فرمت فایل : word(قابل ویرایش)
تعداد صفحات:62
چکیده:
آزمایش شماره (1):
آشنایی با دستگاه شبیه ساز فرآیند:
1-1)Set value:
خروجی set value را به نمایشگر سمت چپ داده و با تغییر آن ملاحظه میشود که LED ها با توجه به مقدار ولتاژ در بالا یا پائین مبدا قرار میگیرند که مبین ولتاژ DC میباشد. که از 10 تا 10- ولت قابل تغییر است.
2-1)Disturbance:
این قسمت قابلیت تولید موج مربعی و سینوسی با دامنه و فرکانس متغییر دارد. خروجی سینوسی را به نمایشگر سمت چپ داده ملاحضه میشود که LEDها به طور پیوسته از مینیمم به ماکزیمم و برعکس روشن میشوند. حال اگر خروجی مربعی باشد LEDها فقط در نقاط ماکزیمم و مینیمم پیک روشن میشود.
3-1) انتگرال گیر:
در این مرحله ازآزمایش ابتدا یک موج مربعی به ورودی انتگرالگیر میدهیم و از خروجی یک موج مثلثی میگیریم ؛ وبه کمک رابطه مربوطه Ti را محاسبه میکنیم.از آنجا که انتگرال یک سیکل کامل صفر میشود(سطح زیر منحنی ) بنابراین انتگرال را در نیم سیکل محاسبه می کنیم .حال خروجی که با فرکانس 100 هرتز و ولتاژ 2 ولت پیک تا پیک تنظیم شده است را به ورودی انتگرالگیر میدهیم و ورودی و خروجی را به طور همزمان در اسکوپ مشاهده میکنیم. چون در این حالت انتگرالگیر به اشباع میرود توسط set value مقدار DC به آن اضافه میکنیم تا از اشباع خارج شود.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:19
فهرست مطالب:
چکیده
1. مقدمه
2. نوعی از دستگاههای گسسته زمانی
3. نتایج اولیه
4. اثبات قوی و تثبیت
5. نتیجهگیری
چکیده:
یک طبقه از دستگاههای خطی و گسستگیهای زمانی نامشخص همراه با حالت تاخیر مورد بررسی قرار میگیرد. ما یک ماتریس نامعادله خطی را بر اساس تحلیل (LMI) ایجاد میکنیم و روشهایی را برای بهبود بهتر ثبات دستگاههای وابسته به زمان همراه با حالت تاخیر و غیرخطیهای محدود را دوباره طراحی میکنیم. سپس تثبیت بهتری را توسط استفاده از دستگاههای بازخوردی انعطافپذیر و اسمی درست میکنیم. در هر دو مورد ارتباط بین اندازه مزایای کنترل کننده و فاکتورهای متناهی معلوم و در درون یک طراحی منظم قرار میگیرد. توسط جستجوی موارد محاسباتی تمام نتایج بدست آمده در قالب (LMSI) و چندین مثال عددی در سراسر مقاله ارائه میشود.
به طور روزافزون نمایان میگردد که تاخیرات در سیستمهای فیزیکی و ساخت بشر با توجه به دلایل مختلف مانند قابلیت محدود، پردازش اطلاعات در میان قسمتهای مختلف سیستم، پدیدهای ذاتی مانند جریان حجیم انتقال و بازیابی و یا توسط تولید تاخیرات اتفاق میافتد. بحثهای قابل قابل مقایسه درباره تاخیرات و تاثیرات تثبیت/عدم تثبیتشان بر سیستمهای کنترل، علاقه محققین را در سالهای اخیر به خود جلب کرده استن (Mahmoud، 1999؛ Mahmoud، b2000 و دیگر مرجعها).
در طراحی کنترل سیستمهای دینامیک و پویا به این نتیجه میرسد که اهداف طراحی با تاثیر پارامترهای متغیر، قصورات اجزای ترکیب و ارتباط بین آنها که بطور مکرر موقعیتهای عملی رخ میدهد، یکی نیست. تئوری کنترل قوی ابزارهای طراحی مناسبی را با استفاده از دامنه زمانی و دامنه متوالی را ارائه میدهد. هنگامی که مدلسازی دستگاه نامعلوم است و یا عدم ثبات اختلالات خارجی، مشکل اصلی دستگاههای کنترل است، نتایج برای عدم ثبات سیستمعای وابسته به گسستگی زمانی میتواند در کتاب (Mahmoud، 1999) یافت شود.
هنگام بکارگیری کنترل طراحی شده خاطر نشان میسازد که مشکلات و مباحث همراه با قابلیتهای محاسباتی محدود و دقیق بسیار حیاتی میباشد و این برای بررسی روشهای طراحی مجدد مورد خطاب قرار میگیرد. در این روشها اختلالات موجود در کنترل کننده در طراحی ادغام میشود تا روشهای طراحی کنترل قوی بهبود یابد. پیشرفتهای اخیر درباره ایت موضوع میتوان در کتاب (Mahmoud، a,b2004؛ Nounou، 2005؛ Yang & Wang، 2001 و Yang et al، 2000) ملاحظه کرد. تمام این نتایج برای سیستمهای زمانی پیوسته در این مقاله ارائه میشود. ما روش Mahmoud (a,b2005) و Mahmoud & Nounou (2005) را در طبقه سیستمهای زمانی گسسته همراه با تاخیر بسط میدهیم.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:114
مقدمه:
برنامهریزی خطی با بهینهسازی (ماکزیمم یا مینیمم) یک تابع خطی که از محدودیتهای مساوی یا نامساوی یا ضمنی تشکیل شده است، سروکار دارد. مساله برنامهریزی خطی را ابتدا جرج.بی.دانتزیک در سال 1947 ابداع کرد. اگرچه ال.دی.کانترویچ مسالهای از این نوع که با سازماندهی و برنامهریزی ارتباط پیدا میکرد را در سال 1939 فرمولبندی کرده بود، ولی کار او تا سال 1959 ناشناخته باقی ماند. بنابراین مبتکر اصلی برنامهریزی خطی به طور کلی جرج دانتزیک معرفی شد.
در سال 1949 جرج.بی.دانتزیک «روش سیمپلکس» را برای حل برنامهریزی خطی به چاپ رساند. از آن زمان به بعد افراد زیادی به روشهای بسیار متعددی از جمله بسط و توسعه نظری، دیدگاه محاسباتی و بکارگیری کاربردهای جدید آن، در این حوزه وارد شدند. روش سیمپلکس به دلایل:
1. توانایی مدلبندی مسائل مهم و پیچیده مدیریتی؛
2. توانمندی حل مسائل در مدت زمان معقول در برنامهریزی خطی کاربردهای وسیعی دارد.
مدلبندی و مثالهای برنامهریزی خطی
به طول کلی مراحل مهمی که یک تیم تحقیق در عملیات بایستی طی نماید، عبارتند از:
1. تعریف مساله
2. ساختن مدل
3. حل مدل
4. معتبر بودن مدل
5. اجرای نتیجه نهایی «اتخاذ تصمیم»
مهمترین نوع از انواع مدلهای تحقیق در عملیات، مدل ریاضی میباشد. در نوشتن این نوع مدلها، فرض بر این است که متغیرها کمیتپذیرند. بنابراین علائم ریاضی را جهت نمایش متغیرها بکار میرود که بوسیله توابع ریاضی به هم مربوط میشود و مدل به وسیله الگوریتم مناسبی حل میشود.
ساختار مدل ریاضی
1. متغیرهای تصمیم
2. محدودیتها «قیدها»
3. تابع هدف
انواع مدلهای ریاضی که در «R» (تحقیق در عملیات) استفاده میشود:
1. مدل برنامهریزی خطی
2. مدل برنامهریزی پویا
3. مدل صف
4. مدل کنترل موجودیها
5. مدل شبیهسازی
برنامهریزی خطی یک مدل ریاضی برای تحقیق در عملیات است.
مساله
1. یک کارخانه میخواهد برنامهای برای تولید وسایل آشپزخانه داشته باشد. برای ساختن این وسایل کارخانه به داده خام و نیروی انسانی نیازمند است و میخواهد سه نوع کالا از نوع A, B و C تولید کند. اطلاعات داده شده در جدول زیر در اختیار کارخانه میباشد. حداکثر در روز میتوان 200 کیلوگرم ماده خام تهیه نموده و حداکثر نیروی انسانی موجود 150 نفر ساعت در روز میباشد. مدیریت کارخانه میخواهد طوری تصمیم بگیرد که بیشترین سود را داشته باشد. مساله را به صورت برنامهریزی خطی فرموله کنید.
C B A
6 3 7 کارگر «نفر ساعت»
5 4 4 ماده خام «کیلوگرم»
3 2 4 سود حاصل از فروش «دلار»
تعداد واحدهای کالای نوع A xC
:متغیرهای تصمیم
تعداد واحدهای کالای نوع B xB
تعداد واحدهای کالای نوع C xA
محدودیت مربوطبه نیروی انسانی 7xA+3xB+6xC≤150
:محدودیتها
محدودیت مربوط به ماده خام 4xA+4xB+5xC≤200
محدودیت xA+xB+xC≥0
Max Z=4xA+2xB+3xC: تابع هدف «ماکزیمم سود»
مرتب کردن: اول تابع هدف و بعد قیدها
7xA+3xB+6xC≤0
S.T. 4xA+4xB+5xC≤0
xA, xB, xC≥0
2. یک کارخانه کاغذسازی سه سفارش برای تهیه توپهای کاغذی «مشابه توپ پارچه» که طول و عرض آنها در جدول زیر داده شده است، دریافت میکند. در این کارخانه توپهای کاغذی در دو عرض استاندارد 10 دسیمتر و 20 دسیمتر تولید میشود که باید به اندازههایی که در سفارشها مشخص شده، بریده شوند. برای طول توپهای استاندارد محدودیتی نیست، زیرا از لحاظ علمی، توپهای با طول محدود میتوانند به هم وصل شوند و توپهای موردنظر را بوجود آورند. به فرم برنامهریزی خطی فرموله کنید.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:22
چکیده:
ایده آل های خطی به ترتیب کوهن-مکوالی
چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونههایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.
1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:17
چکیده:
بررسی مدل سازه در حالت خطی:
پس از جمع آوری اطلاعات لازم برای مدلسازی سازه جهت ارزیابی اولیه سازه تحت یک آنالیز خطی استاتیکی مطابق با آئین نامه 2800 قرار گرفت تا اولاً ضغف های آن مشخص گردد و ثانیاً نیاز به مقاوم سازی سازه بررسی گردد.
برای مدلسازی سازه از آنجا که طبقه زیرزمین سازه دارای دیوارهای آجری با کیفیت خوب و به ضخامت5/1 متر بوده و اطراف آن نیز خاک نسبتاً متراکم قرار دارد، و از طرف دیگر به دلیل پاره ای از مسائل دسترسی به تعدادی از اجزای سازه ای در طبقه زیرین ممکن نبوده و نیاز به عملیات سونداژ داشته است. به نحوی که اطلاعات کافی جهت مدلسازی دقیق غیرخطی برای سازه، فراهم نشده است. لذا در حالت خطی سازه در دو حالت با در نظر گرفتن طبقه زیرین و بدون در نظر گرفتن آن مورد بررسی قرار گرفته است و در هر حالت نیز بطور جداگانه اثرات سختی اتصال خورجینی روی رفتار سازه بررسی شده است.
در نهایت با مقایسه نتایج برای دو حالت با درنظر گرفتن زیرزمین و بدون درنظر گرفتن زیرزمین مشاهده می شد به دلیل سختی زیاد طبقه زیرین عملاً می توان تراز پایه را از طبقه همکف فرض نموده و از طبقه زیرزمین در مدلسازی سازه صرفنظر نمود.
در آنالیز استاتیکی سازه مشاهده می شود که سازه در تحمل بارهای قائم مشکلی نداشته و قادر به تحمل بارهای مرده و زنده اختصاص داده شده باشد. از طرف دیگر سازه در تحمل بارهای جانبی بسیار ضعیف بوده و تنش های تعداد زیادی از تیرها، اتصالات، و بخصوص ستونها فراتر از حد قابل تحمل مصالح بوده و لذا ضعف مفرط سازه در تمل بارهای جانبی مشاهده می گردد. علاوه بر ضعف سازه در تحمل نیروهای جانبی با توجه به زمان تناوب سازه در جهت های مختلف مشاهده می گردد که سختی سازه بسیار کم بوده و عملاً زمان تناوب سازه بسیار بالاتر از حدود معمول برای قاب ساختمان ده طبقه است. همینطور تغییر مکانهای کلی ونسبی سازه تحت نیروهای زلزله بسیار فراتر از حدود مجاز آئین نامه می باشد. بنابراین با توجه به نتایج گرفته شده از آنالیز خطی سازه نیاز سازه به مقاوم سازی کاملاً مشخص می باشد.
در ادامه با توجه به گستردگی نتایج بدست آمده خلاصه اهم نتایج بدست آمده در حالت خطی ارائه می شود.
تحلیل غیرخطی سازه موجود:
پس از مدلسازی در حالت خطی، سازه در نرم افزار Perform بصورت سه بعدی مدلسازی شد و تحت آنالیز استاتیکی غیرخطی قرار گرفته است.
به این منظور کلیه مشخصات اعضای تیروستون شامل مشخصات پلاستیک مقاطع مطابق با ضوابط FEMA356 محاسبه شده، و در نرم افزار مورد استفاده قرار گرفته است.
جهت ارزیابی سازه المانهای سازه به دو گروه کنترل شونده توسط نیرو و کنترل شونده توسط تغییر شکل طبقه بندی می شوند. در این ارتباط در قسمت های بعدی توضیحات بیشتری ارائه می گردد.
در آنالیز اولیه غیرخطی سازه در جهت x مشاهده می شود که مفاصل پلاستیک در تیر لانه زنبوری در ناحیه ای بین دو ورق تقویتی تیر که در آنجا تیر فاقد ورق پرکننده جان است تشکیل می گردد، و از آنجا که انتظار نمی رود تیرهای لانه زنبوری در این قسمت ظرفیت لازم جهت تغییر شکل پلاستیک را داشته باشند، لذا در مدلسازی تیر و در ناحیه های با جان غیرپر، تیر کنترل شونده توسط نیرو در نظر گرفته شده است بطوریکه هنگامی که لنگرهای وارده در این نواحی از حد الاستیک تجاوز نماید، تیر در نقاط موردنظر مقاومت خود را از دست می دهد.
با توجه به نتایج حاصله در این مرحله مشاهده می شود که در جهت y دیوار برشی به دلیل خردشدن بتن مقاومت خود را از دست می دهد و لذا منحنی ظرفیت سازه پله ای شکل بوده و بعد از اینکه دیوار برشی مقاومت خود را از دست می دهد، افت قابل توجهی در منحنی ظرفیت مشاهده می شود که سبب افزایش تغییر مکان هدف برای سازه می گردد.
به هر حال مشاهده می گردد ه که حتی در حالت ایمنی جانی، دیوارهای برشی و ستونهای زیادی در سازه دارای ظرفیت کافی نمی باشند و بعلاوه سازه دارای تغییر مکان هدف بسیار بالایی می باشد و در ضمن کلیه اتصالات خورجینی دارای دوران های پلاستیک قابل توجه فراتر از ظرفیت تحمل خود می باشند. همچنین در مهاربندهای واگرا نیز ظرفیت تیرها کافی نبوده و دوران خمیری آنها فراتر از حدود مجاز مطابق دستورالعمل FEMA356 می باشد. لذا سازه از نظر دستورالعمل FEMA356 آسیب پذیر بوده و نیاز به مقاوم سازی دارد.
در جهتx نیز سازه به دلیل ضعف مهاربندها وستونها وشکست تیرهای لانه زنبوری غیر شکل پذیر دارای ضعف های عمده ای می باشد که حتی در حالت ایمنی جانی تغییر شکلهای بسیار زیادی در سازه ایجاد می گردد و بعلاوه تعداد بسیار زیادی از ستونها نیز دارای ظرفیت مقاوم لازم نمی باشند و نیاز به تقویت دارند.
لازم به ذکر است که برای دستیابی به هدف بهسازی مبنا مطابق دستورالعمل FEMA356 علاوه بر حالت ایمنی جانی، ضواب مربوط به سطح عملکردی آستانه فروریزش نیز باید ارضاء گردد.
( نتابج شامل عکس فنی پوش لور و DCR ها و ....)
طیف مورد استفاده :
در این تحقیق از آنجا که هدف تنها مقایسه روشهای مختلف برای ارتقاء عملکرد لرزه ای سیستم می باشد. طیف انتخابی چندان تأثیرگذار نبوده و تنها مبنایی برای مقایسه این روشها با یکدیگر است. از این ور در این تحقیق جهت سازگاری با نرم افزار مورد استفاده از طیف سه خطی ارائه شده در دستورالعمل ATC و FEMA استفاده شده است. دلایل استفاده از این طیف به شرح زیر است:
1- نرم افزار مورد استفاده تطابق و سازگاری بسیار خوبی با طیف های ATC داشته و از سوی دیگر بدلیل پاره ای از مشکلات نرم افزاری با معرفی طیف های دیگر در نرم افزار مشکلاتی مشاهده می شود.
2- از آنجا که دستورالعمل های FEMA,ATC برای ارزیابی استفاده می شود، بهتر است از طیف های ارائه شده و سازگار با این دستورالعمل استفاده گردد.
3- آئین نامه 2800 ایران طیف مربوط به زلزله حداکثر مطابق با سطح خطر -2 را ارائه نداده است. و لذا از آنجا که بدلیل هدف عملکردی موردنظر به این طیف نیز علاوه بر سطح خطر -1 احتیاج می باشد. بهتر است از طیف های ATC که در آنها حالت زلزله حداکثر نیر پیش بینی شده است استفاده گردد.