تولید همزمان برق و حرارت
COMBINED HEAT & POWETR
106 صفحه در قالب word
فهرست
عنوان مطالب شماره صفحه چکیده..........................................................................................................................................................................1
مقدمه .........................................................................................................................................................................2
فصل اول : مختصری از CHP
4- 1- هزینههای کمتر ...........................................................................................................................................7
7-1- تاریخچه بکارگیری.........................................................................................................................................8
8-1- فرایند تولید همزمان برق و حرارت...........................................................................................................9
9-1- مزایای CHP...............................................................................................................................................10
10-1- تأمین انرژی الکتریسیته با کیفیت بسیار بالاتر ................................................................................11
11-1- انواع فناوریهای تولید پراکنده ...............................................................................................................12
12-1- شرایط نصب و بکارگیری مولدهای مقیاس کوچک در شبکه ......................................................14
13-1- خطرپذیریهای سرمایهگذاری برای احداث مولدهای مقیاس کوچک ........................................14
1-2- نیروگاههای Extraction Condensing (زیر کشدار)...............................................................15
2-2- نیروگاههای Back - pressure.........................................................................................................16
6-2- انتقال آب گرم...........................................................................................................................................22
فصل سوم : فرایند تولید همزمان برق و گرما
فصل چهارم : تعریف راندمان در سیستم های CHP
1-4 – راندمان کلی ......................................................................................................................................25
2-4– راندمان برق ........................................................................................................................................25
3-4- موارد استفاده از CHP ....................................................................................................................25
5-4- موتور رفت و برگشتی CHP............................................................................................................27
6-4- توربین بخار CHP .............................................................................................................................28
7-4- آیا می دانید ؟.....................................................................................................................................29
1-5- مدلسازی شبکه تولید همزمان برق و حرارت..................................................................................31
2-5- هزینه سوختهای ورودی به مدل شبکه تولید انرژی......................................................................32
3-5- دادههای فنی و اقتصادی تجهیزات موجود در شبکه تولید انرژی............................................33
4-5- نتایج.......................................................................................................................................................38
5-5- نظرات چند تن از مسئولین..............................................................................................................39
6-5-آیا با خصوصی شدن برق کشور ، اسراف انرژی هم کم می شود ؟ .........................................42بخش ششم :به کارگیری چیلر جذبی در سیستم تولید همزمان سرما، گرما و الکتریسیته(CCHP)
1-6- مطالعه موردی سیستم تولید پراکنده همزمان در بخش مسکونی.........................................46
2-6- انجام بهینه سازی و انتخاب اندازه چیلر جذبی..........................................................................48
3-6- برآوردهای اقتصادی.........................................................................................................................50
4-6- جمع بندی.........................................................................................................................................51
فصل هفتم : شرح فناوری CHP در یک کارخانه سیمان
1-7- تجربیات جهانی.................................................................................................................................55
2-7- امکان سنجی اقتصادی و زیست محیطی ..................................................................................57
3-7- دید ملی ............................................................................................................................................58
5-7- تحلیل جذابیت های زیست محیطی .........................................................................................59
7-7- هزینه های اجتماعی......................................................................................................................59
8-7- مکانیسم توسعه پاک ....................................................................................................................60
9-7- نتیجه گیری و پیشنهادات (مبحث کارخانه سیمان) ............................................................61
فصل هشتم : نیاز به حرارت و معرفی صنایع مستعد برای CHP
1-8- تقاضای حرارت در صنایع...........................................................................................................63
2-8- آب داغ و بخار آب در فرآیند ....................................................................................................63
3-8- گرمایش غیر مستقیم جریانهای حرارتی................................................................................64
4-8- گرمایش مستقیم /خشک کردن...............................................................................................64
5-8- گرمایش غیر مستقیم هوا یا گاز ..............................................................................................65
6-8- تبرید و انجماد..................................................................................................................................65
7-8- رطوبت زدایی..................................................................................................................................65
8-8- استفاده از گازهای خروجی در بویلرها..........................................................................................65
9-8- سابقه تولید همزمان در کشورهای پیشرفته.............................................................................. 66
بررسی مصرف انرژی در صنایع کشور.......................................................................................................69
11-8- جمع بندی و ارائه فهرست صنایع مستعد................................................................................69
فصل نهم : اولین پیل سوختی CHPدر ایران
فصل دهم : سیستم های تولید همزمان حرارت و قدرت در آمریکا
فصل یازدهم : مدیریت عملکرد سیستم CHP
1-11- راز صرفه جویی طولانی مدت و کارایی بیشینه.................................................................79
نتیجه گیری..............................................................................................................................................85
پیوست ها..................................................................................................................................................83
منابع و ماخذ ...........................................................................................................................................92
چکیده
تولید همزمان برق و گرما یا به اختصار تولید همزمان توأم ترمودینامیکی دو یا چند شکل انرژی از یک منبع ساده اولیه . معمولاً در مولدهای قدرت امروزی ما از سوزاندن سوخت های فسیلی و گرمای حاصل برای تولید قدرت محوری و سپس تبدیل آن به انرژی الکتریسیته استفاده می شود .
متداولترین این سیستم ها نیروگاه های عظیم برق هستند . در نیروگاه های حرارتی که سهم عمده ای در تامین نیاز الکتریسیته جوامع مختلف دارند ، بطور متوسط تنها یک سوم انرژی سوخت ورودی به انرژی مفید الکتریسته تبدیل می شود . در کشور ما بازده معمول نیروگاه های حرارتی چیزی در حدود 25% است . در این نیروگاه ها مقدار زیادی انرژی حرارتی از طرق مختلف مانند کندانسور ، دیگ بخار ، برج خنک کن ، پمپ ها و سیستم لوله کشی موجود در تأسیسات و... به هدر می رود .
از این گذشته در شبکه های انتثال برق نیز در کشور ما حدود 15% از انرژی الکتریسیته تولیدی تلف می شود که اگر تولید برق در محل مصرف صورت بگیرد ، عملاً این مقدار اتلاف وجود نخواهد داشت.
ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است
متن کامل را می توانید در ادامه دانلود نمائید
چون فقط تکه هایی از متن پایان نامه برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل پایان نامه همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است
مطالب این پست : چدن های مقاوم به اکسیداسیون و حرارت حاوی آلمینیوم
با فرمت ورد (دانلود متن کامل پایان نامه) رشته مواد – متالوژی
فهرست:
مقدمه ………………………………………………………………………………………………(1)
چدن های خاکستری آلومینیوم دار………………………………………………………….(2)
چدن های داکتایل آلومینیوم دار……………………………………………………………..(8)
ذوب وریختگری چدن های آلومینیوم دار………………………………………………..(9)
کلیاتی در مورد تولید چدن های آلمینوم دار…………………………………………….(11)
اثر آلومینیوم در چدن…………………………………………………………………………..(13)
نکات ریختگری…………………………………………………………………………………(15)
رفتار اکسیداسیونی در دماهای بالا………………………………………………………….(20)
تجهیزات ذوب وقالبگیری……………………………………………………………………(29)
مواد لازم………………………………………………………………………………………….(30)
نحوه آزمایش……………………………………………………………………………………(30)
مراحل عملیات………………………………………………………………………………….(30)
نتایج آزمایش……………………………………………………………………………………(31)
منابع ومآخذ……………………………………………………………………………………..(33)
ریز ساختار ها…………………………………………………………………………………..(34)
مقدمه:
چدنهای آلومینیوم دار در دو نوع خاکستری و داکتایل وجود دارند. در یکی از انواع آلومینیوم جایگزین سیلیسیم میشود و در نوع دوم آلومینیوم علاوه بر سیلیسیم در چدن حاضر است. این چدنها بخاطر داشتن عناصر آلیاژی نسبتا ارزان و مقاومت خوب در برابر حرارت وخزش در گستره دمائی 570 تا 980 درجه سانتیگراد مورد توجه قرار گرفته است.
مقاومت در برابر حرارت بصورتی است که در چدنهای حاوی آلومینیوم لایه نازک اکسیدی نفوذ ناپذیر وچسبنده ای تشکیل میشود که از نفوذ اتمهای اکسیژن به درون فلز جلوگیری میکند.
متاسفانه ریختن چدنهای آلومینیوم دار دشوار است ،زیرا در دمای ذوب ریزی چدن ،آلومینیوم بسیار فعال است. تماس آلیاژ مذاب با هوا و رطوبت باید به حداقل برسد تا از تشکیل سرباره فلزی ،سطح ناصاف و قطعه ناسالم جلوگیری میشود. فرآیندهای تولید این آلیاژ در حال تکامل اند.
مقدار آلومینیوم انی چدنها بین 0 تا 12 درصد است . آزمایشهای اکسایش در دماهای 800 ،900 ، 1000 ، 1100 انجام شده است. مقدار آلومینیوم ،بر گرافیته شدن چدنهای خاکستری و داکتیل تاثیر میگذارد. اگر مقدار آلومینیوم کمتر از 7 درصد باشد در حین انجماد گرافیت تشکیل میشود. بین 7 و18 درصد آلومینیوم فاز کاربیدی پایداری ایجاد میشود و قطعات ریختگی اساسا فاقد گرافیت هستند. چدنهای حاوی 18 تا 25 درصد آلومینیوم با ریزساختار گرافیتی ریز منجمد میشوند اگرچه مقدار کربن محلول در مذاب کاهش می یابد. ماشینکاری چدنهای آلومینیوم راحت است و قطعات سالمتری تولید میشود.
متن کامل را می توانید دانلود کنید چون فقط تکه هایی از متن این پایان نامه در این صفحه درج شده است(به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم با فرمت ورد که ویرایش و کپی کردن می باشند
موجود است
محتوای این بخش : پروژه پایان نامه کارشناسی رشته مکانیک حرارت و سیالات 140 صفحه
دانلود متن کامل پایان نامه با فرمت ورد
مقدمه:
سیستم های دیسکنت که یکی از ترکیبات سیستم های HVAC محسوب میشوند به جهت مزیت های ویژه ای که دارند در صنعت و تجارت امروز از همنوعان دیگر خود بیشتر مورد استفاده قرار می گیرند. مهمترین تفاوت هایی که باعث تمایز بین سیستم دیسکنت و دیگر خنک کننده های قراردادی وجود دارد عبارتند از:
بحث وجود مقدار زیاد هوا که باید از ساختمان تخلیه شود
بحث برگرداندن هوای تهویه شده ای که از ساختمان خارج شده برای تهویه مجدد ساختمان
بحث هزینه های برق مصرفی توسط سیستم ها
که سیستم های دیسکنت با توجه به تغییراتی که درونآن انجام داده شده است خود نیز از دو لحاظ از همدیگر متمایز می شوند که آن نیز عبارت است از:
1-هزینه برق مصرفی
2-مقدار نگهداری آب از طریق جذب
که می شود گفت از دو نظر عمده:
1-کنترل رطوبت دردمای پایین
2-هزینه کم برای انرژی
در بحث های سیستم HVAC مشتریان به دنبال دستگاهی که می گردند که علاوه بر فراهم کردن راحتی مورد نظر برای آنان از نظر اقتصادی نیز برای آنان به صرفه باشد.
و مطمئنا می توان گفت که هر چه مقدار درجه حر ارت درخواستی و رطوبت مورد نیاز کمتر باشد ارزش واهمیت سیستم های دیسکنت در برابر همنوعان خنک کننده قراردادی خود بیشتر جلوه خواهد کرد.
ودر طراحی های معمولی اگر از دیسکنت به غیر از مزیت های آن و به مثابه یک سیستم هیبرید معمولی استفاده شود کاملا بی فایده و در بعضی مواقع به لحاظ فیزیکی و ابعاد از نظر اقتصادی نیز به صرفه نیست.
می توان گفت که هنگامی که مقدار زیادی از هوای تازه نیاز است وقتی که هوای تخلیه شده میتواند به صورت تبخیری خنک شود و برای Post-cooling هوایی که از چرخ خشک کن می گذرد استفاده میشود. به علاوه این سیستم به جهت کم کردن انرژی مورد نیاز برای تقطیر وجذب بخار موجود در هوا میزان برق بسیار کمی را استفاده میکند. هنگامی که این دو شرط با هم ترکیب می شوند مانند هنگامی که مقدار زیادی از هوا تهویه شده باید به ساختمان موجود اضافه گردد در محفظه ای که دارای اوج هزینه برق مصرفی است سیستم دیسکنت هم انرژی وهم هزینه اولیه را در مقابل بقیه روش های اضافه کردن هوای تازه افزایش یافته را کاهش خواهد داد.
تنها استفاده در موارد بالا فقط در آب وهوای شمال دور وارتفاعات بلند میباشد.
بیشتر از 15 سال قبل سیستم های فعال دیسکنت به عنوان یک از متداول ترین انواع سیستم HVAC در ساختمان های تجاری که نیاز کمتری به سطح درجه رطوبت داشتند رایج شد. سوپر مارکت ها ویخچال های خانگی همگی جز سیستمهای یخچالی هستند که در آن ها اصل این است که سرمای هوا وقتی بیشتر اثر می گذارد که بیشترین با رطوبت ساختمان به وسیله سیستم فعال دیسکنت از بین برود. البته قبل از آن سازنده های سیستم های دیسکنت برای ساختمان تجاری ابتدائا روی واحدهایی از نوع چرخ دیسکنت( دیسکنت جامعه ) متمرکز شده بودند و آن را مورد استفاده قرار میدادند اما در بازارهای صنعتی سیستم دیسکنت مایع به صورت بسیار موثر از دهه 20 مورد استفاده قرار گرفته شده اند. در سال های اخیر سازنده ای تجهیزات دیسکنت بالغ فعالیت های خود را در بازارهای تجاری گسترش داده اند.
مشخصه های بی نظیر سیستم دیسکنت مایع مانند هزینه در رقابت با دیسکنت جامعه و سیستم های خنک کننده قراردادی مشکل را مرتفع میکند.
مدارس شخصی مغازه های خرده فروش، رستوران ها، هتل ها،سینما ها و.. معمولا خواستار کنترل رطوبت نیستند. بلکه آن ها فقط رطوبت معتدل را می خواهند ومی گویند وقتی که افزایش رطوبت به بالای 60% رطوبت نسبی برسد ممکن است آسودگی را کم کند ولی از لحاظ دیگر افزایش مدل ها ممکن است انتظار را بیشتر کند اما به ندرت به درآمد و سود خسارت وارد میکند.
در تهویه ساختمان های اداری نیز بقیه مزیت های سیستم فعال دیسکنت کمتر آشکار هستند مخصوصا چون راه زیادی برای برطرف کردن رطوبت بالا از هوای تهویه شده وجود دارد. هر چند به دلیل موفقیت سیستم دیسکنت مالک ها به کنترل رطوبت بیشتر از بحث اقتصادی آن اهمیت می دهند.
ومیتوان گفت که چون افزایش تهویه تاثیر ضدرطوبت ساز را در واحدهای HVAC کم میکند ومشکل هایی برای این سیستم ها به و جود می آورد پس استفاده از سیستم های فعال و انفعالی دیسکنت می تواند از هر جهت به درخواست مورد نظر کمک کند.
به طور مثال در بیمارستان رطوبت بالا باعث عفونت میکروب های هوازی بود وکپک می گردد. دکترها برای ضدعفونی کردن از آنتی بیوتیک ها استفاده می کنند اما این تاکتیک برای اعمال جراحی چشمی و زایمان قابل استفاده واجرا نیست.
ولی استفاده از سیستم دیسکنت مایع به راحتی این مشکل را مرتفع می سازد و بر شدت پاکیزگی اتاق می افزاید.
شرح:
به طور کل چندین راه برای تهیه وآماده سازی اساس کنترل رطوبت وجود دارد که به ترتیب عبارتند از
1-فشار اتاق
افزایش فشار اتاق به دلیل عبور تدریجی ونفوذ رطوبت در اتاق امری قطعی است وهر چه رطوبت بیشتر باشد فشار اتاق بیشتر می شودوبرای همین بهتر است سیستم دیسکنت و راهروی آن در ورودی اتاق به عنوان محیطی برای مسدودکردن هوا با یک دری که به سمت خارج باز می شود قرار گیرد.
2-واحد هوای تازه (هوا ساز)
ثابت نشده است که تازه بودن هوای اتاق برای بسیاری از تاسیسات ارزشمند است.
ونظارت برحس گر فشار اتاق و میزان هوای تازه بر حسب نوع عملکرد دقیق تر صورت می گیرد.
بنابراین سیستم هوا ساز اتاق از دگرگونی های ناشی از شرایط بیرون تاثیر نمی پذیرد.
3-حصار بخار
بخار ناشی از رطوبت می تواند از طریق دیوار کف وسقف با ایجاد واختلاف فشار بخار عبور کند. هر چه اختلاف بین سطح رطوبت داخل وبیرون اتاق بیشتر گردد فشار بخار برای رطوبتی که سعی میکند داخل اتاق بیاید بیشتر است و هر چه قدر این فشار بیشتر باشد مانع محکمتری برای نفوذ رطوبت است.
ماده ساده ای مثل ورقه آلومنیوم بهترین مانع بخار است ولی باید به طور کامل نسبت به مهدومو کردن آن اقدام شود. ضد زنگ نیز یک محافظ و مانع خوب برای بخار است.
معمولا برای طراحی ها طراح عموما در حالت عادی از طرح سایکرومتریک برای انتخاب خشک کننده در شرایط درخواستی و به منظور رسیدن به رطوبت ودرجه دما درخواستی استفاده میکند.
طراح باید موارد زیر را در طراحی خود مدنظر داشته باشد:
1-بیشتر کویل های خنک کننده دقیقا آن چنان که مشخص شده کار نمی کنند.
2-چکه ها و تراوشات همیشه در دستگاه جابه جاکننده هوا ومجاوری ولوله های هوا وجود دارد.
3-درجه تقطیر دستگاه همیشه در آن نقطه ای که مشخص شده نمی ماند
4-جریان هوا در وضعیت مشخص ومعینی نمی ماند.
بنابراین یک طرح کنترل رطوبت مناسب خوب باید بیش از آن که یک هواساز راحت وقراردادی باشد یک مقاوم و مانع خوب وکامل باشد. قبلا طراح با افزایش قدرت گرم کننده وخنک کننده ها این مشکلات را حل می کردن ولی لازم به ذکر است این مورد بسیار مصرف کننده وخوزنده انرژی میباشد و از لحاظ اقتصادی به صرفه نیست.
در رطوبت های درخواستی برای RH بالای %50-60 طراح براحتی می تواند با به کاربردن کویل های ومبدل ها رطوبت وسرمای مورد نظر را فراهم کند.
البته هر چه میزان رطوبت پایین تر بیاید به خاطر وجود درجه بسیار پایین هوا(نزدیک به 10c) ورطوبت نسبی بالایی که وجود دارد احتمال دارد که داخل لوله ها ومجاری کپک بزند و بنابراین باید نسبت به به کارگیری پوشش ها به دور لوله گرما دردستگاه هواساز یا در دستگاه جابه جا کننده هوا توجه شود. لوله گرمایی لفافه دار می تواند ظرفیت انتقال آب کویل خنک کننده را به اندازه 1.5 برابر کویل خنک کننده بدون لوله گرما بهبود بخشد.
مطالب این پست : دانلود پایان نامه اثر پارامتر های هندسی بر روی انتقال حرارت و افت فشار در طراحی مبدل های حرارتی لوله پره دار صفحه ای
با فرمت ورد word ( دانلود متن کامل پایان نامه )
چکیده :
مبدل حرارتی وسیله ای است که انرژی را از سیالی به یک یا چند سیال دیگر که دارای درجه حرارت های متفاوتی هستند منتقل می کند ، لذا مبدل های حرارتی در تمام زمینه های صنعتی ،تجاری و حتی زندگی روزمره نیز که به نحوی با تبادل انرژی سر و کار دارند مورد استفاده قرار می گیرند . برای شناخت هر چه بهتر مبدل های حرارتی آن ها را در هشت گروه متفاوت دسته بندی می کنیم .
مبدل های حرارتی با جریان متقاطع که در اغلب کاربرد های صنعتی مانند تولید بخار در دیگ های بخار و یا گرمایش و سرمایش هوا و گاز های دیگر کاربرد دارند ، در این دسته بندی جزء مبدل های حرارتی با جریان پیوسته سیال به صورت تماس غیر مستقیم که هم به صورت فشرده و هم غیر فشرده ساخته شده و با ساختاری به شکل لوله ای و صفحه ای با آرایش جریان عمود بر هم بین دو سیال که به صورت جابجائی با هم تبادل حرارت می کنند ، جای می گیرند .
مبدل های حرارتی لوله – پره دار صفحه ای که جزء این نوع از مبدل های حرارتی هستند کمتر مورد تحقیق و بررسی قرار گرفته اند ، هچنین در کتب درسی و دانشگاهی نیز کمتر به معرفی این نوع مبدل های حرارتی مبادرت گردیده است ، لذا هدف از این تحقیق معرفی بیشتر این نوع از مبدل های حرارتی و بررسی اثر پارامتر های هندسی موثر در طراحی این نوع مبدل های حرارتی می باشد .
بنا براین در این تحقیق با استفاده از نرم افزار فلوئنت که یکی از نرم افزارهای دینامیک سیالات است ، به بررسی اثر این پارامترها در طراحی این نوع از مبدل های حرارتی(CFD)محاسباتی پرداخته ایم و در نهایت نیز نتایج بدست آمده از تحقیق را با نتایج محاسبات تجربی در مبدل های حرارتی با جریان متقاطع بروی دسته لوله ها مقایسه شده است .
مقدمه :
مبدل حرارتی وسیله ای است که انرژی حرارتی را از سیالی به یک یا چند سیال دیگر که دارای درجه حرارت های متفاوتی هستند منتقل می کند . این تعریف به طور ضمنی بیان می کند که در یک مبدل حرارتی حداقل دو سیال وجود دارند که حرارت بین آن دو جابجا می شود . هرچند که این تعریف از جامعیت کافی برخوردار است معهذا موارد خاصی از مبدلهای حرارتی وجود دارند که در این تعریف نمی گنجند . از جمله این موارد دستگاههای تبادل حرارتی هستند که در سفینه های فضایی و یا هر وسیله ای که در خلاء کار می کند مورد استفاده قرار می گیرند .
مبدل های حرارتی در تمام زمینه های صنعتی ، تجاری و زندگی روزمره که به نحوی با تبادل انرژی سرو کا ردارند مورد استفاده قرار می گیرند . هر موجود زنده به طریقی به مبدل حرارتی مجهز است .
مبدل های حرارتی در اندازه های بسیار کوچک و بسیار بزرگ ساخته شده اند . کوچکترین آنها (کمتر از 1 وات) برای مصارف الکترونیکی فوق هادی ها، هدایت موشک هائی که بوسیله منبع حرارتی کنترل می شوند و بزرگ ترین آنها (ظرفیت حرارتی بزرگ از 1000 مگاوات) در نیروگاه های بزرگ به عنوان دیگ بخار ، کندانسور یا برج خنک کن به کار می روند .
کاربرد مبدل حرارتی بسیار وسیع و در صنایع مختلفی از قبیل نیروگاه های تولید برق ، پالایشگاه ها ، صنایع ذوب فلز و شیشه سازی ، صنایع غذایی و دارو سازی ، کاغذ سازی ، صنایع پتروشیمی ، سردخانه ها و سیستم های گرمایش و سرمایش ساختمان ها ، صنایع میعان گازها ( مانند هوا ) وسائط نقلیه زمینی ، دریایی و فضایی و صنایع الکترونیک مورد استفاده قرار می گیرند . به طور کلی هرجا که مسئله تبدیل و تبادل انرژی مطرح باشد مبدل های حرارتی به نحوی کاربرد دارند . مبدل های حرارتی به صور مختلفی نظیر دیگ بخار ، مولد بخار ، کندانسور ، اوپراتور ، تبخیر کننده ، برج خنک کن ، پیش گرم کن هوا ، بازیاب ، خنک کن میانی در کمپرسورهای چند مرحله ای ، فن کویل ، هواساز ، خنک کن روغن ، خنک کن و گرم کن مشتقات نفتی ، رادیاتور وسائط نقلیه ، گرم کن آب تغذیه و سوپر هیتر در نیروگاه های بخار، کوره و غیره و در صنایع فوق الذکر به کار می روند .
متن کامل را می توانید دانلود کنید چون فقط تکه هایی از متن این پایان نامه در این صفحه درج شده است (به طور نمونه)
ولی در فایل دانلودی متن کامل پایان نامه
همراه با تمام ضمائم با فرمت ورد word که قابل ویرایش و کپی کردن می باشند
موجود است
مطالب این پست :دانلود پایان نامه مکانیک حرارت و سیالات -بررسی اصول ها ور کرافت 104 صفحه
با فرمت ورد word ( دانلود متن کامل پایان نامه )
پروژه ی کار شناسی ناپیوسته (مکانیک حرارت و سیالات)
بررسی اصول ها ور کرافت
فهرست
مقدمه
مروری بر تحقیقات گذشته
فصل1. GEM
فصل2. عملکرد بالشتک هوا
فصل3. آیرودینامیک داخلی- معبراها – فن ها و کمپرسورها
فصل4. درگ
فصل5. پیشرانش
فصل6. موتور (حرکت دهنده ی اولیه)
فصل7. معیارهای عملکردی
فصل8. کنترل و پایداری
فصل9. دامن
نتیجه گیری:
مراجع
مقدمه:
هاورکرافت جزء ماشینهای نقلیه کلاس بالائی می باشد که برروی هر سطحی اعم از خشکی،آب ،یخ، چمن و هر چیز دیگری که بتوان هوا را به تله انداخت حرکت می کند. علت نیاز به این وسیله آنست که تنها وسیله ای می باشد که قابلیت حرکت در شرایط مختلف را دارد و مثلا می توان در نواحی کم عمق که امکان حرکت برای سایر شناورها مقدور نیست باهاور کرافت به گشت زنی پرداخت .
هاورکرافت با هوانا و که بر روی بالشتکی از هوای فشرده حرکت می کند . که هوا توسط یک فن یا کمپرسور بداخل بالشتک پمپ میشود.
از مهمترین مزایای ها و کرافت می توان به سرعت زیاد، نداشتن محدودیت در نواحی کم عمق، توان حرکت در خشکی، توان پنهان شدن در خشکی در عملیاتهای نظامی،… اشاره کرد.
مهمترین علت آنکه این وسیله هنوز بطور گسترده و ناوگان حمل و نقل وارد نشره است آنست که هزینه ی تعمیر و نگهداری آن بسیار زیاد می باشد و پس عواملی مثل صدای زیاد، تاثیر شرایط جوسی در سرعت و شعاع آن در رده های بعدی قرار دارند.
در این پروژه سعی شده تا اصول کلی مربوط به هاورکرافت و اجزای آن مورد بررسی قرار گیرد.
مروری بر تحقیقات گذشته:
استفاده از لایه ی هوا جهت کاهش اصطکاک بین سطوح به گذشته های دور باز می گردد. در سال 1716، Emmanuel توانست یک لایهی هوا را بین دو صفحه بصورت دستی ایجاد کند. در سال 1882، نخستین اختراع Air lubrication در انگلستان توسط؟ثبت شد. در سال 1916، Von Tomohul برای نیروی دریائی استرالیا یک قایق ساخت که به وسیله ی یک فن، هوابدرون حفره این که در زیر آن تعبیر شده بود فرستاده می شد. این قایق اولین نمونه از گشتیهای اثر سطحی (Surface Effect Ships) می باشد. ایجاد یک حجم هوای فشرده زیر قایق سبب شد که اشکال مختلفی از بالشتکهای هوا شروع به استنتاج شود.
در سال 1927، N.E. Tsiolko دانشمند روسی ها و در قرن را توسعه داد. هاورترن بر روی لایه این از هوا حرکت می کرد.
در سال 1955، Christopher Cokherell برای اولین بار آزمایش خود را بطور جدی بر روی ها ورکرافت شروع کرد. تحقیقات او در سال 1959، باعث طراحی و ساخت هاورکرافت SP.N1توسط شرکت Saunders-Roeشد.
در سال 1970، G.Apolond , H.j.Davis تعادل دینامیکی هاورکرافت را بررسی کردند. در سال 1972،A.j. Reynolds واکنشها ورکرافت را در برابر موج های منظم بصورت خطی بررسی کرد.
در سال 1974،همان نویسنده مساله را بصورت غیر خطی بررسی کرد. تا این موقع گر چه دینامیک هاورکرافت مورد بررسی قرار گرفت ولی در هیچکدام تاثیر دینامیک حرکت A.j. Reynolds , B.E. Brouksوارد شد.
در سال 1977،Wheeler تاثیر دامنهای بشکل صفحه را در حرکت ها ورکرافت بررسی کردند.
در سال 1978،؟ فاکتورهای مهم در واکنش دامن را با آزمایش مدل بدست آورد و نشان داد که واکنش مدل در یک محدوده ی شرایط میانگین بصورت خطی است.
در سال 1993،M.J.Hinchey و P.A.Sullivon پایداری هاورکرافت را بر روی آب مورد بررسی قرار دادند.
در سال 1377شمسی، پایداری استاتیکی و دینامیکی دامن انعطاف پذیرهاورکرافت بوسیله ی آقای حبیب الله ملاطفی نیاری در دانشگاه شیراز مورد بررسی قرار گرفت.
در همه ی موارد، محققان از یک مدل دو بعدی برای تحقیق و جواب منطقی استفاده کردند.
GEMها
هاورکرافت یکی از وسایلی می باشد که تحت تاثیر زمین عمل می کند. که به عنوان GEMها ،”Ground Effect mechines معروف می باشند. اساسا دو دسته ی اصلی GEMها وجود دارد.
آیرو استاتیک کرافت:
آیرواستاتیک کرافت می تواند به سه زیر طبقه تقسیم شود.
a)محفظه ی تراکم هوا (Plenum Chomber): که در آن هوا به درون حفره این در زیر کرافت پمپ می شود و این امر موجب ایجاد یک بالشتک پرفشار و هوا می شود و از زیر لبه های هوا به بیرون شت میکند.
(شکل 101) (Priph : که بالشتک با هوای فشرده پروبوسیله ی یک جریان جت پیوسته در اطراف
بالشتک، وسیله نگه داشته می شود. (شکل 102)
c)یا قاقان هوا (Air beoring) : که
انواع محفظه ی تراکم هوا:
چند نمونه ی مختلف محفظه ی تراکم هوا مورد بررسی قرار می گیرد که همه ی آنها به منظور افزایش بازده ی کرافت با کاهش درز نشست هوا می باشند. و بنابراین توان کمپرسور که وظیفه ی تامین هوای بالشتک را دارد کاهش می یابد.
محفظه ی تراکم دامن دار (Skirted plenum chamber) :
که در آنها فاصله ی آزاد لبه های زیر بالشتک می تواند افزایش یابد تا عبور از روی موانع دارای ارتفاع زیاد امکان پذیر باشد و در عین حال شکاف نشست هوا کاهش یابد. این کار بکمک گشترش سازه های صلب دامن انعطاف پذیر از اطراف جداره های کرافت به سمت پائین امکان پذیر می باشد. (شکل 104)
محفظه ی کرافت با سیستم دیواره های جانبی(Side wall croft) :
که شکاف نشست هوا به قسمت جلو و عقب کرافت محدود می شود. بالشتک در اطراف توسط جداره های غوطه ور نگه داشته می شود که علاوه بر اینکه می توانند مقداری از نیروی لیفت را تامین کنند میتوانند تا حدود در پایداری کرافت شرکت کنند.(شکل 105)
زیر مجموعه ی این سیستم شامل موارد زیر می باشد.