یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود کارآموزی پست های فشار قوی و ترانسفورماتورهای جریان ولتاژ

اختصاصی از یارا فایل دانلود کارآموزی پست های فشار قوی و ترانسفورماتورهای جریان ولتاژ دانلود با لینک مستقیم و پرسرعت .

دانلود کارآموزی پست های فشار قوی و ترانسفورماتورهای جریان ولتاژ


دانلود کارآموزی پست های فشار قوی  و ترانسفورماتورهای جریان ولتاژ

 

 

 

 

 

 

 


فرمت فایل : word(قابل ویرایش)

تعداد صفحات:92

فهرست مطالب:
 عنوان                                                                                       صفحه
مقدمه    1
تاریخچه شرکت    2
اهداف شرکت    3
صورت وضعیت شرکت    6
تعریف پست فشار قوی     5
انواع پست های فشار قوی بر حسب نوع کار     5
تجهیزات پست     20

سویچگیر     21
ترانسفورماتور قدرت     22
ترانس زمین     22
جبران کننده ها     22
تأسیسات جانبی    25
سوئیچگیر     25
باسبار یا شین     25
انواع شین از نظر شکل ظاهری     26
شینه بندی     27
انواع شینه بندی     28
قطع طولی شین بوسیله دیژنکتور     29
شینه بندی چندتایی یا مرکب     29
ایمنی باسبار     36
رنگ آمیزی شین ها     37
کلیدهای فشار قوی     38
قطع کننده یا سکسیونر     39
کلید بار     40
کلید قدرت     40
قطع مدارات مختلف     42
بررسی وصل مدارات مختلف     44
عامل مؤثر در قطع یا برقراری مجدد جرقه     54
انواع خاموش کننده ها     55
کلیدهای فشار قوی     60
کلید قابل قطع زیر بار    65
ترانسفور ماتور های جریان    66
پامتر های اساسی در ct ها     67
انواع ترانس های جریان از نظر ساختمان     73
مشخصات الکتریکی ترانس های ریان     75
ترانسفور ماتور های ولتاژ     76
مشخصات الکتریکی ترانس های ولتاژ     78
عملیات در پست های فوق توزیع دارای باسبار 63 کیلو ولت    80
بهره برداری از ترانسفورماتورهای فوق توزیع    86
منابع و مآخذ    91
 

 

مقدمه

از دیر باز وظیفه توزیع نیروی برق در کشور تا سطح 63 کیلوولت به عهده شرکتهای برق منطقه ای بوده و بتدریج مسئولیت ولتاژ های بالاتر هم به آن افزوده شد و پس از چندی وظیفه تولید و انتقال نیز به این شرکتها محول گردید. که ا لبته به مرور زمان مشکلاتی در عمل بروز نمود که برای مقابله با آنها در ستاد صنعت برق مطالعاتی صورت گرفت و با توجه به قانون برنامه اول توسعه اقتصادی، اجتماعی و فرهنگی کشور و سیاست دولت جمهوری اسلامی ایران مبنی بر واگذاری کارهای خدماتی به بخش خصوصی، فکر ایجاد شرکتهای مستقل و غیر دولتی که مسئولیت توزیع نیروی برق را عهده دار گردد ریشه گرفت و پس از فراهم کردن مقدمات کار و اخذ مجوزات لازم،شرکتهای توزیع نیروی برق به مدیریتهای مستقل واگذار گردید. شرکت توزیع نیروی برق استان تهران در سال 1375 به هفت شرکت تفکیک شد و شرکت توزیع نیروی برق جنوبغرب از تاریخ 1/1/75 رسما فعالیت خود را آغاز نمود. ارتباط شرکتهای توزیع با شرکتهای برق منطقه ای بصورت پیمانکاری و بر اساس پنج قرارداد که در ابتدای هر سال مبادله می گردد برقرار می شود و از طرفی شرکتهای برق منطقه ای سهامدار ممتاز و رئیس مجمع عمومی این شرکتها می باشند.

  شرکت توزیع نیروی برق جنوب غرب ، بمنظور بهره برداری بهینه از تأسیسات موجود در امر توزیع نیروی برق و در راستای سیاست های اقتصادی دولت، با اهداف توزیع برق، ایجاد و توسعه و تأسیسات نیروی برق در راستای رشد و توسعه کیفی،درسالهای اخیر نتایج چشمگیر و قابل توجهی را بدست آورده است. به عنوان نمودی از ارتقاء کیفی خدمات، یادآوری می شود که در طی سال 1384 در نتیجه کلیه فعالیتهای نوسازی و بهینه سازی شبکه و... ،شرکت توانسته است انرژی تحویلی از شبکه فوق توزیع برق را توسط 4018 کیلومتر شبکه 20 کیلوولت، 6852کیلومتر شبکه فشار ضعیف، تعداد 7803 دستگاه پست 20 کیلوولت و در مجموع با ظرفیت 2535 مگاولت آمپر به تعداد 873941 مشترک برق رسانی نماید.

 

تاریخچه شرکت

.2.شرکت توزیع نیروی برق جنوب غرب تهران در تاریخ 1370/12/26 بنام شرکت بهره برداری از نیروگاه جنوب غرب تهران به ثبت رسیده و به استناد صورت جلسه  مجمع عمومی فوق العاده شرکت برق منطقه ای تهران در تاریخ 1373/08/07 و در راستای سیاستهای دولت مبنی بر واگذاری بخشی از مسئولیتهای خود به واحدهای غیردولتی همزمان با تشکیل شرکتهای توزیع برق در سطح کشور بنام شرکت توزیع نیروی برق جنوب غرب تهران تغییر نام  و فعالیت خود را رسما از تاریخ 1374/04/01 با هدف حذف تمرکز  و نزدیک شدن مراکز تصمیم گیری به واحدهای اجرایی، اعمال کنترل و نظارت بیشتر بر مناطق برق، افزایش انگیزه و واگذاری مسئولیت و مسئولیت خواهی از مدیران و سایر پرسنل از طریق مشارکت آنها درتصمیم گیریهای شرکت، کم کردن بوروکراسی و نهایتا تسریع و بهبود کیفی و کمی در ارائه خدمات به مشترکین در قالب سیاستهای کلی وزارت متبوع آغاز به کار کرد

شرکت توزیع نیروی برق جنوبغرب تهران درمحدوده ای به وسعت 855

کیلومتر مربع شامل قسمتی ازجنوبغرب شهرتهران و شهرستانهای اسلامشهر و رباط کریم درقالب پنج منطقه و یک اداره اقماری با 360987 مشترک و 700 نفر کارمند تشکیل و در پایان سال 1383 این شرکت در محدوده فوق دارای بیش از 708000 مشترک می باشد که با 476 نفر کارمند و تعداد 232فیدر 20 کیلوولت به طول 3630 کیلومتر ، 7150 دستگاه پست هوایی و زمینی و بیش از 25000 فیدر فشار ضعیف به طول7274 کیلومتر شبکه فشار ضعیف با اهداف و شاخصهای ذکرشده با6 منطقه ودو اداره اقماری به فعالیت خودادامه می دهد.

منطقه برق رودکی با 22 کیلومتر مربع وسعت و 365.5 کیلومتر شبکه فشار متوسط و 980 کیلومتر شبکه فشار ضعیف عهده دار خدمات رسانی به 135231 مشترک در محدوده تحت پوشش خود می باشد. این منطقه توسط 9 پست فوق توزیع که 5 پست آن مشترک با شرکتها و مناطق برق دیگر است و از طریق 52 فیدر KV 20 تعذیه می گردد

 

اهداف شرکت

1) ادامه روند مناسب موجود در اقدامات مربوط به عملیات سرویس و نگهداری به روش خط گرم.

2) ادامه روند استفاده از پستهای کیوسک کمپکت.

3) ادامه روند افزایش کیفیت روشنایی، معابر، بزرگراهها ،خیابانها و

کوچه ها

4) ادامه روند کاهش نرخ انر.ژی تأمین نشده در هزار.

5) ادامه روند کاهش زمان خاموشی به ازای هر مشترک در روز به ثانیه (28 ثانیه در سال 85).

6) استفاده بیشتر از تجهیزاتی که در افزایش پایداری و کاهش زمان خاموشی مؤثر می باشد(نشانگرهای خطا ، خازن گذاری ، مطالعه شده ، سکسیونرهای هوایی و...).

7) تقلیل بار فیدرهای 20 کیلو وات هوایی و زمینی.

8) توجه ویژه به IT.

9) پیاده سازی طرح تکریم.

10) توجه ویژه به مدیریت مصرف.


دانلود با لینک مستقیم

دانلود تحقیق کامل ترانسفورماتورهای قدرت(همراه با اشکال و جداول)

اختصاصی از یارا فایل دانلود تحقیق کامل ترانسفورماتورهای قدرت(همراه با اشکال و جداول) دانلود با لینک مستقیم و پرسرعت .

دانلود تحقیق کامل ترانسفورماتورهای قدرت(همراه با اشکال و جداول)


دانلود تحقیق کامل ترانسفورماتورهای قدرت(همراه با اشکال و جداول)

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:114

مقدمه :
 همان گونه که میدانیم افزایش ظرفیت انتقال توان نیروگاه ها و کاهش موثر تلفات انتقال ،مستلزم افزایش  ولتاژ انتقال شبکه های قدرت می باشد . در عمل ،ساخت ژنراتورهای با ولتاژ خروجی بسیار بالا  امکان پذیر نمی باشد  و عموماً به خاطر  مشکلات عایق بندی  ژنراتورها  این ولتاژ با مقدار ، 25 تا 30 کیلو ولت محدود می شود .  این مشکل باعث می شود که جریان خروجی ژنراتورها بسته به مقدار قدرت تولیدی آنها بسیار زیاد می شود  در نتیجه بری رسیدن به  قابلیت انتقال مورد نیاز و کاهش سطح مقطع خطوط انتقال  باید از ولتاژ یا انتقال بالا استفاده نمود  در اینجا است که اهمیت ترانسفورماتورها ی قدرت آشکار می شود  بدین معنی که این وسایل با افزایش ولتاژ نیروگاه ها  جریان خطوط انتقال را کاهش می دهند . و علاوه برآن ترانسفورماتور های قدرت نیروگاه ها هم چون حائلی ژنراتورهای گران قیمتی را از خطوط هوایی ( که همواره در معرض اضافه ولتاژ و خطرات جانبی می باشند  ) . جدا می سازند  . همچنین با توجه به اینکه  عایق بندی سیم پیچ ها ترانسفورماتور در مقابل  امواج سیار ،ارزانتر و ساده تر  از عایق بندی سیم پیچ های  ژنراتور است در نتیجه با استفاده از ترانسفورماتورها میتوان  صدمات احتمالی وارد شده را از امواج سیار خطوط انتقال  را بر روی ژنراتورها  به حداقل خود کاهش داد.
ترانسفورماتورهای قدرت  از نظر توان نامی  محدوده وسیعی را در بر میگیرند که از ترانسفورماتور های توزیع یا قدرت های نامی چند کیلو ولت آمپر شروع می شود. و تا ترانسفورماتورهای بزرگ با قدرت نامی بیش از MVA 1000 ختم میگردد  .
در این فصل ( مشابه روند  ارائه شده برای ژنراتورها ) سعی بر آن است که تا ابتدا  با بیان دسته بندی های مختلف ترانسفورماتورهای قدرت ، ساختمان اصلی  و تجهیزات  جانبی آن  را مورد بررسی قرار دهیم و وظیفه هر کدام  از این تجهیزات را شرح دهیم  در انتها هم با توجه به  اهمیت پلاک ها توضیع داده خواهد شد .

دسته بندی های مختلف ترانسفورماتورها
ترانسفورماتورهای به کار رفته در صنعت برق  را از جنبه های مختلف میتوان دسته بندی نمود .  

1-    انواع ترانسفورماتورهای قدرت از نظر تعداد فاز
ترانسفورماتورهای قدرت از نظر تعداد فاز ها به دو نوع یک فاز و سه فاز تقسیم می شوند که کاربرد ترانسفورماتورهای  تک فاز در قدرت های پایین ( تا حدود KVA 70 ) و ترانسفورماتورهای سه فاز  در قدرت های بالا ( از حدود KVA 75 به بالا می باشد .

2-    انواع ترانسفورماتورها از نظر نوع استفاده
ترانسفورماتورها به سه صورت ، ترانسفورماتور جریان ، ولتاژ ، و ترانسفورماتورهای قدرت مورد استفاده قرار می گیرند . ترانسفورماتورهای جریان ( ولتاژ ) برای پایین آوردن جریان ولتاژ  و به منظور اندازه گیری جریان ولتاژ و استفاده از سیستم های تجهیزات به کار می روند .

البته ترانسفورماتورهای قدرت به سه نوع تقسیم می شوند :
نوع اول : ترانسفورماتورهای قدرت  با توان کم هستند  که برای انتقال و توضیع انرژی  الکتریسیته در سطح ولتاژ های پایین  مورد استفاده قرار می گیرند این ترانسفورماتورها از نوع افزاینده یا کاهنده ولتاژ و ترانسفورماتورهای سوئیچینگ می باشند.
نوع دوم : ترانسفورماتورهای قدرتی هستند که برای مقاصد خاصی مورد استفاده قرار می گیرند . مثل ترانسفورماتورهای مورد استفاده در کوره های قوس الکتریکی  ،یک سو کننده ها ، واحد های جوشکاری بزرگ .و ...
نوع سوم : ترانسفورماتورهای قدرت در سیستم های انتقال می باشند  که در سه نوع ترانسفورماتورهای افزاینده  ، کاهنده ، کوپلاژ به کار می روند . ترانسفورماتورهای قدرت افزاینده  به منظور افزایش ولتاژ شبکه ( برای انتقال  انرژی الکتریکی به فواصل دور ) به کار می روند  و عموماً در پست های نیروگاه مورد استفاده قرار می گیرند .
ترانسفورماتورهای قدرت کاهنده برای پایین آوردن سطح ولتاژ با سطح قابل قبول برای مصرف کننده  به کار می روند این نوع ترانسفورماتورها در پست های توزیع استفاده می شوند .

3-    انواع ترانسفورماتورها از نظر نوع هسته
ترانسفورماتورهای از نظر نوع هسته به دو نوع هسته ای     و پوسته ای      تقسیم می شوند که البته این نوع تقسیم بندی  عموماً برای ترانسفورماتورهای تک فاز عنوان می شوند. در نوع هسته ای ، سیم پیچ های اولیه و ثانویه  روی هر دو بازوی مختلف یک یا دو بازو ، پیچیده می شوند  در صورتی که در نوع پوسته ای  سیم پیچ های اولیه و ثانیویه روی بازوی میانی که هسته  با سه بازو پیچیده می شوند  . البته در ترانسفورماتورهای سه فاز  نیز به نوعی این تقسیم بندی  مطرح می شود  مثلاً در ترانسفورماتورهای KV 20 /230/400/  پست  نیروگاه  نکا ( که از سه ترانسفورماتور تک فاز  تشکیل شده است )  ترانسفورماتورها از  نوع پوسته ای  هستند  .در ترانسفورماتورهای سه فاز سیم پیچ های اولیه و ثانویه هر فاز با هم  ، بر روی یک بازو پیچیده می شوند . که البته به نوع هسته معروف است .   

انواع اتصالات  سیم پیچ های ترانسفورماتور
سیم پیچ های اولیه و ثانویه ترانسفورماتورهای قدرت دارای سه نوع اتصال ، مثلث ، ستاره ، و زیگزاگ هستند.

1-    اتصال ستاره
این نوع اتصال مطابق با شکل  ( 1- الف ) به گونه ای است که سه سر سیم پیچ های اولیه و ثانویه ترانسفورماتور به هم متصل میشود که مرکز ستاره سیم پیچ را تشکیل می دهد و سه سر دیگر سیم پیچ ها خارج می شوند  که مرکز ستاره سیم پیچ ها ، نوترال ، ( نقطه خنثی ) سیم پیچ ها هم گفته می شود. در این اتصال جریان ، هر سیم پیچ با جریان خط برابر است . ولی ولتاژ فاز به فاز ،   برابر ولتاژ دو سر سیم پیچ می باشد.
 
اتصال مثلث
به این نوع اتصال ، که انتهای هر سیم پیچ به ابتدای سیم پیچ دیگر  متصل می شود  که در شکل ( 1- ب ) نشان داده شده است ، همان گونه که در این شکل مشخص شده است  ولتاژ هر سیم پیچ  با ولتاژ فاز به فاز برابر است  ، ولی جریان خط     برابر جریان هر سیم پیچ می باشد.

2-    اتصال زیگزاگ
در این نوع اتصال هر فاز از دو سر سیم پیچ تشکیل شده است که با تعداد دور مساوی  بر روی دو بازوی مختلف  پیچیده شده است  .
دو سیم پیچ هر فاز با هم سری می شوند  ، به گونه ای که  جهت پیچش آنها بر خلاف یکدیگر ( که معمولاً همین نوع  به کار می رود ) یا در جهت هم دیگر می باشند  . در این نوع اتصال ( مشابه به اتصال ستاره ) جریان خط با جریان سیم پیچ ها مساوی است ، ولی ولتاژ خط ،    برابر ولتاژ سیم پیچ ها ( ولتاژ هر فاز نسبت به نقطه  سیم پیچ زیگزاگ) می باشد . این نوع اتصال را میتوان در شکل(  1-ج  ) مشاهده نمود.   
 


دانلود با لینک مستقیم

دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق

اختصاصی از یارا فایل دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق


دانلود پروژه حفاظت و نگهداری ترانسفورماتورهای توزیع برق

 

 

 

 

 

 

 



فرمت فایل : word(قابل ویرایش)

تعداد صفحات:82

مقدمه:
ترانسفورماتورهای توزیع مهمترین تجهیز در شبکه توزیع می‌باشند. با توجه به فراوانی این ترانسفورماتورها و نقش آنها در شبکه، تهیة یک دستور‌العمل جهت نگهداری و سرویس این ترانسفورماتورها ضروری است. دستور‌العمل حاضر در این راستا تهیه شده است.
در نگهداری و تحلیل وضعیت ترانسفورماتور همیشه وضعیت خود ترانسفورماتور در اولویت قرار داشته و باید از دستور العمل سازنده جهت انجام عملیات لازم استفاده شود. این دستور‌العمل را می‌توان بعنوان مکمل در انجام عملیات نگهداری و بازدیدهای دوره‌ای مورد استفاده قرار داد. این دستور‌العمل روی ترانسفورماتورهای kva 500 به بالا متمرکز بوده و برای ترانسفورماتورهای با ظرفیت کمتر از این رنج می‌توان با نظر کارشناسان بهره‌برداری در انتخاب و فاصله زمانی انجام تستها تغییر داده شود. البته فصولی که مربوط به نگهداری و بهبود وضعیت عایق و نیز سیستم آب‌بندی می‌باشد می‌تواند بطور عموم مورد استفاده واقع شود.

فهرست مطالب:

فصل ۱-   بازدیدهای دوره‌ای و پیشگیرانه

فصل ۲-   شرح بازدیدهای اجزای ترانسفورماتور

۲-۱-   مقدمه

۲-۲-   بازدید کلی ترانسفورماتور

۲-۳-   بازدید از تانک ترانسفورماتور

۲-۴-   کنسرواتور (منبع انبساط)

۲-۵-   ترمومترها

۲-۵-۱-     تست ترمومتر

۲-۶-   نشانگر سطح روغن

۲-۷-   فشار شکن

۲-۸-   رله فشار ناگهانی

۲-۹-   رله بوخهلتز

۲-۱۰- بوشینگها

۲-۱۱- رطوبت‌گیر

فصل ۳-   نگهداری روغن ترانسفورماتور

۳-۱-   روغن و عوامل موثر بر خواص آن

۳-۲-   تستهای سالیانه و حدود مجاز

۳-۳-   کنترل کیفیت روغن در زمان بهره برداری

۳-۴-   نمونه‌گیری روغن

۳-۵-   تصفیه روغن

۳-۵-۱-     تصفیه فیزیکی

۳-۵-۲-     تصفیه شیمیائی

۳-۶-   خشک کردن ترانسفورماتور

۳-۷-   روغن زدن یا شارژ روغن ترانسفورماتور

۳-۸-   مخلوط کردن روغنهای مختلف

۳-۹-   اضافه کردن مواد ضد اکسیداسیون

۳-۱۰- آزمایشهای قبل و بعد از پر کردن روغن در ترانسفورماتور

۳-۱۱- پیشنهادات مهم جهت نگهداری بهتر روغن و جلوگیری از فساد آن

۳-۱۲-   تستهای روغن

فصل ۴-   عوامل موثر بر عمر عایق ترانسفورماتور

۴-۱-   وقوع شرایط غیرعادی در سیستم

۴-۲-   عوامل محیطی

۴-۳-   عوامل ناشی از نحوه بهره‌برداری ترانسفورماتور

۴-۴-   دستورات کنترل حرارت و نیز کاهش تلفات

۴-۵-   مقادیر مجاز درجه حرارت محیط و ترانسفورماتور

۴-۵-۱-     شرایط محیطی

۴-۵-۲-     شرایط ترانسفورماتور

۴-۶-   تأثیر عوامل مختلف بر عایق و کنترل آنها

۴-۶-۱-     اثر فشارهای ناشی از اتصال کوتاه

۴-۶-۲-     تأثیر انواع اضافه ولتاژ و کنترل آنها

۴-۷-   ارزیابی وضعیت عایق و عمر ترانسفورماتور «چه وقت باید ترانسفورماتور را از مدار خارج نمود

۴-۸-   دستورات و توصیه‌های کلی برای بهبود عمر ترانسفورماتور

۴-۹-   قسمتهای الکتریکی عایق

۴-۹-۱-     تستهای ضریب قدرت

۴-۹-۲-     تستهای میگر

۴-۹-۳-     دیگر تستهای مربوطه

فصل ۵-   دستور‌العمل بارگیری نیروی ترانسفورماتور توزیع

۵-۱-   بار و اضافه بار مجاز

۵-۲-   حدود بارگذاری مجاز دائمی

۵-۳-   حدود مجاز بارگذاری اضطراری کوتاه مدت

۵-۴-   حدود مجاز بارگذاری (بارگذاری اضطراری بلندمدت)

۵-۵-   حدود مجاز برای ترانسفورماتورهای توزیع

۵-۶-   حدود مجاز حرارت و جریان

فصل ۶-   درزگیرها (واشرهای آب‌بندی)

۶-۱-   واشرهای آب‌بندی

۶-۲-   نصب سیستم آب‌بندی

فصل ۷-    رطوبت، معیاری برای خشک کردن

۷-۱-   معیار خشک کردن ترانسفورماتور

۷-۲-   راههای نفوذ رطوبت

۷-۳-   راههای جلوگیری از نفوذ و جذب رطوبت و اکسیداسیون

فصل ۸-   نصب و راه‌اندازی ترانسفورماتور

۸-۱-   نگهداری و انبار کردن ترانسفورماتور

۸-۲-   مکان نصب ترانسفورماتور

۸-۲-۱-     درجه حرارت مجاز برای پستهای زمینی

۸-۲-۲-     فواصل مجاز

۸-۳-   عملیات و هشدارهای لازم قبل از راه‌اندازی ترانسفورماتور

۸-۳-۱-     بازدید مقدماتی یا اولیه

۸-۳-۲-     قبل از اعمال ولتاژ به ترانسفورماتور و برقدار کردن آن آیتم های زیر را حتماً چک کنید

۸-۴-   راه‌اندازی ترانسفورماتور (برقدار کردن)

۸-۵-   تستهای راه‌اندازی

۸-۶-   بارگیری و ارتفاع نصب ترانسفورماتور

۸-۷-   نگهداری‌های دوره‌ای برای ترانسفورماتور توزیع

۸-۷-۱-     نمونه‌گیری و تست استقامت عایقی روغن

۸-۸-   عملیات نگهداری در دوره‌های خاموشی ترانسفورماتور

۸-۹-   تزریق روغن در تانک

۸-۱۰- حفاظت ترانسفورماتور توزیع

۸-۱۱- نکات مهم در انتخاب کات اوت فیوز

۸-۱۲- نکات مهم در انتخاب و نصب برقگیر

۸-۱۳- روشهای بهره‌برداری مناسب و دستور‌العمل پیشگیری حوادث

۸-۱۴- پیاده سازی اجزای ترانسفورماتور

۸-۱۵- جوشکاری تانک ترانسفورماتور

۸-۱۶- تعمیر هسته و سیم‌پیچی


دانلود با لینک مستقیم

دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

اختصاصی از یارا فایل دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری دانلود با لینک مستقیم و پرسرعت .

دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری


دانلود پروژه مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری

 

 

 

 

 

 




فرمت فایل : word(قابل ویرایش)

تعداد صفحات : ۲۶۸

عنوان پروژه : مطالعه انواع خطاهای بوجود آمده در ترانسفورماتورهای فوق توزیع و روشهای پیشگیری (علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق استان فارس)

توضیحات:

پروژه علل سوختن ترانسفورماتورهای 66 کیلوولت شبکه برق یک استان با جداول و عکس و فهرست منبع، پیشگفتار: گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » می‎باشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته…

پیشگفتار:
گزارش حاضر، گزارش نهایی پروژه « بررسی علل سوختن ترانسفورماتورهای 66 کیلوولت برق یک استان » می‎باشد که در آن به بررسی علل اصلی ایجاد خطا در ترانسفورماتور و منشاء ظهور آنها و روشهای پیشگیری پرداخته می‏شود.
در روال انجام پروژه مدل‎سازیهای مربوط به حالت دائمی و گذرای ترانسفورماتور و سایر اجزای پست شامل CT، PT، برقگیر، کلید و سیستم زمین مورد بررسی دقیق قرار گرفته و بهترین مدلها ارائه شده است. در ادامه بر روی دو پست نمونه تل‎بیضاء و نورآباد شبیه‎سازی حالت گذرا انجام شده و با تغییر مقاومت زمین و مقدار انرژی صاعقه مربوط به آنها بر روی ترانسفورماتورهای مذکور مورد بررسی قرار گرفته و نتایج آن در گزارش ‘شبیه‎سازی و بررسی اجزای اصلی پست’ ارائه گردیده است.
در گزارش حاضر دلایل اصلی ایجاد خطا که منشاء آنها داخلی یا خارجی می‎تواند باشد بررسی شده است. از طرف دیگر با توجه به اطلاعات مربوط به خطاهای ترانسفورماتورهای KV66، دلایل اصلی ایجاد خطاها استخراج و روشهای پیشگیرانه توضیح داده شده است (در فصل ششم گزارش حاضر) که از این میان می‎توان به روشهای پیشگیرانه اصلی مونیتورینگ هیدروژن و آشکارسازی تخلیه جزئی اشاره نمود.

فهرست مطالب:

پیشگفتار
مقدمه
فصل اول
1- خطاهای داخلی ترانسفورماتور
1-2- اشکالات در مدارت مغناطیسی ترانسفورماتور
1-2-1-اثر جریان های گردابی ناخواسته
1-2-2-وجود ذرات کوچک هادی
1-2-3-عدم متعادل شدن نقطه خنثی ترانسفورماتور
1-2-4-اثر هارمونیک ها در افزایش تلفات ترانسفورماتور
1-3- اشکالات بوجود آمده در سیم پیچ ها شامل کویل ها، عایق کاری های سیم پیچ ها و ترمینالها
1-3-1-اتصال کوتاه در سیم پیچ ها ناشی از محکم نبودن آنها
1-3-2-عدم خشک کردن کامل ترانسفورماتور
1-3-3-اتصالات بد بین سیم پیچ ها
1-3-4-نیروهای الکترودینامیکی ناشی از اتصال کوتاه
1-4- اشکالات در عایقهای ترانسفورماتور شامل روغن، کاغذ و عایقکاری کلی
1-4-2- اشکالات ناشی از ضعف عایقی کاغذ و عایقکاری کلی ترانسفورماتور
1-5- اشکالات ساختاری
فصل دوم
2-1- مقدمه
2-2-خطاهای الکتریکی خارج ترانسفورماتور
2-2-1-صاعقه (Lightning)
2-استفاده از عایق غیرهمگن
2-2-2- اضافه ولتاژهای ناشی از قطع و وصل (کلیدزنی)
2-2-3- اضافه ولتاژهای ناشی از رزونانس
2-2-4- فرورزونانس در خطوط انتقال انرژی ولتاژ بالا
2-2-5- اضافه ولتاژهای موقت
2-2-6- جریان هجومی در ترانسفورماتورها
2-2-7- اتصال نادرست ترانسفورماتور و تپ چنجر
2-2-8- خطاهای ناشی از اضافه بار
2-3- خطاهای مکانیکی
2-3-1- اتصالات سخت لوله-شمش در پستها
2-3-2- در نظر نگرفتن اثرات زلزله، سیل و طوفان بر روی فونداسیون‎ها و تجهیزات پست
2-3-3- حمل و نقل غیر صحیح ترانسفورماتورها
2-3-4- نبود حفاظتهای جلوگیری کننده از ورود حیوانات
2-4- خطاهای شیمیایی
2-4-1- زنگ‎زدگی بدنه ترانسفورماتور
2-4-2- فرسودگی بیش از حد ترانسفورماتور به علت عدم سرویس به موقع
فصل سوم
3-1- مقدمه
3-2- مشخصات مورد انتظار روغن ترانسفورماتور
3-3- نقش کاغذ در ترانسفورماتور
3-4- تاثیر رطوبت در خواص عایقی کاغذ
3-5- اثر رطوبت در روغن ترانسفورماتور
3-6- راههای ورود رطوبت به ترانسفورماتور و جلوگیری از آن
3-7- تاثیرات مخرب تضعیف مواد عایقی ترانسفورماتور
3-8- برنامه آزمایشهای روغن ترانسفورماتور
3-8-1- آزمایش روغن قبل از پرکردن ترانسفورماتور با آن
3-8-2- آزمایش روغن بعد از پر کردن ترانسفورماتور
3-8-3- آزمایش دوره ای روغن
3-9- تصفیه روغن ترانسفورماتور
3-9-1- تصفیه فیزیکی روغن ترانسفورماتور
3-9-2- تصفیه فیزیکی – شیمیایی روغن ترانسفورماتور
3-10- شرایط نمونه برداری روغن ترانسفورماتور
فصل چهارم
4-1- مقدمه
4-2- ایجاد گاز در ترانسفورماتور
4-2-1- ایجاد قوس الکتریکی با انرژی زیاد در داخل روغن
4-2-2- ایجاد قوس الکتریکی با انرژی کم در داخل روغن
4-2-3- گرمای بیش از حد در محلهای به خصوص
4-2-4- تخلیه کرونا در داخل روغن ترانسفورماتور
4-2-5- تجزیه عایق ترانسفورماتور در اثر گرما
4-3- حلالیت گازها در روغن ترانسفورماتور
4-4- مقادیر مورد نیاز برای آنالیز گازها
4-5- مراحل آزمایش روش گاز کروماتوگرافی جهت مشخص کردن نوع خطا
4-6- حلالیت گازها در روغن ترانسفورماتور
4-7- خرابی عایق سلولزی ترانسفورماتور (کاغذ ترانسفورماتور)
4-7-1- امتحان غلظت و حل شده در روغن
4-7-2- امتحان غلظت Co2 و Co در گازهای آزاد بدست آمده از رله های جمع آوری گاز
4-8- کاربرد روش تحلیلی در گازهای آزاد درون رله های جمع آوری گاز
4-9- محاسبه غلظتهای گاز حل شده معادل در روغن ترانسفورماتور با غلظتهای گاز آزاد
4-10- روش تشخیص خطا با استفاده ازگازهای حل شده و حل نشده در روغن ترانسفورماتور
4-10-1- تعیین نرخ رشد گازها
4-10-2- ارائه فلوچارت تصمیم گیری
4-10-3- تعیین زمانهای آزمایش گاز کروماتوگرافی روغن
4-10-4- تشخیص نوع خطا با استفاده از گازهای متصاعد شده
4-10-5- تشخیص نوع خطا با استفاده از نسبت گازهای متصاعد شده
فصل پنجم
روشهای شناسایی محل خطا در ترانسفورماتور
5-1- روشهای غیر الکتریک تعیین خطا
5-1-1- طبیعت صوت
5-2-2- انواع سیستمهای آکوستیکی
5-3- روشهای الکتریکی تعیین محل خطا
5-3-1- مانیتورینگ وضعیت ترانسفورماتور در حال کار با استفاده از روش آزمون ضربه ولتاژ پایین LVI
5-3-2- عیب یابی ترانسفورماتور‏های قدرت با استفاده از روش تابع انتقال عیب یابی در محل
5-3-3- روش آشکار سازی بر اساس تخلیه جزئی
سیستم GULSKI AND KREUGER
5-3-4-آنالیز با استفاده از روش مونت کارلو یا سیستم HIKITA
فصل ششم
6- خطاهای بوجود آمده در ترانسفورماتورهای 66 کیلوولت برق استان
مقدمه: آشنایی با صنعت برق در استان تا سال 1378
6-1- آمار حوادث منجر به ایجاد خطا و یا خروج ترانسفورماتور از شبکه
ضمیمه 1
ضمیمه 2
فهرست اشکال

شکل (1-1): خطا در نگهدارنده فلزی سیم پیچ به واسطه اتصال کوتاه درونی
شکل (1-2): خرابی پایین سیم پیچ فشار ضعیف بواسطه ورود رطوبت
جدول (1-1): مقادیر ضریب
شکل (1-3): ضریب پیک جریان اتصال کوتاه
شکل (1-4): اثر نیروهای اتصال کوتاه بر سیم پیچ متقارن
شکل (1-5): تغییر شکل حلقه های درونی و تعداد جدا کننده ها
شکل (1-6): تاثیر نیروی اتصال کوتاه بر سیم پیچ غیر متقارن
شکل (1-6): تغییر شکل در اثر تنش فشاری
شکل (1-7): تغییر شکل توسعه یافته در طول سیم پیچ
شکل (1-8): کج شدن هادیهای سیم پیچی در اثر نیروی محوری
شکل (1-9): تاثیرات اتصال کوتاه خارجی روی سیم پیچ
شکل (2-1) -شکل موج استاندارد ضربه صاعقه
شکل (2-2): مدار معادل ترانسفورماتور هنگام برخورد ضربه صاعقه
شکل (2-3): توزیع ولتاژ ضربه بر حسب های مختلف
شکل (2-4): شیلد الکترواستاتیک برای یکنواخت کردن توزیع ولتاژ
شکل (2-5): توزیع ولتاژ در ترانسفورماتور بر حسب زمان پیشانی موج ضربه
شکل (2-6): شکل موج ضربه اصابت شده
شکل (2-7): شکل موج ضربه استاندارد قطع و وصل
شکل (2-8): قطع جریان توسط کلید در بارهای اندوکتیو کم
شکل (2-9): منحنی شارهای مغناطیسی در هسته
شکل (2-10) -منحنی مغناطیسی هسته
شکل (2-11): دمای نقاط ترانسفورماتور بر حسب دمای محیط
شکل (2-12): یک نمونه از اتصالات لوله‎ا‎ی ترانسفورماتور
شکل (2-13): اتصالات اصلاحی لوله
شکل (2-14): شکل مناسبی از اتصالات لوله به همراه سیم
شکل (2-15) -نصب عایق بر روی شینه‎ها در پست
شکل (3-1): رابطه درجه پلیمریزاسیون با طول عمر کاغذ فرسودگی حالت ایده آل عمر طبیعی
شکل (3-2): تاثیر عمل استخراج آب و اسید از روغن ترانسفورماتور بر طول عمر کاغذ فرسودگی حالت ایده ال عمر طبیعی
شکل (4-2): فلوچارت تعیین نوع خطا با استفاده از گازهای حل شده و حل نشده در روغن
شکل (4-3): شناسایی نوع خطا با توجه به گازهای متصاعد شده
شکل (4-4): فلوچارت روش تشخیص خطا به روش DOERNENBURG
شکل (4-5): فلوچارت روش تشخیص خطا به روش ROGER
شکل (5-1): مسیر انتشار صوت
شکل (5-2): معادل شدت صوت و مدار الکتریکی
شکل (5-3): مدار میکروفون خازنی
شکل (5-4): مکان یابی منشا پالسهای فراصوتی در هوا به وسیله یک میکروفن فراصوتی
شکل (5-5): مکان یابی نستباً دقیق تخلیه جزیی با استفاده از یک هدایتگر ساده موج
شکل (5-6): فرم شماتیکی از سیتم مکان یاب صوتی پالسهای تخلیه جزئی
شکل (5-7): نشکل شماتیک مدار أشکار ساز صوتی تخلیه جزئی در روغن ترانسفورماتور
شکل (5-8): ولتاژ و جریان نمونه ضبط شده
شکل (5-9): اندازه‎گیری ادمیتانس بر روی ترانسفورماتور سه فاز
شکل (5-10): مقایسه اندازه‎گیری ادمیتانس توسط اندازه‎گیری مستقیم ولتاژ در C-TAP
شکل (5-11): مدل دو قطبی در نظر گرفته شده برای ترانسفورماتور
شکل (5-12): عیب یابی در محل برای ترانسفورماتورهای قدرت
شکل (5-13): ارزیابی آزمون اتصال کوتاه یک ترانسفورماتور MVA125 با روش تابع تبدیل
شکل (5-14): تابع تبدیل دو ترانسفورماتور مشابه MVA125
شکل (5-15): استفاده از خواص تقارنی در ترانسفورماتور قدرت MVA125
شکل (5-16): شبیه سازی تجربی تغییر شکل شعاعی سیم پیچی تپ ترانسفورماتور MVA200
شکل (5-17): شبیه سازی تجربی انتقال محوری دو سیم پیچ استوانه‎ا‎ی
شکل (5-18): مدار اصلی آشکار سازی الکتریکی تخلیه جزیی
شکل (5-19): نحوه قرار گرفتن امپدانس آشکار ساز
شکل (5-20): اجزاء مدار آشکار ساز مستقیم تخلیه جزئی
شکل (5-21): بلوک دیاگرام قسمت آنالوگ
شکل (5-22): بلوک دیاگرام مدار دنبال کننده پالس (PTC)
شکل (5-23): تجهیزات اندازه گیریهای توزیع دامنه تخلیه جزئی
شکل (5-24): بلوک دیاگرام قسمت دیجیتال
شکل (5-25): مدار استفاده شده در سیستم GULSKI
مشخصه های و برای یک حفره دایروی
مشخصه های و برای یک حفره در تماس الکترود
مشخصه های و برای یک حفره باریک
مشخصه های و برای حفره های چند گانه
مشخصه های و برای یک حفره مسطح
شکل (5-26) – مشخصه تخلیه جزئی اندازه‎گیری شده
مشخصه های و برای تخلیه سطحی در هوا
مشخصه های و برای تریینگ روی یک هادی
مشخصه های و برای یک حفره به همراه تریینگ
شکل (5-26): مشخصه‎های تخلیه جزئی اندازه‎گیری شده (ادامه)
شکل (5-27): مدار تست برای اندازه گیریهای تخلیه جزئی در سیستم مونت کارلو
شکل (5-28): سنسور خازنی در داخل باس داکت
شکل (6-1): روند گسترش ظرفیت ایستگاه های فوق توزیع
شکل (6-2): تولید انرژی برق به تفکیک مناطق در سال 1378
شکل (6-3): تبادل انرژی شرکت های برق منطقه ای در سال 1378
شکل (6-4): تعداد و ظرفیت ترانس های کل کشور به تفکیک ولتاژ در پایان سال 1378
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
ضمیمه 1
شکل (1): گازهای تشکیل شده ناشی از تجزیه روغن ترانس
شکل (2): فلوچارت روند عملکرد به منظور تعیین وضعیت ترانس
شکل (3): ارزیابی گازهای کلیدی
شکل (4): فلوچارت روش DOERNENBERG
شکل (7): فلوچارت روش ROGERS
شکل (6): مثلث DURVALبه منظور تعیین نوع خطا
شکل (7): آشکارساز هیدروژن موجود در روغن
شکل (8): اصول کار سنسورهیدران
شکل (9): شمایی دیگر از اصول کار سنسور هیدران
شکل (10): افزایش ناگهانی هیدروژن در ترانس MVA370 و KV230/735
شکل (11): مقدار هیدروژن در یک رآکتور شانت KV735
شکل (12): نرخ افزایش هیدروژن در ترانس KV8/13/500
شکل (13): تغییر هیدروژن در ترانس KV4/21 و MVA300
شکل (14): نمونه‌برداری از گاز با سرنگ
شکل (15): نمونه‌برداری از گازهای آزاد به روش جابجایی روغن
شکل (17): نمونه‌برداری از روغن با سرنگ
2شکل (18): اولین روش آماده‌سازی استاندارد گاز
شکل (20): نمونه‌ای از دستگاه STRIPPER
شکل (22): محل‌های نصب سنسور هیدران
شکل (23): نحوه نصب سنسور هیدران
ضمیمه 2
شکل (1): رله‎گذاری دیفرانسیلی درصدی برای حفاظت ترانسفورماتور
شکل (2): حفاظت دیفرانسیلی یک ترانسفورماتور
شکل (3): حفاظت دیفرانسیل ترانسفورماتور سه پیچه
شکل (4): ساختمان داخلی رله بوخهولتز
شکل (5): نحوه اتصال رله جریان زیاد زمین
شکل (7): رله توی‏بر
شکل (8): انواع برقگیرهای اکسید روی
فهرست جداول
جدول (3-1): آزمایشات و مشخصات مطلوب روغن قبل از پر کردن ترانسفورماتور با آن
جدول (3-2): آزمایشهای اضافی روی روغن قبل از برقدار کردن ترانسفورماتور
جدول (3-3): حد مشخصات روغن برای انجام تصفیه فیزیکی
جدول (3-4): حد مشخصات روغن برای انجام تصفیه فیزیکی- شیمیایی
جدول (4-1): گازهای تولید شده در روغن ترانسفورماتور در اثر معایب مختلف

جدول (4-2): تعیین نوع عیب حرارتی یا الکتریکی براساس نسبت گازهای حل شده در روغن ترانسفورماتور

جدول (4-3): تعیین بهتر و مشخص تر نوع عیب براساس نسبت گازهای حل شده در روغن ترانسفورماتور

جدول (4-4): حلالیت گازهای متفاوت در یک نوع روغن ترانسفورماتور
جدول (4-5): ضرایب استوالد در 20 و 50
جدول (4-6): غلظت گازهای حل شده در روغن
جدول (4-7): نوع عملکرد در رابطه با نتایج آزمایش TCG
جدول (4-8): نوع عملکرد در رابطه با نتایج آزمایش TDCG
جدول (4-9): حد نرمال گازهای حل شده در روغن
جدول (4-10): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش DOERNENBURG
جدول (4-11): روش تشخیص نوع خطا با استفاده از نسبت گازها به روش ROGER
ضمیمه 1
جدول (1): تجمع گازهای حل شده درون روغن
جدول (2): دوره‌های نمونه‌برداری برحسب سطوح TCG
جدول (3): دوره‌های نمونه‌برداری بر حسب سطوح مختلف TDCG
جدول (4): مجمع گازهای حل شده درون روغن
جدول (5): نسبت گازهای کلیدی در روش DOERNENBERG
جدول (6): نسبت گازهای کلیدی در روش ROGERS
جدول (7): نسبت ROGRES با جزئیات بیشتر نقاط داغ
جدول (8): سطوح قابل قبول گازها برحسب عمرترانس
جدول (9): سطوح قابل قبول گازها برحسب نوع ترانس
جدول (10): سطوح خطرناک گازها برحسب نوع خطا
جدول (11): مقادیر خطرناک اتیلن بر حسب نسبت CO2/CO
جدول (12): ضرایب حلالیت برای روغن نمونه
جدول (13): حدود مجاز به منظور آشکارسازی
جدول (14): صحت مقادیر گازها


دانلود با لینک مستقیم

دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS

اختصاصی از یارا فایل دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS


دانلود پایان نامه ترانسفورماتورهای ابررسانا HTS

 

 

 

 

 

 

 




فرمت فایل : word(قابل ویرایش)

تعداد صفحات:

تقاضای روز افزون در بخش انرژی، نیاز به توسعه شبکه الکتریکی را امری ضروری و اجتناب ناپذیر ساخته و کشورها را با چالشی بزرگ روبرو کرده است. استفاده از تکنولوژی­های جدید از یک سو و کاهش آلودگی­های زیست محیطی از سوی دیگر موجب تشویق کشورها برای انتقال فناوری­هایی با کارایی بالا و حداقل آلودگی شده است.
در این میان، استفاده از فناوری‌ ابررسانایی، به عنوان یک تکنولوژی جدید، در سطوح تولید، انتقال و توزیع انرژی الکتریکی، در کشورهای پیشرفته بسیار قابل توجه بوده و سالانه بودجه­­های هنگفتی برای تجهیز شبکه الکتریکی به این تکنولوژی اختصاص داده می­شود.
در کشور ما نیز لازم است اقدامی مناسب جهت شناسایی کاربردها، مزایا و مشکلات، روش­های انتقال فناوری ابررسانایی و نحوه­ی انطباق آن با دانش علمی و فنی کشور صورت گیرد. گزارش حاضر، برای رسیدن به اهداف فوق تهیه شده است. امید است که تهیه­ی این گزارش گامی نه چندان بزرگ در نیل به این اهداف برداشته باشد.
چکیده:

در این گزارش ، ابتدا برای آشنایی با ابررسانایی، به اختصار مطالبی راجع به ابررسانایی، خواص آن و انواع سیم­های ابررسانا آورده شده و سپس نکات فنی ترانسفورماتورهای قدرت و وضعیت فناوری ترانسفورماتورهای HTS در جهان بیان می شود. در ادامه مزایا، کاربردها و مشکلات فناوری ترانسفورماتورهای HTS ذکر شده و سپس مشخصات عرضه کننده­گان این فناوری، در دو گروه تولیدکنندگان ترانسفورماتور قدرت و تولیدکنندگان تجهیزات مربوط به ابررسانا بیان می­شود. همچنین هزینه خرید، روش­های انتقال تکنولوژی HTS و منابع مورد نیاز برای انتقال و انطباق فناوری در کشور به ترتیب ارائه می­شوند. در پایان نیز، طول عمر فناوری ترانس HTS و زمان استفاده موثر از آن آورده خواهد شد.

فهرست مطالب:

چکیده
مقدمه
فصل اول- معرفی فناوری در حد شناخت کلی..
ابررسانایی..
مهمترین خواص ابررساناها
تئوری عبور جریان..
تغییر فاز در ابررسانا
ابررساناهای با دمای بحرانی بالا یا HTS..
اصطلاحات فنی سیم های HTS..
متعلقات تجهیزات HTS..
ترانسفورماتورهای HTS.. 9
ترانسفورماتورهای ابررسانا
آزمایش موفقیت آمیز ترانسفورماتورهای ابررسانای HTS..
فناوری ترانسفورماتورهای HTS در جهان..
نتیجه گیری..
فصل دوم- مزایا، کاربرد و موارد استفاده از فناوری..
مقدمه.
مزایای ترانسفورماتورهای HTS..
حجم و وزن کمتر نسبت به ترانس های معمولی..
طول عمر بیشتر.
راندمان بالاتر.
محدود کردن جریان خطا
بی ضرر بودن برای محیط اطراف ترانسفورماتور
مزایای اقتصادی..
انتقال و انطباق فناوری..
کاربردهای فناوری HTS..
کاربرد ابررسانا در ذخیره سازهای مغناطیسی..
محدود کننده جریان خطا
سوئیچ های ابررسانا
آهنربای مغناطیسی..
کابل HTS..
موتورها و ژنراتورها
ژنراتورهای هیدرودینامیک مغناطیسی..
ترانسفورماتورهای HTS..
کاربرد ابررسانا در فیلترهای رادیویی..
فصل سوم- مشکلات موجود در به کارگیری فناوری ترانسفورماتور HTS..
مقدمه.
راندمان کم سیستم تبرید.
استحکام مکانیکی سیم های ابررسانا
تلفات AC...
مواد عایقی..
هسته.
هزینه.
مشکلات اجرایی..
فصل چهارم- مشخصات عرضه کنندگان فناوری ترانسفورماتور HTS..
مقدمه.
تولیدکنندگان کنندگان تجهیزات ابررسانا
شرکت AMSC...
شرکت SuperPower.
شرکت Sumitomo Electric.
تولیدکنندگان ترانسفورماتورهای قدرت...
شرکت Waukesha Electric Systems.
شرکت ABB...
شرکت Fuji Electric.
شرکت TBEA...
فصل پنجم- هزینه خرید و انتقال فناوری ترانسفورماتور HTS..
مقدمه.
هزینه خرید و انتقال فناوری ترانسفورماتور HTS..
فصل ششم- روش های انتقال فناوری ترانسفورماتور HTS..
مقدمه.
ملاحظات مربوط به انتقال فناوری HTS..
روش های انتقال تکنولوژی..
انتقال تکنولوژی از طریق سرمایه گذاری مشترک (Joint Venture)
انتقال تکنولوژی از طریق استخدام پرسنل علمی و فنی..
انتقال تکنولوژی از طریق واردات کالاهای سرمایهای و ماشین آلات...
بیع متقابل، سرمایه گذاری خارجی..
لیسانس....
مهندسی معکوس....
روش کلید در دست (آماده بهره برداری)
مقایسه روش های انتقال فناوری ترانسفورماتور HTS..
نتیجه گیری..
فصل هفتم- منابع مورد نیاز برای انتقال و انطباق فناوری در کشور
مقدمه.
انطباق فناوری ترانسفورماتور HTS در ایران..
ایجاد واحدهای تحقیق و توسعه.
استفاده از پتانسیل های موجود در کشور
بازاریابی..
آموزش پرسنل..
انطباق فنی ترانسفورماتورهای HTS..
امکان سنجی اقتصادی ترانس های HTS..
فهرست جداول

جدول ( 1-1 ) - بازار ترانسفورماتورهای قدرت در سالهای 1995 و 199615جدول (1-2): پروژه های ترانسفورماتورHTS در جهان15جدول( 1-3 ): مشخصات نوارهای HTS و توالیهای سیم پیچی در ترانسفورماتور HTS ساخت SEC- Fuji و دانشگاه Kyushu17جدول (1-4): پارامترهای طراحی ترانسفورماتور(Fuji)18جدول (1-5): مشخصات برخی از ترانس های مورد استفاده در کشور19جدول (1-6): مشخصات برخی از ترانس های HTS که در جهان به صورت آزمایشی ساخته شده اند19جدول (4-1) : مشخصات ابررسانای 344 superconductors37جدول (4-2) : مشخصات ابررسانای HTS Hermetic Wire38جدول (4-3) : مشخصات ابررسانای HTS Cryoblock wire38جدول (4-4) : مشخصات ابررسانای HTS Compression Tolerant Wire39جدول (4-5) : مشخصات ابررسانای HTS High Current Density Wire39جدول (4-6) : مشخصات ابررسانای HTS High Strength Plus Wire40جدول (4-7) : مشخصات ابررسانای شرکت Sumitomo41جدول (4-8) : شرکت های فعال در زمینه فناوری HTS46

 

 


دانلود با لینک مستقیم