فرمت فایل : word(قابل ویرایش)
تعداد صفحات:34
فهرست مطالب:
نیمه هادی ها و ساختمان داخلی آنها. ۲
۱- نیمه هادی نوع N وP.. 3
2- اتصال PN و تشکیل نیمه های دیود. ۵
۳ـ۱) لایه تهی… ۶
۳ـ۲) پتانسیل سد.. ۷
۳ـ۳ ولتاژ شکست…. ۹
۳ـ۴ منحنی دیود در بایاس مستقیم.. ۱۰
۳ـ۵ منحنی دیود. ۱۱
۳ـ۶ دیود ایده آل.. ۱۱
۳ـ۷ ظرفیت دیود. ۱۲
۳ـ۸ دیود با ظرفیت متغییر(وراکتور). ۱۳
۳ـ۹ دیود زنر. ۱۳
۳ـ۹ـ۱ شکست بهمنی و شکست زنر. ۱۳
۳ـ۱۰خاصیت خازنی پیوند و دیودهای وراکتور. ۱۵
مدارهای دیودی… ۱۵
۳-۱۱عیب یابی… ۱۶
۴ـ۱ ترانزیستور بدون بایاس…. ۲۰
۴ـ۲ بایاس FF وRR.. 21
4ـ۳ بایاس FR.. 22
4ـ۴ مقاومت اهمیبیس…. ۲۴
۴ـ۵ ولتاژهای شکسته. ۲۵
۴ـ۶ بیس مشترک… ۲۷
۴ـ۷ امیتر مشترک… ۲۸
۴ـ ۸ کلکتور مشترک… ۲۸
۴ـ۹عیب یابی… ۲۸
عیوب متداول.. ۲۸
تعمیرکار چگونه باید فکر کند؟. ۲۹
فهرست منابع.. ۳۲
نیمه هادی ها و ساختمان داخلی آنها
نیمه هادی ها عناصری هستند که از لحاظ هدایت ، ما بین هادی و عایق قرار دارند، و مدار آخر نیمه هادیها ، دارای 4 الکترون میباشد.
ژرمانیم و سیلیکون دو عنصری هستند که خاصیت نیمه هادی ها را دارا میباشند و به دلیل داشتن شرایط فیزیکی خوب ، برای ساخت نیمه هادی دیود ترانزیستور ، آی سی (IC ) و .... مورد استفاده قرار میگیرد.
ژرمانیم دارای عدد اتمی32 میباشد .
این نیمه هادی ، در سال 1886 توسط ونیکلر کشف شد.
این نیمه هادی ، در سال 1810توسط گیلوساک و تنارد کشف شد. اتمهای نیمه هادی ژرمانیم و سیلیسیم به صورت یک بلور سه بعدی است که با قرار گرفتن بلورها در کنار یکدیگر ، شبکه کریستالی آنها پدید میآید .
اتم های ژرمانیم و سیلیسیم به دلیل نداشتن چهار الکترون در مدار خارجی خود تمایل به دریافت الکترون دارد تا مدار خود را کامل نماید. لذا بین اتم های نیمه هادی فوق ، پیوند اشتراکی برقرار میشود.
بر اثر انرژی گرمائی محیط اطراف نیمه هادی ، پیوند اشتراکی شکسته شده و الکترون آزاد میگردد. الکترون فوق و دیگر الکترون هائی که بر اثر انرژی گرمایی بوجود میآید در نیمه هادی وجود دارد و این الکترون ها به هیچ اتمیوابسته نیست.
د ر مقابل حرکت الکترون ها ، حرکت دیگری به نام جریان در حفره ها که دارای بار مثبت میباشند، وجود دارد. این حفره ها، بر اثر از دست دادن الکترون در پیوند بوجود میآید.
بر اثر شکسته شدن پیوندها و بو جود آمدن الکترون های آزاد و حفره ها ، در نیمه هادی دو جریان بوجود میآید.جریان اول حرکت الکترون که بر اثر جذب الکترون ها به سمت حفره ها به سمت الکترون ها بوجود خواهد آمد و جریان دوم حرکت حفره هاست که بر اثر جذب حفره ها به سمت الکترون ها بوجود میآید. در یک کریستال نیمه هادی، تعداد الکترونها و حفره ها با هم برابرند ولی حرکت الکترون ها و حفره ها عکس یکدیگر میباشند.
1. نیمه هادی نوع N وP
از آنجایی که تعداد الکترونها و حفره های موجود در کریستال ژرمانیم و سیلیسیم در دمای محیط کم است و جریان انتقالی کم میباشد، لذا به عناصر فوق ناخالصی اضافه میکنند.
هرگاه به عناصر نیمه هادی ، یک عنصر 5 ظرفیتی مانند آرسنیک یا آنتیوان تزریق شود، چهار الکترون مدار آخر آرسنیک با چهار اتم مجاور سیلسیم یا ژرمانیم تشکیل پیوند اشتراکی داده و الکترون پنجم آن ، به صورت آزاد باقی میماند.
بنابرین هر اتم آرسنیک، یک الکترون اضافی تولید میکند، بدون اینکه حفره ای ایجاد شده باشد. نیمه هادی هایی که ناخالصی آن از اتم های پنج ظرفیتی باشد، نیمه هادی نوع N نام دارد.
در نیمه هادی نوع N ، چون تعداد الکترون ها خیلی بیشتر از تعداد حفره هاست لذا عمل هدایت جریان را انجام میدهند . به حامل هدایت فوق حامل اکثریت و به حفره ها حامل اقلیت میگویند.
هرگاه به عناصر نیمه هادی ژرمانیم و سیلیسیم ، یک ماده 3 ظرفیتی مانند آلومنیوم یا گالیم تزریق شود، سه الکترون مدار آخر آلومنیوم با سه الکترون سه اتم سیلیسیم یا ژرمانیم مجاور ، تشکیل پیوند اشتراکی میدهند . پیوند چهارم دارای کمبود الکترون و در واقع یک حفره تشکیل یافته است .
هر اتم سه ظرفیتی، باعث ایجاد یک حفره میشود، بدون اینکه الکترون آزاد ایجاد شده باشد. در این نیمه هادی ناخالص شده، الکترون ها فقط در اثر شکسته شدن پیوندها بو جود میآیند.
نیمه هادی هایی که ناخالصی آنها از اتم های سه ظرفیتی باشد، نوع P مینامند .
حفره ها در این نیمه هادی به عنوان حامل های اکثریت و الکترون ها به عنوان حاملهای اقلیت وجود دارد، تبدیل یک نیمه هادی نوع p وn و بالعکس بوسیله عملی به نام «جبران»(Compensation) امکان پذیر میباشد .
2. اتصال PN و تشکیل نیمه های دیود
لحظه ای که دو قطعه نیمه هادی نوع P وN را به هم پیوند میدهیم، از آنجایی که الکترون ها و حفره ها قابل انتقال میباشند، الکترون های موجود در نیمه هادی نوع N به خاطر بار الکتریکی مثبت حفره ها ، جذب حفره ها میگردند. لذا در محل اتصال نیمه هادی نوع P وN ، هیچ الکترون آزاد و حفره وجود ندارد.
3ـ1) لایه تهی
گرایش الکترونهای طرف n پخش شدن در تمامیجهات است. بعضی از آنها از پیوندگاه میگذرند. وقتی الکترونی وارد ناحیه p میشود، یک حامل اقلیتی به حساب میآید.
وجود تعداد زیادی حفره در اطراف این الکترون باعث میشود که عمر این حامل اقلیتی کوتاه باشد. یعنی الکترون بلافاصله پس از ورود به ناحیه p به داخل یک حفره فرو میافتد. با این اتفاق ، حفره ناپدید و الکترون نوار رسانش به الکترون ظرفیت تبدیل میشود.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:84
فهرست مطالب :
فصل اول
مشخصات JFET
مقدمه
ساختمان و مشخصههای JFETها
مقاومت کنترل ولتاژ
قطعات کانال p
نمادها
خلاصه
مشخصات MOSFET
MOSFET نوع تهی
اساس ساختمان
کار قطعه و مشخصههای آن
کاهش در حاملهای آزاد کانال بدلیل پتانسیل منفی پایانه گیت
MOSFET نوع تهی کانال p
نمادها، ورقههای مشخصه، و ساختمان بدنه
MOSFET نوع افزایشی
اساس ساختمان
اساس کار و مشخصهها
MOSFETهای نوع افزایشی کانال p
مولتی ویبراتورها
مولتی ویبراتور دو حالته
نیاز به تریگر کردن
مولتی ویبراتور یک حالته و نوسانی
مولتی ویبراتور یک حالته با کوپلاژ امیتر
مدارهای مولتی ویبراتور نوسانی
مولتیویبراتور نوسانی با کوپلاژ جمعکننده
مولتی ویبراتور نوسانی با کوپلاژ امیتر (نوع اول)
مدار مولتی ویبراتور نوسانی با کوپلاژ امیتر (نوع دوم)
مولتی ویبراتور آستابل (Astable)
مولتی ویبراتور آستابل با استفاده از FET
انواع دیگر مولتی ویبراتورها
فصل اول
مشخصات JFET
1ـ1 مقدمه
ترانزیستور اثر میدانی (یا به اختصار FET) قطعهای سه پایانه است که در موارد بسیاری بکار میرود و در مقیاس وسیعی با ترانزیستور BJT رقابت میکند. اگرچه اختلافات مهمی بین این دو نوع قطعه وجود دارد اما تشابه بسیاری نیز بین آنها وجود دارد که در بخشهای بعد به آن اشاره خواهد شد.
اختلاف نخست بین او دو نوع ترانزیستور در آن است که ترانزیستور BJT همانگونه که در شکل (الف 1ـ1) نشان داده شد یک قطعه کنترل جریان است، در حالیکه ترانزیستور JFET همانگونه که در شکل (ب 1ـ1) دیده میشود یک قطعه کنترل ولتاژ است. به بیان دیگر، جریان IC در شکل (الف 1ـ1) تابع مستقیم مقدار IB است. در FET جریان I تابعی از ولتاژ VGS است که مطابق شکل (ب 1ـ1) به ورودی مدار اعمال میشود. در هر حالت جریان مدار خروجی با یک پارامتر ورودی کنترل میشود. در یک حالت بوسیله جریان و در دیگری بوسیله ولتاژ اعمال شده.
شکل (1ـ1) (الف) تقویت کننده کنترل جریان (ب) تقویت کننده کنترل ولتاژ
درست مانند ترانزیستورهای npn و pnp قطبی، ترانزیستورهای اثر میدانی نیز از دو نوع کانال n و کانال p هستند. از اینرو، مهم است به خاطر داشته باشید که ترانزیستور BJT یک قطعه دو قطبی (bipolar) است. یعنی میزان هدایت در آن تابع دو نوع حامل است: الکترونها و حفرهها. FET قطعهای تکقطبی است که فقط به هدایت اکلترون در (کانال n) و یا حفره (کانال p) وابسته است.
عبارت «اثر میدانی در نام این ترانزیستور با خود توضیحاتی را بهمراه دارد. ما همه با توانایی یک مغناطیس دائمی آشنا هستیم که برادههای فلزی را بدون تماس واقعی به سوی خود میکشد. میدان مغناطیسی یک مغناطیس دائمی برادههای آهن را در امتداد خطوط شار مغناطیسی جذب میکند. در FET، بوسیله بارهای آن میدان الکتریکی بوجود میآید که مسیر هدایت جریان خروجی را کنترل میکند بدون تماس مستقیم بین کنترل کننده و کمیتهای کنترل شونده.
این تمایل طبیعی است که دومین قطعه را با تعدادی از کاربردهای مشابه قطعه اول معرفی کرده و برخی مشخصههای آن را با هم مقایسه کنیم. یکی از مهمترین شاخصهای FET، امپدانس ورودی زیاد آن است. مقاومت ورودی آن در اندازههای 1 تا چند صد مگااهم از مقاومت ورودی ترانزیستور BJT بیشتر میشود. و این شاخصهای است که در طراحی سیستمهای تقویت ac خطی بسیار مهم است. به به عبارت دیگر، با ولتاژ اعمال شده یکسان تغییر در جریان خروجی معمولاً برای BJT بیشتر از FETها است. به همین دلیل، معمولاً بهره ولتاژ ac تقویت کنندههای BJT خیلی بیشتر از FETهاست. بطور کلی، FETها در مقابل حرارت با ثباتتر از BJTها هستند. FETها معمولاً از نظر ساختمان از BJTها کوچکترند و این امر بطور ویژه کاربردشان را در تراشههای مدار مجتمع (آیسی) کارآمد میسازد. مشخصههای ساختمان برخی FETها در بکارگیری آنها بسیار موثر است.
دو نوع FET در این فصل معرفی میشود: ترانزیستور اثر میدانی پیوندی (JFET) و ترانزیستور اثر میدانی اکسید فلز (MOS-FET)، دسته MOSFET خود به دو نوع تهی و افزایشی تقسیم میشوند که هر دو نوع آن شرح داده میشوند. ترانزیستور MOSFET یکی از مهمترین قطعات مورد استفاده در طراحی و ساخت مدارهای مجتمع کامپیوترهاست. ثبات حرارتی، و دیگر مشخصههای اصلی آنها، کاربردشان را در طراحی مدارهای کامپیوتری متداول ساخته است.