فرمت فایل : word(قابل ویرایش)
تعداد صفحات:32
چکیده : ۱
مقدمه : ۲
تاریخچه : ۳
قلمروی محاسبه های نمودارهای فازی: ۴
الگوها توصیف ترمودینامیک : ۷
تعیین ضرایب : ۱۳
قابلیت اصلاح : ۱۶
داده ها و ابزارهای نرم افزاری رایانهای : ۲۰
مثالهای مشخص : ۲۲
نتیجه گیری: ۲۹
منابع ۳۰
چکیده:
مقاله حاضر دیدگاه جدیدی از روش CALPHAP و پیشرفتهای اخیر ایجاد شده را به ما میدهد.
تاریخچه مختصری داده شده سپس گسترده (زمینه ) محاسبه های نمودارهای فازی تشریح شده اند.
شرح و توصیفهای ترمودینامیکی بطور معمول در روشهای CALPHAP که بیان شد، بکار می روند و روشهای بکار رفته مقادیر عددی را برای این توصیفهای مطرح شده ؛ فراهم می کند.
برون یابی سیستمهایی با ترکیب بالاتر توضیح داده شده و پیشرفتهای اخیر در کیفیت ارزیابی ؛اثبات شده است .
یک مرور کلی بر ابزار نرم افزاری رایانه ای و داده های موجود ؛ارائه شده است. در نهایت کاربردهای مختلفی از محاسبه های نمودارهای فازی تشریح شده است.
مقدمه :
نمودارهای فازی نمایش دهنده حالت یک ماده بعنوان تابعی از دما و فشار و غلظتهای ترکیبهای تشکیل دهنده هستند و بنابراین بطور مکرر بعنوان یک دیده کلی یا راه حل برای طراحی آلیاژها ، گسترش ، پردازش و داده های قابل فهم مورد توجه بوده است. اهمیت نمودارهای فازی توسط انتشار کتابچه های راهنما (Hand Book) نظیر “نمودارهای فازی آلیاژی دوتایی” ؛“ تعادل فازی ،تصاویر بلوری و داده های ترمودینامیکی “آلیاژهای دوتایی” ؛“ نمودارهای تعادلی فازی” انعکاس یافته است؛
“نمودارهای فازی برای سرامیستها ” ؛ “ هند بوک نمودارهای فازی آلیاژ سه تایی ” و“ آلیاژهای سه تایی” نیز که در ادامه آمده است.
حالت یک ماده با ترکیب دوتایی در فشار ثابت میتواند در شکلهای گرافیکی شناخته شده ای از نمودارهای فازی دوتایی ایجاد شوند . برای مواد با ترکیبهای سه گانه یک اندازه گیری مضاعف مورد نیاز است تا یک ترکیب کامل ایجاد شود . بنابراین ،سیستمهای سه تایی بطور معمول توسط یک سری از بخشها یا پروژه ها ایجاد میشود. به دلیل چند بعدی بود آنها تفسیر نمودار سیستمهای ترکیبی بخیر می تواند بسرعت دست و پاگیر برای کاربران موقت اینگونه نمودارها باشد . برای سیستمهای با ترکیبهای بیش از سه تا بازنمایی گرافیکی نمودارهای فازی در یک شکل مناسب نه تنها بعنوان چاشنی می باشد بلکه بواسطه نداشتن اطلاعات آزمایشگاهی کافی . مانعی است به هر حال ، مشکل سیستم باز نمایی گرافیکی با ترکیبهای زیاد ، برای محاسبههای نمودارهای فازی نامرتبط باشد. محاسبه هایی اینچنین می تواند برای مواد مشکلات پر اهمیت باشد.
تاریخچه :
از وقتیکه تنها توسعه جدید در الگو سازی و فن آوری محاسباتی که محاسبه های رایانه ای تعادل فازی درترکیبات چند گانه تا حد امکان واقعی ایجاد کرده است؛ از زمان ارتباط بین ترمودینامیک و تعادل فازی توسط J.W.Gibbs فراهم شده است . بیش از یک قرن می گذرد Hertz زمینه های شکست کاری Gibbs را خلاصه بندی کرده است اگر چه پایه های ریاضی بنیان نهاده شده به بیش از 30 سال گذشته تا j.J.Van Laa ساختار ریاضی اش را و سیستمهای دوتایی فرضی چاپ کرد . در توصیف فازهای مایع Van Laav جمله های نرم( افزارهای ) وابسته غلظت را بکار برد که Hildebrand محلول های با قاعده نام نهاد . بیش از 40 سال گذشته بود که J.L.Meijering محاسبات فضای مخلوط درمایعات چهارتایی و سه تایی را چاپ کرد . مدت کوتاهی در پی آن Meijering این روش در تجزیه ترمودینامیکی سیستم Cr-Cu-Ni بکار گرفت. بطور همزمان Cohen, Kaufman محاسبه های ترمودینامیکی در تجزیه و تحلیل تبدیلات مارتنزیتی در سیستم Fe-Ni بکار بردند.
Kaufman کارخود را درباره محاسبه نمودارهای فازی که شامل نقش فشار بود ؛ ادامه داد.
در سال Bernstein , Kanfman :1970 نتایج کلی از محاسبه های نمودارهای فازی را خلاصه بندی کردند و نیز فهرستی از برنامه های رایانه ای برای محاسبه های نمودارهای فازی سه تایی و دو تایی ارائه دادند که منجر به پایه ریزی روش CALPHAD گردید . (محاسبه نمودارهای فازی ). در سال Kaufman ؛1973 اولین جلسه پروژه گروه بین المللی CALPHAD را سازماندهی کرد. پس از آن گروه CALPHAD از نظر اعضاء گسترش یافت .
فرمت:word(قابل ویرایش)
تعداد صفحات:70
پایان نامه کارشناسی ارشد رشته شیمی – فیزیک
مقدمه:
بسیاری از پدیده های زیستی ، طبیعی و نیز فرآیندهای شیمیایی در محلولهای آبی صورت می گیرند. بنابراین مطالعه محلولهای آبی از ترکیبات مختلف ضروری به نظر می رسد تا با توجه به آن، این فرآیندهای زیستی، طبیعی، شیمیایی و .. را بتوان بهتر مورد بررسی قرار داد.
بحث اصلی ما مربوط به محلولهای الکترولیت و نیز چگونگی رفتار محلولهای الکترولیت از لحاظ ایده آل و غیر ایده آل بودن می باشد .
پیشنهاد فرضیه تفکیک یونی در سال 1884 توسط آرنیوس زمینه بسیار مساعدی را برای مطالعه محلولهای الکترولیت فراهم ساخت. نظریه تفکیک یونی آرنیوس در زمان خود توانست برخی از رفتار محلولهای الکترولیت را توضیح دهد ولی با وجود این بسیاری از خواص محلولهای الکترولیت را بر پایه نظریه آرنیوس نمی توان توضیح داد. در نظریه آرنیوس توزیع یونها در محلول کاملاً اتفاقی فرض می شود و علاوه بر آن از نیروهای حاصل از بر هم کنش یونها نیز صرفنظر می گردد. در این شرایط می بایستی ضریب فعالیت یونها در محلول همواره برابر با یک شود. این نتیجه گیری با تجربه و واقعیت سازگار نمی باشد و لذا این مدل برای بیان رفتار محلولهای الکترولیت مناسب نیست.
مدل نسبتاً واقعی که توسط قش دانشمند هندی برای توزیع یونها در محلول پیشنهاد شد ، بدین ترتیب که نظم یونها در محلول تا حدودی شبیه نظم آنها در شبکه جامد بلوری است. اما فاصله بین آنها در محلول از فاصله آنها در جامد یونی بیشتر است. در این مدل نیروهای بین یونی که جنبه الکترواستاتیکی دارند به علت دخالت ثابت دی الکتریک حلال و زیادتر بودن فاصله بین یونها کاهش می یابد. برپایه مدل قش ممکن است بتوان برخی از رفتار الکترولیت ها در محلول را به طور کیفی تجزیه و تحلیل نمود. با وجود این ، این مدل هم در موارد بسیاری از عهده توجیه نتایج مربوط به الکترولیت ها برنمی آید.
امروزه از راه مطالعات با پرتو x آشکار گردیده است که آرایش یونها در محلول الکترولیت ها شبیه آرایش یونها در جامد یونی نیست، بلکه در محلول به دلیل جنبش های گرمایی و برخی عوامل دیگر، آرایش یونها نسبت به حالت جامد در هم ریخته تر می باشد .
تئوری جدید الکترولیت ها به کار دبای و هوکل در سال 1923 بر می گردد. دبای و هوکل در مدل خودشان فرض کردند که یک الکترولیت قوی به طور کامل به یونهای متقارن کروی و سخت تفکیک می شوند. برهم کنش بین یونها به کمک قانون کولومبیک با فرض اینکه محیط دارای ثابت دی الکتریک حلال خالص باشد محاسبه شد. با تقریب های ریاضی مناسب، این تئوری منجر به معادله ای برای محاسبه میانگین ضریب فعالیت یک الکترولیت قوی در محلول رقیق مبدل شد.
مطابق این مدل ، هریون تحت تاثیر دائمی اتمسفر یونی اطراف خود قرار دارد و نسبت به آن بر هم کنش نشان می دهد. این برهم کنش باعث می شود که محلول دارای رفتار غیر ایده آل باشد
فهرست مطالب:
پایان نامه مطالعه تجمع یونی با نگرش ترمودینامیکی
فصل اول
برهم کنش یونها در محلول و ترمودینامیک آنها
مقدمه
1-1 ترمودینامیک محلولهای الکترولیت
1-1-1 رفتار غیر ایده آل محلولهای الکترولیت
1-1-2 فعالیت یونها در محلول الکترولیت
1-1-3 ضریب فعالیت یونها در محلول الکترولیت
1-1-4 قدرت یونی
1-1-5 پتانسیل شیمیایی محلولهای الکترولیت
1-1-6 توابع ترمودینامیکی اضافی محلولهای الکترولیت
1-2 نظریه دبای – هوکل
1-2-1 قانون حدی دبای – هوکل
1-2-2 قانون توسعه یافته دبای – هوکل
1-4 نارسایی های نظریه دبای- هوکل و بحث تجمع یونی
1-5 تعیین تجربی ضریب فعالیت
فصل دوم
تجمع یونی
مقدمه
2-1 تجمع یونی
2-2 نظریه تجمع یونی
2-3 شواهد و اشکال تجمع یونی
2-4 عوامل موثر بر تجمع یونی
2-4-1- اثر ثابت دی الکتریک
2-4-2 اثر غلظت
2-4-3 اثر دما
2-4-4 اثر شعاع و بار یون
فصل سوم
روشهای تجربی در این پایان نامه ، مواد و وسایل مورد استفاده
مقدمه
3-1 شرح مواد مصرفی
3-1-1 سدیم فلوئورید NaF
3-1-2- پتاسیم نیترات KNO3
3-1-3- اتانول
3-1-4- سدیم کلرید NaCl
3-1-5 آب
3-2 شرح وسایل و دقت آنها
3-3 روشهای تجربی
3-3-1- الف آب خالص
3-3-1- ب محلول پتاسیم نیترات با غلظت های مختلف
3-3-1- ج مخلوط آب و اتانول با درصدهای جرمی مختلف اتانول
3-4 نشر اتمی
3-5 نشر بوسیله اتمها و یونهای بنیادی
3-6 طیف سنجی نشر اتمی
3-3-2 تعیین قابلیت حل شدن سدیم فلوئورید در آب خالص و در محلول پتاسیم نیترات با غلظتهای مختلف در دمای 25 به روش نشر اتمی شعله ای
فصل چهارم
نتایج تجربی
4-1 تعیین قابلیت حل شدن سدیم فلوئورید در آب خالص در دمای 25
4-2 بستگی قابلیت حل شدن سدیم فلوئورید با قدرت یونی در دمای 25
4-3 اثر ثابت دی الکتریک حلال مخلوط ( آب و اتانول ) بر قابلیت حل شدن سدیم فلوئورید در دمای 25 به روش تبخیر حلال
فصل پنجم
بحث و نتیجه گیری
مقدمه
5-1 محاسبه ثابت حاصلضرب حلالیت غلظتی سدیم فلوئورید در آب خالص و در دمای 25
5-2 محاسبه ثابت حاصلضرب حلالیت ترمودینامیکی سدیم فلوئورید درآب خالص و در دمای 25
5-3 محاسبه ثابت حاصلضرب حلالیت دبای – هوکلی سدیم فلوئورید در آب خالص
و در دمای
5-4 محاسبه دوری برای رسیدن به غلظت زوج یون در محلول سیرشده
سدیم فلوئورید
5-5 ترمودینامیک تشکیل زوج یون
ضمیمه
فرمت:word(قابل ویرایش)
تعداد صفحات:73
فهرست مطالب:
چکیده
* مقدمه
* بخش اول - مبانی نظری
* نیروهای بین ذره ای
* 1-1-1 برهم کنش های بلندبرد
* 1-1-2 برهم کنشهای کوتاه برد
* 1-2 محلولها و روابط ترمودینامیکی آنها
* 1-2-1 محلول ایده آل
* 1-2-2 روابط ترمودینامیکی محلولهای ایده آل
* 1-2-3- محلولهای با قاعده
* 1-2-4 محلولهای غیر ایده آل
* 1-2-5 ترمودینامیک محلولهای غیر ایده آل
* 1-2-5-1 پتانسیل شیمیایی حلال، فعالیت حلال و ضریب اسمزی در محلولهای غیر ایده آل
* 1-2-6 معادله گیبس – دوهم برای محلولهای الکترولیت دوجزئی و رابطه بین ضریب فعالیت و ضریب اسمزی
* 1-3 مدل های توصیف کننده محلولهای الکترولیتی
* 1-3-5 مدل دبای- هوکل
* 1-3-2- 1 پتانسیل در همسایگی یک یون
* 1-3-1-1- ایرادات نظریه دبای هوکل
* 1-3-2 مدل گوگنهایم
* 1-3-3 مدل مایزنر وکوزیک
* 1-3-4 مدل هیدراسیون استوکس و رابینسون
* 1-3-5 مدل براملی
* 1-3-6 مدل برهم کنش یونی پیتزر
* 1-3-6-1 معادلات پیترز برای محلول الکترولیتی یک جزئی
* 1-3-6-2 معادلات پیترز برای مخلوط های دو جزئی الکترولیت های 11
* 1-4- روشهای تجربی اندازه گیری ضرایب فعالیت
* 1-4-1 تنزل نقطه انجماد
* 1-4-2 افزایش نقطه جوش
* 1-4-3 تنزل فشار بخار
* 1-4-3-الف – روش استاتیک
* 1-4-3- ب روش دینامیکی
* 1-4-4- روش ایزوپیستیک یا تعادل فشار بخار
* 1-4-5- روش رطوبت سنجی
* 1-4-6 روش حلالیت و نفوذ
* 1-4-7 روش هدایت سنجی
* 1-4-8 روشهای الکتروشیمیایی
* 1-4-8-1 استفاده از مدل برهم کنش یونی پیترز با استفاده از روش الکتروشیمیایی
* بخش دوم - بخش تجربی
* 2-1 تجهیزات دستگاهی
* 2-2 مواد شیمیایی
* 2-3 تهیه محلولها
* 2-3-1- تهیه محلول غلیظ لیتیم کلرید با غلظت تقریبی
* 2-3-2 تهیه محلولهای اولیه غلیظ دوجزئی NaCl + LiCl با نسبتهای مولی مختلف(r =m1/m2)
* 2-3-2-1- تهیه محلول غلیظ اولیه دو جزئی NaCl + LiCl با نسبت مدلی (r=100)
* 2-4 روش پتانسیومتری با استفاده از الکترودیون گزین (سلول الکتروشیمیای بدون اتصال مایع)
* 2-5 روش افزایش استاندارد
* 2-6 تعیین ضرایب میانگین فعالیت بروش پتانسیومتری
* 2-6-1- جمع آوری داده های تجربی
* 2-6-2 کنترل کیفیت پاسخ دهی الکترودها
* 2-6-3 تعیین شیب نرنستی و همزمان دو الکترود در سلول بدون اتصال مایع (شیب وثابت سل)
* 2-6-4 روش تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی الکترولیت 1 1(NaCl + LiCl)با نسبتهای مدلی مختلف
* 2-6-4-1 تعیین ضریب انتخابگری پتانسیومتری الکترود Na+ نسبت به یون Li+ (k12)
* 2-6-4-2 روش تعیین ضرایب میانگین فعالیت
* 2-6-4-3 تعیین پارامترهای در سیستم محلول یک جزیی NaCl
* 2-6-4-4 تعیین پارامترهای برهم کنش یونی مخلوط دو جزئی NaCl+LiCl با نسبت های مولی مختلف
* 2-7- نتیجه گیری
* جداول و نمودارها
* منابع
* خلاصه انگلیسی
مقدمه:
کمتر کسی است که از اهمیت محلولها غافل باشد تمام مواد برای اینکه جذب بدن شوند باید بصورت محلول درآیند تا بتوانند از غشاء سلول عبور نمایند. همچنین طبیعت اطراف ما براساس انحلال و عدم انحلال مواد شکل گرفته است .
تاریخ گسترده شیمی بر اهمیت فوق العاده پدیده حلالیت گواهی می دهد . طبیعت اسرار آمیز محلولها، فلاسفه با ستان را به تفکر واداشت کیمیاگران قرون وسطی در جستجوی طلا و زندگانی ابدی بودند از اینرو علاقمند به تهیه آب حیات و حلال جهانی بودند.
با گذشت زمان و با افزایش علم بشر، علوم و اعتقادات خرافه ای جای خود را به دانش منطقی و بر مبنای واقعیت داد . اما با این وجود با توسعه علم شیمی از اهمیت موضوع کم نشد و شیمیدانان همیشه و در همه جا با مسائل مربوط به حلالیت مواجه می شوند. آنها از تفاوت حلالیت مواد، در فرآیندهای جداسازی و خالص سازی بهره می گیرند و روشهای تجریه ای آنها تقریبا به طور کامل بر ان استوار است. اغلب واکنشهای شیمیایی در فاز محلول انجام می شود و تحت تاثیر حلالیت اجزاء درون محلول قرار دارد. نیروهای جاذبه و دافعه ای که حلالیت یک گونه در فاز مایع یا جامد را تعیین می کنند هر نوع تعادل فازی بین دو یا چند جزء را کنترل می کنند . محلولهای الکترولیت بدلیل اهمیتی که دارند توجه شیمدانان را به خود معطوف داشته اند