
کاربرد های پرتو فراوری ۴۹
پرتوفرآوری مواد غذایی ۵۰
پرتو دهی مواد غذایی ۵۱
کارببرد در زمین شناسی ۵۲
مقدمه ۵۴
فرضیه ۳: کاربرد انرژی هسته ای در صنعت ۵۵
کاربرد انرژی هسته ای در صنعت ۵۶
اندازه گیری ضخامت ورق ها و قطعات فلزی ۵۷
مطالعه فلزات در صنایع ۵۹
جذب وپراکندگی تابش ۶۰
اندازه گیری ضخامت ۶۱
اندازه گیری سرعت ۶۱
کنترل کیفی ۶۲
استفاده به عنوان حساسه ۶۲
تغییر در ویژگی های مواد ۶۲
چند مثال کاربردی در صنعت ۶۳
زنجیره واپاشی رادیو اکتیو ۶۵
چرخه ی سوخت ۶۶
فصل پنجم : نتیجه گیری
مقدمه ۶۸
نتیجه گیری ۶۹
مشکلات تحقیق ۷۰
پیشنهادات ۷۱
منابع و مآخذ ۷۲
چکیده:
انرژی بدست آمده از فعل و انفعالات هسته ای را انرژی هسته ای می گویند. این انرژی از دو منشا می تواند سرچشمه بگیرد یکی شکافت هسته اتم های سنگین و دیگری همجوشی یا گداخت هسته ی اتم های سبک. ذیلا به اختصار به این دو فعل و انفعال هسته ای که به تولید انرژی هسته ای منجر می گردد پرداخته می شود.
1- شکافت هسته ای:
این شکافت بیشتر مربوط به V235- اورانیوم با جرم اتمی 235 بود و وجود یک حداقل جرمی از اورانیوم برای یک واکنش زنجیره ای لازم به نظر می رسید این حداقل را جرم بحرامی نامیده اند.
شکافت هسته ای به دو هسته سبکتر همراه با آزاد شدن مقادیر زیادی انرژی است و این فرایند تنها در هسته های سنگین چون اورانیوم و پلوتونیوم اتفاق می افتد.
2- همجوشی یا گداخت هسته ای: همجوشی یا گداخت هسته ای را می توان بعنوان فرایند عکس شکافت هسته ای قلمداد کرد یعنی فرایندی که در آن دست کم یکی از محصولات واکنش هسته ای از هر یک از مواد واکنش زای اولیه پر جرم تر باشد. گداخت هسته ای در مواردی که جرم کل هسته ای محصول از جرم کلی مواد واکنش زا کمتر باشد منجر به رهایی انرژی خواهد شد.
آشنایی با فعالیت های سازمان انرژی اتمی ایران
بدون تردید جمهوری اسلامی ایران از کشورهای صاحب نام در عرصه فناوری هسته ای در جهان است، اما کسب این جایگاه در گرو تلاش های بی وقفه کارشناسان و متخصصان اهل این سرزمین است که در طول سال های گذشته از هیچ کوششی فرو گذار نبوده اند.
روایت جهانی شدن دانش هسته ای ایرانیان روایتی شنیدنی است که بازگویی و تامل در آن نسل امروز ما را با مسیر پیموده شده برای بومی کردن تکنولوژی هسته ای آشنا کرده و آنان را بیش از گذشته در راه صیانت از حقوق مسلم و خدشه ناپذیر خودشان مصمم خواهد ساخت.
آنچه در پی می آید، مجموعه ای از اقدامات این سازمان از سال 1355 تا کنون است
سازمان قبل از انقلاب
– در سال 1335 مجلس شورای ملی ایجاد مرکز اتمی دانشگاه تهران را تصویب کرد.
– در سال 1340 در زمینی به مساحت 28 هکتار در شمال آن روز تهران، کلنگ احداث این مرکز زمین زده شد.
– در آذرماه 1346 « راکتور 5 مگاواتی آموزشی و تحقیقاتی ایران » ، بحرانی و آماده به کار شد.
– در اسفندماه 1352 بر اساس فرمانی سازمان انرژی اتمی ایران ایجاد گردید.
– در فرودین ماه 1353 سازمان انرژی اتمی ایران تشکیل شد و شروع به کار کرد.
– در همین سال قرارداد ساخت چهار واحد نیروگاه اتمی با شرکت های آلمانی و فرانسوی منعقد گردید.
– در تیرماه 1353 قانون تاسیس سازمان، از مجلس شورای ملی گذشت و به دولت ابلاغ شد.
وظایف سازمانی
بر اساس ماده 3 قانون سازمان انرژی اتمی مصوب 16 تیرماه سال 1353 وظایف سازمان به شرح زیر تعریف و تصویب شده است :
الف – توسعه و گسترش علوم و فنون اتمی در کشور و ایجاد زیربنای علمی و فنی لازم برای استفاده از علوم و فنون اتمی در برنامه های توسعه و تحول کشور .
ب – انجام مطالعات و تحقیقات لازم در زمینه های مربوط به علوم و فنون اتمی.
پ – اهتمام در کاربرد علوم و فنون اتمی در صنایع، کشاورزی و خدمات.
ت – ایجاد خدمات فنی مورد نیاز کشور در زمینه علوم و فنون اتمی.
ث – انجام بررسیها و عملیات اکتشافی برای تعیین منابع مواد اولیه صنایع اتمی از قبیل سوخت اتمی و مواد رادیواکتیو و بهره برداری از این منابع از طریق استخراج و استفاده از مواد مزبور در صنایع، نیروگاهها، کارخانه ها و تاسیسات مختلف اتمی کشور.
سازمان موظف است اهتمام خود را برای تامین سوخت اتمی و سایر مواد اصلی مورد نیاز صنایع اتمی کشور با توجه به نیازهای آینده به کار ببرد.
ج – ایجاد نیروگاههای اتمی و بهره برداری از آنها برای کمک به تامین نیروی برق مورد نیاز کشور.
چ – ایجاد تاسیسات شیرین کردن آب شور و بهره برداری از آنها برای کمک به تامین آب مورد نیاز کشور.