13 ص
SHSP (Small heat shock protein) به طور گسترده ای در سلولهای پروکاریوت و یوکاریوت در مواجهه با گرما تولید می شود به خاطر تنوع و فراوانی غیرعادی در گیاهان پیشنهاد می شود که SHSP اهمیت ویژه ای دارند(علاوه بر تنش گرمایی، SHSP در گیاهان تحت سایر تنش ها و در مراحل نهایی نمو تولید می شود بیان ژن SHSP و تجمع پروتئین به هنگام مواجهه با تنشهای محیطی ما را متوجه این فرضیه می کند که این پروتئین ها یک نقش مهم در مقاومت به تنش بازی می کند وظیفه SDSPها همانند یک کاپرون (Chapron) مولکولی به وسیله سنجشهای invitro و onvivo تأئید می گردد.
مقدمه:
در مواجهه با تنش گرما هر دوی سلولهای پروکاریوت و یوکاریوت یک گروه پروتئینی با وزن مولکولی 15 تا 42 کیلو دالتون (KDa) که پروئینهای Small heat shock (SHSP) نامیده می شود تولید می گردند. در گیاهان به علت تولید زیاد و فراوانی غیرعادی SHSP ممکن است نیازشان را به سازش هر سریعتر به تغییرات محیطی مثل دما، نور، رطوبت منعکس سازند.
SHSPها بر اساس توالی DNA، تعیین موقعیت درون سلولی به 6 Class مرتب می شوند. SHSPها معمولاً در بافتهای رویشی تحت شرایط نرمال کشف نشده اند اما می توان به وسیلة تنشهای محیطی و محرک رشد و نمو به وجود آیند. رابطة بین سنتز SHSPها و پاسخ به تنش منتهی به این فرضیه شد که SHSPها سلولها را از آسیب اثرات استرس محافظت می نمایند. مدارک قوی مبنی بر این است که SHSPها همانند یک کاپرون مولکولی از اتصال ناقص سوبسترای پروتئین ها جلوگیری گردد و از آن طریق از تجمع برگشت ناپذیر آنها جلوگیری می کند بنابراین موجب اتصال درست سوبسترا می گردد. این Review داده های فیزیولوژیکی و مولکولی را در مورد SHSP گیاهان را بررسی کرده است.
50 ص
تنش آبی در گیاهان (Water stress) با کمبود آب به وضعیتی اطلاق می شود که در آن سلول ها از حالت آماس خارج شده باشند. دامنه تنش آبی از کاهش جزئی پتانسیل اب در اواسط روز تا پژمردگی دائم و خشک شدن گیاه متغیر است. به عبارت ساده تر تنش آبی زمانی رخ می دهد که سرعت تعرق بیش از سرعت جذب باشد با کاهش مقدار آب در خاک و عدم جایزگزینی آن پتانسیل آب در منطقه توسعه ریشه ها کاهش یافته و پتانسیل آب در گیاه نیز به طور مشابهی تقلیل می یابد و اگر شدت تنش آب زیاد باشد این امر باعث کاهش شدید فتوسنتز مختل شدن فرآیندهای فیزیولوژیکی و سرانجام خشک شدن و مرگ گیاه می گردد.
علت اصلی ایجاد تنش آبی در گیاهان تعریق یا کافی نبودن جدب آب و یا ترکیبی از این دو می باشد. در اواسط روز همیشه بین تعرق و جذب تاخیروجو دارد و علت این تاخیر همانطور که قبلا گفته شد مقاومت گیاه در مقابل حرکت آب است. می دانیم که تعرق به وسیله عواملی مانند ساختمان و سطح برگ ها اندازه منافذ روزنه ها، تعداد روزنه ها و دیگر عوامل موثر بر شیب فشار بخار بین گیاه و هوا کنترل می گردد. حال آنکه جذب آب به سیستم ریشه ای گیاه هدایت موئینگی خاک و مفاومت سلول های ریشه بستگی داشته و مسلم است که بین فرآیندهایی که با عوامل مختلف کنترل می شوند هماهنگی وجود ندارد و لذا تعرق و جذب نمی توانند دقیقا منطبق بر یکدیگر باشند.
چگونگی پیدایش تنش آبی
اگر تعرق زیاد باشد تنش آبی ممکن است در طی کمتر از یک ساعت در گیاه ظاهر شود ولی اکثر صدماتی که به گیاه وارد یمآید در اثر تنش هایی است که تداوم آنها بیش از چندین روز است چنانچه فرضا یک گیاه را آبیاری و سپس به مدت چند روز تا رسیدن به مرحله پژمردگی خود رها نمائیم در روز نخست پتانسیل آب در خک صفر بوده و پتانسیل آب ریشه نیز در همین حد است. پتانسیل آب برگ در یکی دو روز پس از آبیاری در اواسط روز پائین آمده و سپس در شب همگی بر هم منطبق می شوند. تا 5 روز اول هر چند تمام پتانسیل ها نسبت به روز اول کاهش نشان می دهند اما تفاوت بین پتانسیل آب برگ و خاک در طول روز در حدی است که باعث جذب آب می گردد. تا این که بسته به نوع خاک تقریبا از روز ششم به بعد پتانسیل آب برگ و خاک و ریشه همگی در حدود 15- بار بوده و هیچ گونه اختلاف پتانسیلی برای این که آب به داخل گیاه وارد شود وجود نخواهد داشت. از این مرحله به بعد گیاه قادر به ادامه حیات نمی باشد. البته تاثیر تنش در قسمت های مختلف گیاه یکسان نمی باشد. یعنی اگر تنش آبی از حد معینی فراتر رود نمی توان انتظار داشت که کل گیاه یک دفعه خشک شود زیرا در داخل خود گیاه نیز رقابت برای آب وجود دارد. مثلا برگ های جوان آب مورد نیاز خود را ا ز برگ های مسن می گیرند و هنگامی که گیاه با تنش آبی مواجه می شود ابتدا برگ های مسن از بین می رود و راس ساقه تا آخرین مراحل که تمام برگ ها پژمرده شوند به نمو خود ادامه می دهند. همچنین در پاره ای از گیاهان آب جمع شده در میوه به سایر قسمت های گیاه منتقل می شود از جائی که رشد میوه ها در بسیاری از گیاهان در شب که تعرق گیاه کم است صورت می گیرد چنانچه ملاحظه شود میوه رشد چندانی ندارد. باید متوجه شد که گیاه با تنش آبی مواجه است ولو این که ظاهرا امر در برگ ها مشخص نباشد.
فصل اول: تنش آبی و تنش خشکی در گیاهان
تنش آبی
چگونگی پیدایش تنش آبی
اثرات تنش آبی بر رشد گیاه
اثرات تنش آب بر ساختمان گیاه
تنش آب در سطح سلولی
اثرات تنش آب بر تنفس و فتوسنتز
اثرات مفید تنش آبی
مقاومت در مقابل بی آبی
حساسترین مراحل رشد گیاه نسبت به کم آبی
مقاومت به خشکی
فرار از خشکی
تحمل خشکی با حفظ ذخیره آب
تحمل خشکی با عدم ذخیره آب
تکامل گیاهان و کارآیی مصرف آب
بیوسنتز و متابولیسم
آبسیزیک اسید و مواد ضد تعرق
کشف اسید آبسیسیک
خواب و جوانه زدن بذر و نقش ABA در انجام آن
اسید آبسیزیک و از دست رفتن آب
اسید آبسیزیک چگونه عمل میکند؟
بررسی مجدد مکانیسم روزنهای و نقش ABA در انجام آن
فهرست منابع
187 صفحه
مقدّمه :
در15ژانویه1919، در خیابان تجاری بوستون واقعه ای وحشتناک رخ داد. مخزن بزرگی با27 متر قطر و حدود 15 متر ارتفاع، ناگهان شکست و بیش از 5/7 میلیون لیتر شیره قند در خیابان ریخت .
ناگهان قسمت بالای مخزن به هوا و پهلوها به دو طرف پرتاب شدند. ساختمانی در آن نزدیکی، که کارمندانش در حال صرف نهار بودند، فرو ریخت و چند نفر مدفون شدند و قسمتی از مخزن به ایستگاه آتش نشانی برخورد کرد و تعدادی آتش نشان کشته و مجروح شدند.
به هنگام فروریختن، قسمتی از مخزن به یکی از ستونهای ساختمان بلند شرکت راه آهن بوستون اصابت کرد. این ستون کاملا قطع شد... و ساختمان از حالت قائم خارج و چند فوت نشست کرد... . بر اثر غرق شدن در شیره قند، یا خفگی، و یا در اثر برخورد با آوار دوازده نفر جان باختند، بیش از 40 نفر مجروح شدند. تعداد زیادی اسب که در آن ساختمان می زیستند غرق شدند، وبقیه را نیز بر اثر شدت جراحات مجبور بودند بکشند.
شکست مخزن شیره قند شناخت وقایعی را که به شکست زودرس قطعات مهندسی منجر می شوند، الزامی می کند. گاهی سایر سازه ها نیز به همین سرنوشت دچار می شوند. برای مثال، در بلژیک، کانادا، اتریش و ایالات متحده آمریکا در طی پنجاه سال گذشته چندین پل فرو ریخت ، علاوه بر آن تا به حال در تعداد بسیاری کشتی باری شکست رخ داده است. از مطالعات بعدی نتیجه گیری شده است که این شکستها، که به دو قسمت شدن کشتی منجر می شود، ناشی از تمرکز تنشها در قسمت بالای کشتی و امکان پذیر بودن عبور ترک از قسمت جوش است،جوشهایی که صفحات فولادی دا به همدیگر وصل می کند همچنین نواقص جوشکاری و کیفیت نامطلوب فولاد به فرآیند شکست کمک می کند. اخیرا تعداد زیادی شکست در کشتیهای حامل نفت رخ داده است که به آلودگی سواحل و محلهای غنی از ماهی منجر شده است.
جالب است بدانیم که مسیر شکست در کشتیهای باری شبیه به مسیر شکست در کشتی مسافربری تایتانیک است که در سال 1912 با کوه یخ برخورد و غرق شد، درنتیجه باعث مرگ 1500 مسافر و خدمه کشتی شد. بقایای این کشتی را ابتدا در سال 1985 دکتر رابرت بالارد(Robert Ballard) و همکارانش در عمق 6/3 کیلومتری از سطح اقیانوس اطلس کشف کردند. گاردز و همکارانش حدس زدند که غرق شدن کشتی تایتانیک ناشی از شکست ترد ساختار فولادی است که در اثر برخورد با کوه یخ در شمال اقیانوس اطلس رخ داده است. گانن گزارش کرده است آزمون شکست شارپی که روی یک قطعه از بدنه کشتی در˚-1C انجام شده، تقریباً برابر با دمای آب در لحظه وقوع فاجعه بوده، و تأیید کرد که بدنه کشتی از فولاد ترد ساخته شده است. این فولاد ترد به وجود درصد گوگرد زیاد و یا به دمای زیاد دگرگونی ترد-نرم مرتبط شده است. به علاوه، لبه های قطعاتی که پیدا شده بود... ناصاف، و تقریبأ خرد شده بود و بر روی خود فلز نشانه ای از خمش نبود.
تصاویری را که گروه تحقیق بالارد از اجزای بدنه کشتی تایتانیک گرفتند، مارشال بررسی و نظریه شکست ترد فلز را، که باعث غرق شدن آن بود تأیید کرد. «قطعات شبیه به قسمتهای ترک خوردة پوستة تخم مرغ است و به نظر می رسد که شکست بدون توجه به بستها و مرزهای صفحات گسترش یافته است» عقیده بر این است که جداشدن نهایی قسمت جلو و عقب کشتی به روش زیر رخ داده است:
وقتی قسمت جلوی کشتی به کوه یخ برخورد می کند به زیر آب می رود، بنابر این قسمت عقب کشتی به سمت بالای آب می آید. قسمت معلق عقب کشتی ماکزیمم ممان خمشی را به وسط کشتی اعمال می کند و کشتی را دونیم می کند، این کار روی یا نزدیک به عرشه بالای کشتی، که تنش خمشی از نوع کششی است، رخ داده است. در نتیجه، کمانه کردن قسمت جلو کشتی نزدیک به قسمت پائین به وضوح دیده می شود، این علائم نشان دهندة وجود تنشهای خمشی فشاری نزدیک به کف کشتی است.
با توجه به حوادث ناگوار توأم با هزینه های جانی و مالی، پر واضح است که شناخت پدیده تمرکز تنش و راههای پیشگیری و تعدیل آن امری ضروری و اجتناب ناپذیر می باشد.
چکیده :
بی شک الگو و الگوبرداری در هر زمینه ای موجب پیشرفتهای شگرفی در رسیدن به اهداف موضوع می شود. حال وقتی صحبت از فن آوری های مهندسی می شود تمامی توجهات بر منابعی خاص متمرکز می گردد و چه بسا امر الگوسازی توانسته است این منابع را اصلاح نماید.
در این ایده که با نام «الگوی مدن برای سیستم های تعلیق تحت تنش (M.S.S) » معرفی شده است، کلماتی حیاتی در سر نام این پژوهش به چشم می خورد. کلماتی مانند مدرنیته، الگو و یا ریشه هایی از علم مکانیک که همه و همه برگرفته از یک سنت شکلی در خط مشی اهداف نوآورانه و ابداعی است که امری بس دشوار است.
(دشواری به این دلیل که سیستم های تعلیق در یک زمره قرار دارند و شناخت نوع تحت تنش آن و الگوسازی برای این نوع سیستم خاص امری است که در مدت مدیدی صورت گرفت.) این پیشگفتار بی شک توان و قدرتی در بیان مفهوم طرح ندارد ولی می توان اهداف آن را خلاصه نماید، لذا در این پژوهشنامه در فصول ابتدایی آن به قسمت منبع شناسی و اهداف بیان الهمانات و اطلاعات اولیهی طرح پرداخته ام و در فصول انتهایی نیز به بدنهی اصلی طرح، یعنی الگوی M.S.S ، مقایسات، تئوری، ترسیمات، اطلاعات نمایی و تمامی جنبه های نوآورانه و نیز به شناخت کلمات حیاتی سرنام طرح میپردازیم. در آخر نیز شما را دعوت به خواندن پاراگراف اصلی طرح، یعنی تعریف پژوهشگر از اختراع خود می نمایم:
فهرست مطالب:
فصل اول: خودروشناسی مقدمانی
1-1 خودرو
1-2 زیر مجموعه های خودرو
1-2-1 زنجیرهی توان
1-2-1-1 موتور
1-2-1-2 خط رانش
1-2-2 شاسی
1-2-2-1 سیستم تعلیق
1-2-2-2 سیستم فرمان
1-2-3 پیکرهی خودرو
1-2-3-1 اتاق (بدنه)
1-2-3-2 دسته بندی
1-2-3-4 برتری ها و کاستی ها
1-2-4 مدارات الکتریکی
فصل دوم: تئوری سیستم های تعلیق
2-1 تعریف سیستم های تعلیق
2-2 جایگاه سیستم تعلیق
2-3 زیر مجموعه های سیستم تعلیق
2-3-1 چرخ
2-3-1-1 تایر
2-3-1-2 رینگ
2-3-2 فمر
2-3-2-1 مکانیزم فنرها:
2-3-2-2 انواع فنر
2-3-2-3 خصوصیات فنرها
2-3-3 لرزه گیرها (کمک فنر)
2-3-3-1 کاربرد لرزه گیرها
2-3-3-2 کارکرد لرزه گیرها
2-3-3-3 نصب و جای گذاری لرزه گیر
2-3-3-4 انواع لرزه گیرها
فصل سوم: انواع سیستم تعلیق
3-1 دسته بندی سیستم های تعلیق
3-1-1 دسته بندی بر پایه وابستگی محور
3-1-1-2 سیستم تعلیق یکپارچه
3-1-1-2-1 برتری ها و کاستی ها
3-1-1-3 سیستم تعلیق جداگانه
3-1-1-3-1 برتری ها و کاستی ها
3-1-1-4 سیستم تعلیق نیمه جداگانه
3-1-1-4-1 برترها و کاستی ها
3-1-2 دسته بندی بر پایه جای قرارگیری
3-1-2-1 سیستم تعلیق جلو
3-1-2-2 سیستم تعلیق پشت
3-1-2-3 سیستم تعلیق یکپارچه جلو و پشت
3-1-3 دسته بندی بر پایه سازوکار
فصل چهارم: تئوری سیستم تعلیق M.S.S و مستندات
4-1 تعریف سیستم تعلیق ایدهآل
4-2 پیش فرضی از سیستم تعلیق “M.S.S”
4-2-1 الگو و الگوسازی
4-3-2 بررسی مفهوم مدرنیته
4-2-3 سیستم های تعلیق تحت تنش
4-3 تقسیم بندی اجزای سیستم تعلیق “M.S.S”
4-3-1 اسکلت
4-3-1-1 قاب
4-3-1-2 قسمت متصل به قاب (قاب سیستم تعلیق جلو)
4-3-2 تعلیق
4-3-2-1 تعلیق قسمت جلو
4-3-2-2 تعلیق قسمت عقب
4-3-3 متعلقات
4-3-3-1 شبیه ساز موتور
4-3-3-2 محافظ داخل اتاقک
4-3-4 بدنه اطاقک
4-4 تصاویر مونتاژی از حالت مجازی سیستم تعلیق “M.S.S”
4-5 تصاویر ماکتینگ از حالت واقعی سیستم تعلیق “M.S.S”
4-6 دفاعیاتی از سیستم تعلیق “M.S.S”
خلاصه پایان نامه: