مقاله کشاورزی و محیط زیست با عنوان فلزات سنگین در کشاورزی و محیطزیست جیوه (Hg) در فرمت ورد و حاوی مطالب زیر می باشد:
* مقدمه
* مشخصات عمومی
* منابع (استحصال)
* اثر جیوه در گیاه
* اثرات فیزیولوژیکی جیوه
حذف بیولوژیکی عناصر سرب ، آرسنیک ، جیوه ، کروم
فایل بصورت word میباشد
سرخارگل (Echinacea purpurea ) گیاهی است علفی، چندساله متعلّق به تیره گل ستاره ایها (Asteraceae ) . سرخارگل یکی از مهمترین گیاهان دارویی در صنایع داروسازی بیشتر کشورهای توسعه یافته است. موّاد مؤثّره این گیاه خاصیّت ضد ویروسی داشته و تقویت کننده سیستم دفاعی بدن (Immunostimulant ) می باشد. منشاء این گیاه شمال آمریکا گزارش شده است و در شمال رودخانه میسوری به صورت انبوه می روید. این گیاه در فلور ایران وجود ندارد و بذر آن برای اوّلین بار در سال 1372 وارد کشور شده است. هدف از انجام این تحقیق چگونگی کشت و تولید سرخارگل بود که با استفاده از نتایج آن بتوان آنرا در مقیاس مناسب کشت و مادّه اوّلیه تولید داروهای حاصل از این گیاه را تأمین کرد. طبق نتایج این تحقیق بذور را باید نیمه اوّل اسفند ماه در خزانه هوای آزاد و به عمق 2 تا 4 سانتی متر کشت کرد. بذور پس از طی دوره سرما نیمه اوّل فروردین ماه سبز می شوند. اواخر خرداد زمان مناسبی برای انتقال نشاء ها به زمین دایمی است. گیاهان اواسط تابستان به گل می روند. ارتفاع گیاهان از سال دوّم رویش به تدریج افزایش می یابد و در سال چهارم رویش به حداکثر (99 سانتیمتر) می رسد. در سال چهارم حداکثر عملکرد پیکر رویشی (4 تن در هکتار) بدست آمد. حداکثر مقدار عصاره خشک (35 در صد) از پیکر رویشی گیاهان دو ساله بدست آمد، زیرا با افزایش سن گیاه مقدار بافتهای چوبی گیاه افزایش می یابد. با توجه به اینکه کشور ما از نظر اقلیمی از تنوع خاصّی برخوردار است انجام این نوع تحقیقات در مناطق مختلف کشور در مورد گیاهانی که بومی کشور نیستند از نظر اقتصادی بسیار ارزشمند و ضروری است.
کلمات کلیدی : سرخارگل، گل ستاره ای، عملکرد پیکر رویشی، عصاره خشک. چکیده مقاله
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:76
فهرست مطالب:
مقدمه: ۲
۳
مبدل HVDC: 5
تبدیل ولتاژ AC.DC 6
کنترل سیستم HVDC: (کنترل آتش کلید) ۷
مدارهای مبدل و اجزاء آن: ۱۲
کلید تایریستوری فشار قوی: ۱۴
آرایش های HVDC: 16
«آرایشهای اصلی HVDC» ۱۶
آریش های پشت به پشت: ۱۷
تحلیل سیستم قدرت دارای مبدل های HVDC 18
کاربردها و روندهای جدید: ۲۲
انتقال به صورت جریان مستقیم فشار قوی: ۲۵
خط ارتباطی دو قطبی HVDC 27
شکل: خط ارتباطی هم قطبی HVDC 28
راکتورهای هوارساز ۳۰
فیلترهای هارمونیک: ۳۱
منابع توان راکتیو: ۳۱
الکترودها: ۳۲
خطوط جریان مستقیم: ۳۲
نظریه و معادلات عملکرد کنورتور: ۳۳
مشخصه های شیر: ۳۳
مدارهای کنورتور ۳۵
«مدار پل سه فاز موج کامل» ۳۵
بررسی مدار پل موج کامل سه فاز: ۳۵
ابزار اساسی کنترل: ۳۷
ملاحضات زیر بر انتخاب مشخصه های کنترلی تاثیر می گذارد: ۳۷
ه( حداقل سازی هزینه تامین توان راکتور به کنورتورها: ۳۹
مشخصه های ایده آل: ۴۰
مشخصه های واقعی: ۴۲
مشخصه های ترکیبی یکسوساز و اینورتور: ۴۴
مدهای دیگر کنترل ولتاژ اینورتور: ۴۴
مد کنترلی ولتاژ جریان مستقیم: ۴۵
شکل (۱۰-۳۲) مدهای مختلف کنترل اینورتور ۴۵
کنترل تغییردهنده تپ: ۴۶
کنترل توان: ۴۸
کنترلهای جنبی برای سیستم جریان متناوب: ۴۸
(سلسله مراتب سطوح مختلف کنترلهای سیستم HVDC) 51
راه اندازی، توقف و معکوس کردن جهت انتقال توان: ۵۳
ترتیب عادی راه اندازی (باز کردن مسیر): ۵۳
مسائل مربوط به سیستمهای با ESCR کم: ۵۸
اضافه ولتاژ دینامیکی: ۵۸
پایداری ولتاژ: ۵۹
تشدید هارمونیکی: ۶۰
چشمکزنی ولتاژ: ۶۰
ثابت لختی موثر: ۶۱
کموتاسیون اجباری: ۶۲
خطاهای خط جریان مستقیم: ۶۴
خطاهای کنورتور: ۶۴
خطاهای سیستم جریان متناوب ۶۵
معیارهای خاص برای کمک به اصلاح وضعیت ۶۵
سیستمهای چند پایانه ای HVDC: 66
ساختارهای شبکه MTDC: 67
طرح دو قطبی MTDC موازی با شبکه شعاعی dc 67
طرح MTDC سری ۶۸
نمایش در مطالعات پایداری: ۶۹
الف) مدلهای ساده: ۷۰
معادلات کنورتور و خط: ۷۱
فرمان کنترل جریان با محدودیتها: ۷۱
اعمال کنترل طی خطاهای جریان متناوب: ۷۲
خطوط راهنما برای انتخاب تفصیل مدلسازی: ۷۵
مقدمه:
ابداع کلیدهای جیوه ای فشار قوی در پنجاه سال قبل مسیر توسعه تکنولوژی انتقال HVDC را هموار کرد. تا سال ۱۹۴۵، اولین لینک DC تجاری با موفقیت بکار گرفته شده بود و نمونه های بزرگتری در حال تولید بود. موقعیت تکنولوژی جدید موجب گردید که تحقیقات و تلاشها به سمت ساخت کلیدهای نیمه هادی پیش رود و تا اواسط دهه ۶۰، این کلیدها جایگزین کلیدهای قوس جیوه ی شدند. بعد تاریخی و پیشرفت های فنی تکنولوژی HVDC بطور مفصل در مراجع بیان گردیده است. پیشرفت های قال توجه در بهبود قابلیت اطمینان و ظرفیت کلیدهای تایریستوری موجب کاهش هزینه مبدل ها در مسافتهای انتقال و در نتیجه افزایش قدرت رقابت طرح های DC شده است.
در هر حال عدم امکان خاموش کردن تایریستورها محدودیت مهمی در ملاحظات مربوط به توان راکتیو و کنترل آن پدید می آورد. این محدودیت موجب ظهور تجهیزات الکترونیک قدرت با قابلیت های کنترلی بیشتر شده است برای نمونه IGBT , GTO، اما تا لحظه نوشتن این مطالب، هیچکدام از این دو بدلیل ظرفیت مورد نیاز، نتوانسته اند رقیب تایریستور در طرح های HVDC با ظرفیت زیاد شود. از طرف دیگر ظرفیت این تجهیزات جدید امکان توسعه تکنولوژی فراهم آورده FACTS را- موضوع این کتاب- به منظور مقابله با مشکلات خاص موجود و با هزینه ای کمتر از هزینه HVDC فراهم آورده است.
طرح مباحث مربوط به انتقال DC در این کتاب متناقض به نظر می رسد زیرا اغلب FACTS , HVDC در تکنولوژی رقیب محسوب می شوند. مشکل به تغییر نادرست از کلمه «انتقال» بر می گردد. انتقال معمولا بیانگر مسافت طولانی است در صورتیکه بخش بزرگی از لینک های DC موجود، اتصالات میانب با مسافت صفر هستند. امروز، مرزهای بین ادوات HVDC , FACTS، به نوع تجهیزات حالت جامد (تجهیزات حالت جامدی که در حال حاضر در HVDC بکار می روند، محدود به یکسوکننده های کنترل شده سیلیکونی می باشند) و ظرفیت طرح ارتباط دارد. بهرحال با بهبود ظرفیت و توانائی های تجهیزات جدید استفاده خواهد شد و در FACTS سعی خواهد شد که کنترل توان بصورت مستقیم تری انجام شود مثلا با توسعه اتصال دهنده توان میانی آسنکرون، یعنی لینک HVDC پشت پشت. از این رو می توان لینک پشت به پشت را نیز جزء ادوات FACTS به حساب آورد و این فصل در مورد همین کاربرد HVDC است.
معرفی شبکه های HVDC , AC و تکنولوژی انتقال DC با ولتاژ بالا (HVDC)
اتصال سیستم های AC با لینک DC:
در مسافت های کمتر از مسافت break-even باری اتصال در سیستم یا ناحیه مستقل استفاده از انتقال توان بصورت AC ترجیح داده می شود. برای این منظور باید برخی ملاحظات ضروری را که برخی از آنها در زیر آورده شده است رعایت کرد.
لینک باید ظرفیت کافی برای برقراری عبور توان در مقادیر موردنظر را داشته باشد و پس از وقوع اغتشاش سریعا به وضعیت قبل از اغتشاش باز گردد. وجود یا ساخت مراکز دیسپاچینگ با امکانات مخابراتی قابل اعتماد سریع. هر کدام از سیستمها باید قابلیت حفظ و کنترل فرکانس عادی را داشته باشد و از همین دو بایستی بتواند ذخیره چرخان بلند مدت و کوتاه مدت کافی فراهم آورد. معمولا در اکثر کشورها نواحی جداگانه با کمبود توان مواجه می شوند بویژه در زمان اوج مصرف که فرکانس شبکه بسیار پایین می ماند (حفظ ذخیره چرخان ممکن نیست). در چنین مواردی اتصال ناحیه های بوسیله اتصال میانی به صورت سنگرون بسیار مشکل است. برای اتصال میانی آسنکرون، دو انتخاب وجود داردک یکی بوسیله انتقال HVDC و دیگری بوسیله یک پست پشت به پشت HVDC. انتخاب اول یعنی انتقال HVDC زمانی از نظر اقتصادی مقرون به صرفه است که فاصله طولانی و مقدار انرژی تبادلی زیاد باشد. در حالتی که بخواهیم توان اضافی یک ناحیه را برای مدت کوتاهی به ناحیه دیگر انتقال دهیم و همچنین برای تقویت هر کدام از سیستم ها در مواقع اضطراری، HVDC 1شت به پشت انتخاب مناسب تری است.
مبدل HVDC:
برای تطابق لحظه ای ولتاژهای طرف AC , DC در فرآیند تبدیل (شکل ۳-۱)، باید امپرانس سری کافی در طرف AC , DC مبدل قرار داده شود. با روش پیشین، اغلب تبدیل منبع ولتاژ حاصل می گرددو تغییر جریان DC بوسیله کنترل تایریستور امکان پذیر است اگر راکتور هموار کنند بزرگی در طرف DC قرار داده شود، فقط پالس های جریان مستقیم ثابت از تجهیزات کلیدزنی عبور کرده و به سیم پیچ های ثانویه ترانسفورماتور می رود. پس از آن، این پالس های جریان مطابق با نسبت تبدیل و اتصال ترانسفورماتور، به طرف اولیه انتقال داده شده و به این ترتیب یک مبدل جریان با امکان تنظیم ولتاژ مستقیم بوسیله کنترل تایریستور حاصل می شود. تبدیل ولتاژ در مبدل هی قوس جیوه بکار گرفته نشد زیرا حذف اغتشاش های تولید شده ناشی از قوس معکوس ناممکن بود.
تبدیل ولتاژ AC.DC
طرح های تایریستوری، تغییرات سریع منبع ولتاژ مستلزم استفاده از امپدانس سری بزرگ است که برای جبران توان راکتیو، مقرون به صرفه نیست، بنابراین دلایل، در طراحی مبدل های HVDC تبدیل جریان توضیح داده می شود. به منظور استفاده بهینه از مبدل و ولتاژ معکوس با پیک کم در دو سر کلیدهای مبدل، در مبدل های HVDC منحصرا از پل سه فاز شکل استفاده می شود. با طرح های HVDC، فقط از اتصالات ساده ترانسفورماتورها استفاده می شود. این امر بدلیل عایق های ترانسفورماتور است که باید قدرت تحمل ولتاژهای متناوب همراه با ولتاژهای مستقیم زیاد را داشته باشد. با استفاده از اتصالات موازی ترانسفورماتور ستاره/ مثلث و ستاره/ ستاره می توان به سهولت تعداد ۱۲ پالس را بدست آورد در شکل است، پایین ترین مولفه جریان هارمونیکی مشخصه آن هارمونیک یازدهم بوده و هزینه فیلتر بطور قابل ملاحظه ای کاهش یافته است.
کنترل سیستم HVDC: (کنترل آتش کلید)
آتش کردن کلید بر اساس اصول کنترل آتش هم فاصله صورت می گیرد که مبنای آن، یک نوسان کننده کنترل شده با ولتاژ است که قطاری از پالسها را در فرکانس که مستقیما با ولتاژ کنترلی DC، Vc، متناسب است ارسال می کند. در حال حاضر با این روش، حلقه های کنترلی متعددی برای تامین ولتاژ Vc بکار می روند. فاز هر کدام از پالس های آتش می تواند بسته به ولتاژ خط AC سه فاز، سینوسی متقارن باشند (فرکانس اصلی)، برای تمام کلیدهای یکسان است. باید به روشی زاویه فاز نوسان کننده به سیستم AC قفل شود. این امر با متصل کردن Vc در یک حلقه فیدبک منفی بازاء جریان ثابت یا زاویه خاموشی ثابت انجام می شود هنگام عملکرد در کنترل جریان ثابت، Vc از تقویت اختلاف (طخا) بین منبع جریان و جریان خط DC اندازه گیری شده بدست می آید، به این وطیله یک حلقه کنترلی فیدبک منفی ساده بوجود می آید که سعی دارد جریان ثابت را در مقداری بسیار نزدیک به هنگامیکه جریان برابر مقدار مرجع شد، خطای ثابت را در مقداری بسیار نزدیک به هنگامیکه جریان برابر مقدار مرجع شد، خطای تقویت شده (Vc) دقیقا برابر است با مقدار لازم برای اینکه فرکانس نوسان کننده شش برابر فرکانس منبع شود. خروجی های ring counter و در نتیجه پالس های کیت کلید به ولتاژ AC فازم عینی خواهند داشت. در عملکرد حالت ماندگار، این فاز برابر زاویه آتشی است. وقوع یک اغتشاش مانند لغت back end در سیستم DC موجب افزایش موقت جریان شده که باعث کاهش Vc و در نتیجع کند شدن نوسان کننده می گردد در نتیجه فاز نوسان کننده عقب افتاده و زاویه آتش افزایش می یابد. این امر موجب کاهش مجدد جریان شده و سیستم نهایتا دارای همان جریان، همان Vc و فرکانس نوسان کننده می گردد اما فاز آن تغییر کرده است یعنی تغییر کرده است.