دانلود تحقیق با موضوع مقایسه موتورهای توربو شارژ و سوپر شارژ که شامل 10 صفحه ،همراه با تصاویر مربوطه و مشتمل بر بخشهای زیر است:
نوع فایل : Word
فهرست
مقایسه موتورهای توربو شارژ و سوپر شارژ
الف) توربوشارژر(Turbocharger):
شکل ۱ - یک نمونه از توربوشارژر
نحوه عملکرد توربوشارژر:
شکل ۲- داخل یک توربوشارژر
نکاتی در مورد طراحی یک توربوشارژر:
۱- تقویت بیش از اندازه:
۲- پس افت (Lag):
الف) استفاده از توربوشارژرهای کوچک به جای توربوشارژرهای بزرگ:
ب) استفاده از توربین گاز با پره های سرامیکی:
ج) استفاده از یاتاقانهای توپی (Ball Bearing) به جای یاتاقانهای سیالی:
د) استفاده از توربوشارژرهای ترتیبی (Sequential Turbocharger):
مکانیزم کنترل توربین گاز (Waste Gate):
کولر داخلی (Inter Cooler):
شکل۳- مدار یک سیستم تقویت کننده (توربوشارژر) به همراه کولر داخلی
ب) سوپر شارژ (Supercharge)
فرمت فایل : word(قابل ویرایش)تعداد صفحات50
عنوان مطالب صفحه
مقدمه 1
فصل اول
تقسیم بندی کلی پمپ ها 2
انواع پمپ ها جابه جایی مثبت 3
پمپ های دوار 4
پمپ های رفت وبرگشتی 9
مقایسه پمپ های جابه جایی مثبت ودینامیکی 10
فصل دوم-توربوپمپ ها
اجزای اصلی توربوپمپ ها 11
محاسبه هدتولیدی پروانه 13
منحنی مشخصه 16
پدیده کاویتاسیون ومفهومNPSH 18
بررسی خوردگی درتوربوپمپ ها 23
قوانین تشابه پمپ هاوترکیب پمپ ها 26
جنس اجزای توربوپمپ ها 35
اجزای فرعی درتوربوپمپ ها 38
پمپ های چندطبقه فشارقوی 43
ضمائم 45
منابع 49
دینامیک سیالات در توربو ماشین ها
178 صفحه در قالب word
فهرست مطالب:
پیش گفتار
1- بخش اول
1-1 دینامیک سیالات در توربوماشینها 1
2-1 مقدمه 1
3-1 ویژگیهای میدانهای جریان در توربوماشینها 4
4-1 ویژگیهای اساسی جریان 4
5-1 جریان در دستگاههای تراکمی 7
6-1 جریان در فن ها و کمپرسورهای محوری 8
7- 1جریان در کمپسورهای سانتریفیوژ 16
8-1 جریان در سیستمهای انبساطی 21
9-1 جریان در توربینهای محوری 23
10-1 جریان در توربینهای شعاعی 37
11-1 مدلسازی میدانهای جریان توربوماشینها 41
12-1 مراحل مختلف مدلسازی مرتبط با فرآیند طراحی 42
13-1 مدلسازی جریان برای پروسس طراحی ابتدائی 44
14-1 مدلسازی جریان برای پروسس طراحی جز به جز 46
15-1 قابلیتهای حیاتی برای تجهیزات آنالیز جریان در توربوماشینها 47
16-1 مدلسازی فیزیک جریان 49
17-1 معادلات حاکم و شرایط مرزی 50
18-1 مدلسازی اغتشاش وانتقال 55
19-1 تحلیل ناپایداری و اثر متقابل ردیف پره ها : 61
20-1تکنیک های حل عددی 65
21-1 مدلسازی هندسی 70
22-1 عملکرد ابزار تحلیلی 77
23-1 ملاحظات مربوط به قبل و بعد از فرآیند 81
24-1 انتخاب ابزار تحلیلی 86
25-1 پیش بینی آینده 89
26-1 مسیرهای پیش رو در طراحی قطعه 90
27-1 مسیرهای پیش رو در قابلیتهای مدلسازی 93
28-1 خلاصه 96
مراجع 99
2- بخش دوم
1-2 آزمونهای کارآیی توربو ماشینها 104
2-2 آزمونهای کارآیی آئرودینامیکی 104
3-2 اهداف فصل 104
4-2 طرح کلی بخش 105
5-2 تست عملکرد اجزا 106
6-2 تأثیر خصوصیات عملکردی بر روی بازده 109
7- 2تست عملکرد توربو ماشینها 113
8-2 روش تحلیل تست 114
9-2 اطلاعات عملکردی مورد نیاز 115
10-2 اندازه گیریهای مورد نیاز 115
11-2 طراحی ابزار و استفاده از آنها 120
12-2 اندازه گیری فشار کل 120
13-2 اندازه گیری های فشار استاتیک 129
14-2 اندازه گیریهای درجه حرارت کل 131
15-2 بررسی های شعاعی 133
16-2 Rake های دنباله 136
17-2 سرعتهای چرخ روتور 138
18-2 اندازه گیریهای گشتاور 139
19-2 اندازه گیریهای نرخ جریان جرم 139
20- 2اندازه گیریهای دینامیکی : 140
21-2 شرایط محیطی 143
22-2 سخت افزار تست 143
23-2 ملاحظات طراحی وسایل 148
24-2 نیازهای وسایل 149
25-2 ابزارآلات بازده 151
26-2 اندازه گیریهای فشار 151
27-2 اندازه گیریهای دما 155
28-2 اندازه گیریهای زاویه جریان 158
29-2 روشهای تست و جمع آوری اطلاعات 161
30-2پیش آزمون 161
31-2 فعالیت های روزانه قبل از آزمون 162
32-2 در طی آزمون 163
33-2 روشهای آزمون 163
34-2 ارائه اطلاعات 165
35-2 تحلیل و کاهش اطلاعات 165
36-2 دبی اصلاح شده 166
37-2 سرعت اصلاح شده 167
38-2 پارامترهای بازده 167
39-2 ارائه اطلاعات 170
40-2 نقشه های کارآیی 170
41-2 مشخص کردن حاشیه استال (stall margin) 171
مراجع 173
بخش اول
دینامیک سیالات در توربو ماشین ها
مقدمه:
در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.
هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.
وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند. به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است، SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.
اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد. در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.
بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند. این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.
میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود. از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.
در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد. اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند. در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند. این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند. برای پاسخگویی به نیاز طراحی چنین قطعاتی، ابزارهای CFD پیشرفته ای لازم است که قابلیت تحلیل جریانهای سه بعدی، لزج و در محدوده صوتی، مدل سازی اغتشاش و انتقال حرارت و برخورد با پیکربندی های هندسی پیچیده را داشته باشد. علاوه بر این، جریانهای گذرا (ناپایا) و تعامل ردیفهای چندگانه تیغه ها باید مورد ملاحظه قرار گیرد.
هدف این فصل این است که بازنگری مختصری از مشخصات جریان در انواع مختلف قطعات توربوماشینها ارائه داده و نیز خلاصه ای از قابلیتهای تحلیلی CFD که مورد نیاز برای مدل کردن چنین جریانهایی هستند را بیان کند.
این باید به خواننده، درک بهتری در مورد تاثیر جریان بر طراحی چنین اجزایی و میزان کارایی مدل سازی مورد نیاز برای آنالیز اجزاء بدهد. تمرکز بر روی کاربردهای موتورهای هواپیما خواهد بود، ولی دهانه های ورودی، نازلها و محفظه های احتراق مورد توجه خواهند بود. به علاوه یک بررسی از هر دو گرایش طراحی قطعات و ابزارهای تحلیل CFD را شامل می شود. به علت پیچیدگی این موضوعات، تنها یک بحث گذرا ارائه خواهد شد. اگرچه مراجع فراهم شده اند تا به خواننده اجازه دهد این مباحث را با جزئیات بیشتر جستجو کند.
ویژگیهای میدان های جریان در توربو ماشین ها:
در این قسمت از فصل، خصوصیات اولیه میدانهای جریان توربو ماشینها بررسی خواهد شد. اگرچه بحث اساسا کاربرد موتورهای هواپیما را مورد توجه قرار خواهد داد، ولی بسیاری از خصوصیات جریان برای توربو ماشینها عمومیت دارند علاوه بر بازنگری مختصر بر ویژگیهای میدانهای جریان عمومی، طبیعت جریانهای خاص در انواع گوناگون اجزاء مورد توجه قرار خواهد گرفت.
ویژگیهای اساسی جریان:
میدان های جریان در توربو ماشین های ذاتا بسیار پیچیده و سه بعدی است. در بسیاری از موارد، جریان ها تراکم پذیرند و ممکن است از مادون صوت به جریان با سرعت صوت و به فراصوتی تغییر کنند. در مسیر جریان ممکن است شوک وجود داشته باشد و تعامل شوک و لایه مرزی ممکن است اتفاق بیفتد که باعث افت بازده می شود. گرادیان فشارهای قابل توجه، در هر جهتی می تواند وجود داشته باشد.
همچنین چرخش، یک فاکتور مهم است که رفتار جریان را تحت تاثیر قرار می دهد.
جریانها اکثرا لزج و مغشوش هستند، اگرچه ناحیه هایی با جریان لایه ای و انتقالی نیز وجود دارد. اغتشاش و تلاطم در میدان جریان می تواند در لایه مرزی و جریان آزاد اتفاق بیفتد، جایی که میزان اغتشاش، بسته به شرایط جریان بالادست، تغییر می کند. برای مثال جریان پایین دست یک محفظه احتراق یا کمپرسور چند طبقه می تواند اغتشاش جریان آزاد بسیار بیشتری نسبت به جریان ورودی به یک فن داشته باشد.
تنش های پیچیده و کاهش کارآیی می تواند ناشی از پدیده های جریان لزج، مثل لایه های مرزی سه بعدی، اثر متقابل بین لایه مرزی تیغه و دیواره، حرکت جریان نزدیک دیوار، جریان جدا شده، گردابه های مربوط به لقی نوک پره، گردابه های لبه فرار، دنباله ها، و اختلاط باشد. علاوه بر این، حرکت نسبی دیواره و انتقال بین دیواره های دوار و ثابت می تواند رفتار لایه مرزی را تحت تاثیر قرار دهد. جریان ناپایدار می تواند در اثر تغییرات شرایط بالادست جریان با زمان، گردابه های رها شده از لبه فرار تیغه ها، جدایی جریان و یا اثر متقابل بین ردیف پره های دوار و ثابت، ایجاد شود، که می تواند منجر به بارگذاری ناپایدار بر روی تیغه ها شود.
اثرات حرارت و انتقال حرارت می تواند فاکتور مهمی باشد، بخصوص در قسمتهای داغ موتور. گازهای داغ محفظه احتراق از میان توربین عبور می کنند و رگه های داغی را بوجود می آورند که توسط میدان جریان توربین منتقل می شوند. برای حفاظت از اجزائی که در معرض بالاترین دما قرار دارند، جریانهای خنک کننده از میان سوراخهای موجود در تیغه های توربین به مسیر گازهای داغ اولیه تزریق می شود و برای سطوح تیغه ها خنک کنندگی لایه ای را فراهم می آورد. به طور مشابه، جریانهای خنک کننده ممکن است به جریان اصلی در طول دیواره نیز تزریق شود.
بیشتر پیچیدگی میدانهای جریان سیال در توربو ماشین ها مستقیما تحت تاثیر مسیر جریان و هندسه اجزاء می باشد. ملاحظات هندسی شامل منحنی و شکل endwall مسیر جریان، فاصله بین ردیف های تیغه ها، گام تیغه، و stagger می شود. موارد دیگری از هندسه مسیر جریان شامل پیکربندی ردیفهای تیغه ها، از قبیل استفاده از «tandem blades»، تیغه های جداکننده، دمپرهای midspan وعملیات روی نوک تیغه ها می باشد. جزئیات بیشماری مربوط به شکل تیغه، مثل توزیع ضخامت، خمیدگی، جهت، قوس، به عقب برگشتگی، حلزونی، پیچ خوردگی، ضریب شکل، صلبیت، نسبت شعاع توپی به نوک، شعاع لبه حمله تیغه و لبه فرار تیغه، اندازه فیلت و فاصله نوک تیغه نیز از همان اهمیت برخوردارند. خنک کاری تیغه ها نیز دارای اهمیت هستند، اندازه و موقعیت سوراخهای خنک کننده درون تیغه، مسیر اولیه گاز را تحت تاثیر قرار می دهد.
بنابراین، رفتار جریان در اجزای توربو ماشینها نیز کاملا پیچیده بوده و بسیار متاثر از هندسه مسیر جریان است. یک فهم عمیق از اثرات هندسه مسیر جریان و اجزا و قطعات، به طراح اجازه خواهد داد تا از جریانی که حاصل شده، سود ببرد. برای رسیدن به این درک و برای انجام تحلیلهای لازم برای بهینه کردن رفتار بسیار پیچیده جریان لازم است از تکنولوژی پیشرفته مدلسازی جریان استفاده شود.
جریان در دستگاههای تراکمی:
سیستم های تراکمی توربو ماشینی در موتورهای هواپیما، می توانند از ترکیب های گوناگونی از اجزای محوری و یا شعاعی (سانتریفوژ) بهره ببرند. در موتورهای توربو فن معمولی، یک فن محوری در ورودی جریان قرار گرفته و بدنبال آن یک جداکننده جریان قرار دارد که جریانهای مرکزی و کنارگذر (بای پس) را از هم جدا می کند.
یک کمپرسور محوری چند طبقه در پایین دست جریان درون هسته (جریان مرکزی) قرار داده شده است و ممکن است به دنبال آن کمپرسور سانتریفوژ نیز قرار گیرد. اختصاصا در کاربردهای مربوط به موتور هواپیما و توربین گاز، اغلب از کمپرسورهای سانتریفوژ بهره برده می شود.
تمامی پیکربندی های سیستمهای تراکمی دارای جریانهای پیچیده و سه بعدی، با گرادیان فشار معکوس هستند که می توانند باعث جدایی جریان شوند. علاوه بر این چرخش، حرکت نسبی shroud، جریان های نشتی لبه ها، شوک ها، اثر متقابل شوک و لایه مرزی، اثر متقابل تیغه و endwall و نیز تاثیر متقابل ردیف تیغه ها همگی در ساختار میدان جریان کمپرسور نقش دارند. جزئیات مربوط به رفتار جریان بخصوص در مورد کمپرسورهای سانتریفوژ و محوری در بخش بعدی مورد بررسی قرار خواهد گرفت.
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
فرمت فایل : WORD (قابل ویرایش)
تعداد صفحات:90
پایان نامه دوره کارشناسی
رشته مهندسی صنایع گرایش تکنولوژی صنعتی
فهرست مطالب:
مقدمه .............................................................. .....................................................................1
فصل اول : توربو کمپرسور................................................................................................ 2
توربو کمپرسور گاز چیست؟ ..................................................................................... 3
فصل دوم : شرکت توربو کمپرسور نفت ...................................................................... 12
شرکت توربو کمپرسور نفت ..................................................................................... 13
پروژه های در حال انجام ........................................................................................... 15
شرکت های زیر مجموعه .......................................................................................... 18
برگه های کنترل کیفیت .............................................................................................. 35
فصل سوم : کنترل کیفیت .................................................................................................. 56
تعریف کنترل کیفیت .................................................................................................... 57
تاریخچه کنترل کیفیت ................................................................................................. 58
عوامل تاثیر گذار در کیفیت ...................................................................................... 62
چرا باید کار کنترل کیفیت انجام گیرد؟ ................................................................. 64
چرا روش های آماری کنترل کیفیت اهمیت دارند؟ .......................................... 65
فصل چهارم : کنترل کیفیت چند متغیره ....................................................................... 66
تاریخچه کنترل کیفیت چند متغیره .......................................................................... 67
دلایل استفاده از کنترل کیفیت چند متغیره ............................................................ 68
کنترل میانگین ها ......................................................................................................... 69
حالت مربوط به n = 1 .............................................................................................. 77
مثال دو متغیره .............................................................................................................. 78
مثال سه متغیره ............................................................................................................. 84
ضمائم
فهرست منابع و مآخذ
Abstract
چکیده
این پروژه شامل چهار فصل می گردد .
در فصل نخست سعی شده توضیح مختصری درباره توربو کمپرسور ارائه شود .
در فصل دوم اطلاعاتی درباره شرکت توربو کمپرسور نفت و نحوه انجام کنترل کیفیت در شرکت ارائه شده است .
در فصل سوم توضیحات مختصری درباره کنترل کیفیت و تاریخچه آن بیان شده است .
و در پایان در بخش پایانی نحوه کنترل چند مشخصه کیفی با استفاده از آماره هتلینگ ضمن انجام یک پروژه صرفا آموزشی بررسی می گردد .
مقدمه
کنترل کیفیت قدمتی برابر با تولید دارد .هر آنچه انسان حتی قرن ها قبل از میلاد تولید کرده است دارای دقت و ظرافتی است که نشان از توجه سازندگان آن به کیفیت دارد . نگاهی بر دست ساخته های انسان باستان در موزه ها و یا عجایب هفت گانه جهان نظیر اهرام ثلاثه مصر ، مجسمه ابوالهول و دیوار چین تایید خوبی بر این مدعاست .
با شروع انقلاب صنعتی در اروپا در اواسط قرن هیجدهم میلادی و استفاده از ماشین آلات و ابزار دقیق در تولید ، روش های تولید نیز مدرن تر و پیچیده تر شدند . این تغییرات حجم تولید محصولات را بالا برد و روش های کنترل دقیق بودن و ظرافت نیز در آنها تغییر یافت . مقایسه روش های کنترل کیفیت تولیدات در سال های اولیه انقلاب صنعتی با آنچه که امروزه به چشم می خورد ، نشان می دهد که تغییرات در این بخش فوق العاده بوده است . این تغییرات که خواست عمده صاحبان صنایع و مصرف کنندگان بود ، در سال 1920 میلادی به ابداع کنترل کیفیت آماری منجر شد .
تعداد صفحات : 10
فرمت فایل : word (قابل ویرایش)
فهرست مطالب :
الف) توربوشارژر(Turbocharger):
نحوه عملکرد توربوشارژر:
نکاتی در مورد طراحی یک توربوشارژر:
۱- تقویت بیش از اندازه:
۲- پس افت (Lag):
الف) استفاده از توربوشارژرهای کوچک به جای
توربوشارژرهای بزرگ:
ب) استفاده از توربین گاز با پره های سرامیکی:
ج) استفاده از یاتاقانهای توپی (Ball Bearing) به جای
یاتاقانهای سیالی:
د) استفاده از توربوشارژرهای ترتیبی (Sequential
Turbocharger):
مکانیزم کنترل توربین گاز (Waste Gate):
کولر داخلی (Inter Cooler):
ب) سوپر شارژ (Supercharge)
مقایسه موتورهای توربو شارژ و سوپر شارژ
الف) توربوشارژر(Turbocharger):
زمانی که مردم درباره خودروهای مسابقه ای یا موتورهایی با بازدهی و عملکرد بالا صحبت می کنند معمولاً بحث توربوشارژرها مطرح می شود. توربوشارژرها همچنین در موتورهای دیزلی بزرگ نیز استفاده می شوند.
توربوشارژر یک کمپرسور می باشد که توان خروجی موتورهای احتراق داخلی را در اثر افزایش میزان جرم هوا و سوخت ورودی به موتور افزایش می دهد. یکی از مزایای بزرگ توربوشارژرها آن است که افزایش قدرت خروجی موتور آنها در مقایسه با وزن آنها بسیار ناچیز است و این یکی از دلایلی است که باعث شده توربوشارژرها تا این اندازه محبوب و معروف گردند.(شکل ۱ را نگاه کنید)
نحوه عملکرد توربوشارژر:
یک توربوشارژر از یک کمپرسور گریز از مرکز و یک توربین گازی تشکیل شده است که توربین گازی توسط پیچ به مانیفولد دود متصل می شود و گازهای خروجی از موتور باعث چرخش توربین گاز شده و به سبب آن کمپرسور که توسط یک شفت به توربین گازی متصل است شروع به چرخش نموده و هوای محیط را مکش کرده و سپس آن را متراکم کرده و به طرف موتور می فرستد و هوای ورودی بیشتر به موتور به معنی سوخت بیشتر به داخل موتور و هوا و سوخت بیشتر به معنی انرژی و قدرت خروجی موتور می باشد. سرعت چرخش توربین با توجه به استفاده توربوشاررژ می تواند متفاوت باشد و اکثراً دارای سرعتهای چرخش بالا هستند به همین دلیل باید از یاتاقانهای مخصوصی استفاده گردد که بتواند نیروی حاصل از چرخش شقت را تحمل کند که معمولاً از یاتاقانهای سیال (fluid bearing) استفاده می شود. در یاتاقانهای سیال بین شفت و یاتاقان یک لایه روغن قرار دارد که روغن فوق دو وظیفه مهم بر عهده دارد:
۱- باعث خنک شدن شفت و سایر قسمتهای توربوشارژر می شود
۲- باعث از بین رفتن اصطکاک بین شفت و یاتاقان هنگام چرخش می شود.(شکل ۲ را نگاه کنید)