فرمت فایل : word(قابل ویرایش)
تعداد صفحات:95
چکیده:
کیفیت آبهای زیر زمینی
آب خالص (H2o) به طور معمول در طبیعت یافت نمی شود. حتی آب باران نیز برخلاف آنچه در گذشته تصور می شد خالص نیست. آب طبیعی اعم از منابع سطحی یا زیرزمینی به دست آمده باشد، شامل مواد جامد حل شده، گازها و مواد معلق است. کیفیت و کمیت اجزاء تشکیل دهندة آب به پارامترهای ژئولوژیکی و محیطی بستگی داشته و دائماً در اثر واکنش آب در تماس با رساناها و فعالیتهای انسانی، تغییر می کند. آبی هم که به عنوان آب طبیعی شناخته می شود نیز ممکن است همواره آلوده بوده و از این رو اصطلاح « آب طبیعی» نیز می تواند گمراه کننده باشد. آب طبیعی اصطلاحاً به آبی گفته می شود که هنوز مورد استفاده قرار نگرفته و اصولاً برای نمونه گیری و آزمایش به منظور پژوهش از آن استفاده می شود.
برای تعیین کیفیت آب قابل قبول برای مصارف کشاورزی و صنعتی یا انسانی، آب در معرض برخی آزمایشها قرار می گیرد. معمولاً این آزمایشها شیمیایی، فیزیکی، بیولوژیکی و رادیولوژیکی می باشد. نتایج این آزمایشها برای هر نوع استفادة خالص، با استاندارد قابل قبول آن استفاده مقایسه می شود. این استانداردها با یکدیگر فرق دارند. برای مثال کیفیت آب قابل قبول برای کشاورزی ممکن است برای آشامیدن قابل قبول نباشد. در صنعت نیز ممکن است استاندارد کیفیت آب قابل قبول با یک کاربرد خاص برای کاربردهای دیگر متفاوت باشد.
درجه حرارت آب، یکی از مهمترین عوامل مؤثر در کیفیت آب زیرزمینی است. درجه حرارت آب در مصارف مختلف صنعتی، انسانی، گیاهی و جانوری از اهمیت خاصی برخوردار است. درجه حرارت آب زیرزمینی در یک محل معمولاً در سراسر سال یکنواخت است. به همین دلیل آب زیرزمینی به عنوان آب مورد نیاز صنعت و انسان در بسیاری از موارد بر آب سطحی برتری دارد.
با مطالعه عوامل مؤثر در کیفیت آبهای زیرزمینی می توان کیفیت آیندة آن را در مقایسه با کیفیت فعلی پیش بینی کرد. با تعیین کیفیت آبهای زیرزمینی می توان نوع مصرف آن را تعیین نمود. دبی آبهای زیرزمینی را در یک محل می توان با اندازه گیری کل مواد جامد حل شده ( T D S ) در آن محل محاسبه نمود. با اندازه گیری غلظت یونی آبهای زیرزمینی و دبی نهرهای سطحی نیز می توان دبی آبهای زیرزمینی را به دست آورد.
مطالعه ترکیبات شیمیایی آب و تغییرات آنها می توان در منبع یا منابع تغذیه مصنوعی و تعیین مسیر آبهای زیرزمینی مؤثر واقع شود. همچنین با مطالعه ترکیبات آب می توان به وجود لایه های مرزی آبدار و شکل و ترتیب سیستمهای جریان در این لایه ها پی برد. تغییر کیفیت آبهای زیرزمینی می تواند از تغییر کیفیت بارش نفوذی، اندرکنش آبهای زیرزمینی با محیط، طول مسیر جریان، مدت زمان، ماند آب، و نوع گونه های گیاهان در یک محل متأثر گردد. با جذب گازهای مختلف توسط آب نیز کیفیت آبهای زیرزمینی تغییر می کند.
9-1- سرچشمه شوری
در آبهای زیرزمینی نمکهایی به صورت محلول وجود دارد. نوع و غلظت این نمکها به محیط، حرکت، و سرچشمة ( Source ) آبهای زیرزمینی بستگی دارد. نمکهای محلول در آبهای زیرزمینی در درجة اول از حل مواد قابل حل نتیجه می شوند. در ناحیه هایی که حجم زیادی از آب سطحی به آب زیرزمینی می پیوندد، کیفیت آبهای نفوذ کننده تأثیر زیادی بر کیفیت آب زیرزمینی خواهد داشت. گازهایی که منشاء مواد مذاب معدنی ( Magmatic ) دارند، به طور موضعی به میزان مواد معدنی و محلول در آب زیرزمینی می افزایند. آبهای ذاتی (Canate waters ) از آبهای باقیمانده ( Residual waters ) محبوس در سنگهای رسوبی، حاصل شده و معمولاً دارای مواد معدنی زیادی هستند. آب باران نیز نمکهایی را که از جو گرفته است با خود به داخل زمین می برد.
آب زیرزمینی ضمن عبور از خاک، مواد محلولی را که از تجزیة خاک حاصل شده با خود می برد و به این طریق به مقدار نمک خود می افزاید. آب اضافی آبیاری که از طریق نفوذ، به سفرة آب زیرزمینی می رسد مقدار معتنابهی نمک به آب زیرزمینی می افزاید. مقدار نمک آبی که از منطقة نفوذ ریشة گیاهان در زمینهای کشاورزی عبور کند ( آب زهکشی )، چندین برابر مقدار نمک آب آبیاری است. افزایش غلظت نمک در آب زهکشی به علت تعرق و تبخیر گیاهان ( Evapotranspiration ) در محل می باشد. جذب انتخابی کودها و نمکها بوسیلة گیاهان ( Seiective absorption ) نیز موجب تغییر غلظت نمک در آب نفوذ کرده می شوند. عواملی که باعث اضافه شدن غلظت نمک در آب نفوذ کرده به زمین می شوند عبارتند از:
- نفوذ پذیری خاک،
- وضع زهکشی
- مقدار تبخیر و تعرق گیاهان
- آب و هوا.
- در خاکها و آبهای زیرزمینی نواحی خشک که عمل شستشوی املاح بوسیلة آب باران، به اندازة کافی صورت نمی گیرد، شوری خاک و آب زیرزمینی زیاد است و قدرت تولید محصول در این قبیل زمینها کاهش می یابد.
به علت نامحلول بودن نسبی عناصر تشکیل دهندة سنگهای آذرین، آب زیرزمینی که از این گونه سنگها عبور می کند تنها مقدار کمی از مواد معدنی را در خود حل می کند. آب بارانی که به زمین نفوذ می کند به علت داشتن گاز کربنیک جو، توانایی حلالیت بیشتری دارد. در آبهای زیرزمینی که با سنگهای آذرین در تماسند، مواد معدنی از نوع سیلیکات نسبتاً بیشتر از بقیة مواد دیده می شوند.
انحلال سنگهای رسوبی بیشتر از سنگهای آذرین است، این خاصیت، به همراه فراوانی سنگهای رسوبی در پوستة زمین، موجب شده است که قسمت اعظم مواد محلول آبهای زیرزمینی دیده می شوند. آنیونهای موجود در آبهای زیرزمینی عبارتند از: بیکربناتها، کربناتها و سولفاتها. در شرایط طبیعی، کلرورها و نیتراتها فقط به مقدار کم در آب زیرزمینی وجود دارند. منابع کلرورها، فاضلابها و آبهای ذاتی و آب نافذ دریا می باشد. غلظت زیاد نیتراتها دال بر وجود منابع آلوده کننده در زمین است. در مناطقی که سنگ آهک وجود دارد، معمولاً یونهای کلسیم و کربنات در اثر حل شدن سنگ آهک به آب زیرزمینی اضافه می شوند.
9-2- تأثیر عوامل آب و هوا، موقعیت جغرافیایی و باران در کیفیت آب های زیرزمینی
موقعیت جغرافیایی محل و وضع آب و هوا تأثیر زیادی بر کیفیت آب دارد. غالباً آبهای مناطق کوهستانی، خیلی شیرین تر یا کم نمک تر از آبهای مناطق دشتی و کویری است. به طور کلی می توان گفت آبهای مناطق خشک دنیا، از آبهای مناطق معتدل مرطوب، نمک بیشتری دارند. نامناسب بودن شرایط آب و هوایی، مانند کم بودن میزان بارندگی، بالابودن درجه حرارت و شدت تبخیر، باعث بالا رفتن غلظت املاح می شود.
بر اثر تبخیر زیاد آب، نمکهای موجود در آن به حد اشباع رسیده و سرانجام رسوب می کنند. این رسوب در مناطق معتدل و کوهستانی، بیشتر از نوع توفهای آهکی و در مناطق بیابانی ابتدا به صورت گچ و بعد به صورت قشری از نمک است. هر قدر میزان رطوبت و بارندگی بیشتر باشد، به همان نسبت نیز از مقدار تبخیر کاسته شده و از بد شدن کیفیت آب کاسته می شود.
در مواردی که رطوبتی در سطح سنگ یا خاک وجود داشته باشد، گرما باعث می شود که محیط مناسبی برای فعالیت میکروارگانیسمها، یا موجودات زنده کوچک ذره بینی، به وجود آید. در نتیجه فعالیت این موجودات، گازکربنیک آزاد می شود. این گاز مهمترین عامل مؤثر در تخریب شیمیایی سنگها و کانیهای سیلیسی و آهکی است.
کیفیت آب زیرزمینی تحت تأثیر جنبه های مختلفی از چرخة آب در طبیعت متأثر می گردد. بارش جوی ( باران و برف ) شامل آبی است که خالصی خود را در حین عبور از میان جو قبل از رسیدن به سطح زمین از دست می دهد. ناخالصی ها و ترکیبات شیمیایی موجود در جو، ناشی از عوامل زیر است:
- خاکسترها و گازهای آتشفشانی
- گرد و خاک و مواد جامد هوازده
- نمکهای جابجا شده در اثر تابش آفتاب و تشعشعات کیهانی
- گازهای خروجی از کارخانجات صنعتی
- امواج رادیواکتیو ناشی از انفجارات هسته ای
تا قبل از آغاز آزمایشهای مربوط به سلاحهای هسته ای در سال 1952، مقدار تریتیم (Tritum ) آب باران از 1 تا 10 واحد تریتیم ( Tu ) بیشتر نبود. پس از سال 1954، مقدار تریتیم در بسیاری از نواحی از Tu 20 افزایش یافت ( 1970، Walton ).
وقتی باران به سطح زمین می رسد قبلاً قسمتی از ناخالصیها و ترکیبات شیمیایی موجود در آن حل شده و بقیه با آبهای سطحی مخلوط می شوند. سپس آب باران با مواد معدنی و خاک و سنگ واکنش شیمیایی انجام می دهد. مقدار و نوع مواد معدنی حل شده در آب باران به ترکیبات شیمیایی و ساختمان فیزیکی خاک و سنگ و عواملی از قبیل غلظت یونی هیدروژن ( PH ) و پتانسیل احیا ( EH )ی آب بستگی دارد غلظت یون هیدروژن ( PH ) به غلظت مؤثر یونها در آب نسبت داده می شود. این کمیت به صورت لگاریتم در پایه 10 غلظت + H( با علامت منفی) و برحسب مول بر لیتر (mol/lit ) بیان می شود ( 1978 Bouwer, ). آب مقطر در دمای c25 دارای غلظت + Hبرابر با mol /1 10است. بنابراین PH آن برابر PH= -log 10-7= 7 می باشد. این محلول با 7= PH خنثی نامیده می شود ( مقدار یونهای H+ وOH- برابرند).
هنگامی که 7 PH<است، محلول، اسیدی است. این چنین آبهایی روی دوام پمپها، فیلتر چاهها ( Well screen ) و لوله داخل چاه ( Casing ) اثر می گذارند. آب قلیایی دارای 7 PH > می باشد. بیشتر آبهای طبیعی دارای PH بین 6 و 5/8 می باشند ( 1970, Hem ). وقتی PH از 5/8 تجاوز کند، آب معمولاً آزاد است. PH کم نشان می دهد که آب یا دارای مقداری جزئی از اسیدهای معدنی است که از منابع سولفیدی بدست آمده اند و یا دارای اسیدهای آلی است.
پتانسیل احیاء ( EH ) مقیاسی است که قدرت یک محیط طبیعی را برای افزایش یا کاهش ظرفیت مثبت یا از دست دادن الکترونها نشان می دهد ( 1972، Domenico ). به عبارت ساده تر پتانسیل احیاء مقیاسی است که انرژی مورد نیاز برای از جا کندن و بلند کردن الکترونها را از یونها در یک محیط شیمیایی داده شده مشخص می کند.
غلظت شیمیایی آب باران از فصلی به فصل دیگر و از محلی به محل دیگر تغییر می کند. غالباً مقدار زیادی از آمونیم و نیترات موجود در آب، از خاک تأمین شده اند. در نواحی ساحلی و غلظت کلراید ( CI ) و پتاسیم ( K ) به طور نسبی به حدود mg/1 8 و mg/1 4/0 می رسد. غلظت سدیم از حدود 1/0 تا 3/0 میلی گرم بر لیتر در نواحی غیر ساحلی و تا حدود mg/1 4 در نواحی ساحلی تغییر می کند. غلظت کلسیم در خاکهای قلیایی ( AlKali ) و هنگامی که طوفانهای خاکی ( Dust storms ) روی می دهند افزایش می یابد.
دی اکسید کربن ( CO2 ) کسب شده از جو، تولید اسیدکربنیک می کند که با PH کمتر از 7 به آب باران وارد می شود. در نواحی صنعتی که هوا آلوده است، ممکن است مقدار PH باران از 5/4 نیز کمتر شود.
9-3- تأثیر عامل زمین در کیفیت آبهای زیرزمینی
آب باران که به سطح زمین می رسد آبهای سطحی و زیرزمینی را تشکیل می دهد. این آب در ابتدا دارای نمک بسیار ناچیزی است، اما پس از تماس با رسوبات زمین شناسی و سنگهای مختلف، املاح آن زیاد می شود. املاحی که در آغاز جریان در آب وجود دارند با کانی های رسوبات یا سنگهایی که آب از آنها عبور می کند واکنش پیدا می کند و املاح موجود در سنگ حل می شود.
طول مسیر یا جابجایی یک نمک تا محلی که به غلظت اشباع می رسد و دوباره در قالب سنگ یا خاک از محلول جدا می گردد به قابلیت به قابلیت حل شدن آن بستگی دارد. قابلیت جابجایی هر یک از نمکها، بسیار متفاوت است. قابلیت جابجایی و حل شدن یونهای کلر موجود در سنگها از همه بیشتر و صد در صد است. قدرت جابجایی یونهای دیگر کمتر است. به عنوان مثال قدرت جابجایی و قابلیت حل شدن یون کلسیم ( Ca++ ) را می توان 3 درصد و سدیم ( Na+ ) را 5/2 درصد ذکر کرد.
وقتی آب باران به زمین می رسد، پوشش خاک و سایر مواد ناشی شده از تجزیه گیاهان و حیوانات را به همین دلیل در منطقة رشد گیاه، ترکیبات شیمیایی آب با تبادل یونی بین اجزاء تشکیل دهندة آب و خاک یا به علت جذب مواد مغذی به وسیله گیاهان تغییر می کند. معمولاً آبی که در خاک نفوذ می کند حاوی نیتراتها، فسفاتها و پتاسیم است ( که از کودهای شیمیایی موجود درخاک حاصب می شوند ). هنگامی که گیاهان و سایر ارگانیسم های زنده، دی اکسید کربن و سایر ارگانیسم های زنده، دی اکسید کربن ( Co 2 ) و اسیدهای ارگانیک تولید می کنند، PH آب نفوذی کاهش می یابد. و به این ترتیب غلظت نمک در آب زیرزمینی که از آب آبیاری نتیجه می شود بسیار بیشتر از آبهای سطحی می گردد.
در مناطق لم یرزع و خشک معمولاً میزان تبخیر بیش از میزان نفوذ است. اگر زمین زهکشی نشود این امر باعث جمع شدن توده ای از نمک در نزدیکی سطح زمین می شود. به این ترتیب خاصیت اسیدی آب باران و آب سطحی ( مانند آب مورد استفاده در آبیاری ) کمی بعد از نفوذ آب به داخل خاک افزایش می یابد. با توجه به میزان قابلیت حل و ویژگی های کانیهای خاک و سنگ، مقدار مواد جامد قابل حل (T D S ، Total dissolved solids ) در آب نفوذی تغییر می یابد. علاوه براین، خاطر نشان می سازد که میزان قابلیت حل با درجه حرارت و فشار نیز تغییر می کند.
تغییرات فصلی آب از نظر کم و زیاد شدن باعث ایجاد نوسانات فصلی کیفیت شیمیایی آب می شود. بنابراین شیمی خاک مورد آبهای طبیعی دوره ای بود و تحت تأثیر چرخة هیدرولوژیکی قرار دارد. مهمترین نمکهای محلول که توسط چرخة شیمیایی خاک تولید می شوند به دو گروه تقسیم می گردند ( 1955، Cheboter ). یونهایی که مقدار آنها زیاد است عبارتند از: Hco-3 ، Co 2-3 ، Cl- ، So2-4 ، Na+ ، K+، Co2+ ، Mg2+ ، H+ ، و یونهایی که به ندرت و اتفاقی با آنها روبرو می شویم عبارتند از: NH4+، Al3+، Fe2+، Fe3+، No-2، So2-3، Oh-، Sio2-3، جدول شماره (9-1 ) آنیونها و کاتیونهای موجود در آبهای زیرزمینی را مشخص می کند. کاتیونها دارای بار مثبت و آنیونها دارای بار منفی هستند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:15
فهرست مطالب:
چکیده
مقدمه
مواد وروش ها
آماده سازی نمونه
آزمایشات فیزیکی و شیمیایی
تعیین میزان حلالیت ایزوله پروتئین سویا
تعیین مقدار رسوب
تعیین مقدار سرم
نتایج و بحث
اثر زانتان بر حلالیت پروتئین
اثر زانتان بر حجم سرم
بررسی اثر صمغ زانتان بر حجم رسوب
اثر کاراجینان بر حلالیت پروتئین
اثر کاراجینان بر حجم سرم
بررسی اثر صمغ کاراجینان بر حجم رسوب
بررسی اثر متقابل صمغ زانتان و کاراجینان بر ضریب حلالیت نیتروژن(NS)
بررسی اثرمتقابل صمغ زانتان و کاراجینان بر حجم سرم
بررسی اثر متقابل صمغ زانتان و کاراجینان بر حجم رسوب
منابع
چکیده:
محدودیت هایی در استفاده از پروتئین سویا مانند حلالیت کم و طعم نامطلوب آن وجود دارد. در این پژوهش سعی گردید که خواص عملکردی پروتئین سویا توسط دو صمغ زانتان و کاراگینان بهبود یابد. زانتان در چهار سطح 0، 04/0، 09/0 و 13/0 درصد و کاراجینان در سطوح 0، 03/0، 07/0 و 09/0 درصد (در محلول) استفاده شد و صفتهای حجم سرم، حجم رسوب و ضریب حلالیت نیتروژن مورد ارزیابی قرار گرفت.
نتایج آماری نشان داد که نمونه های دارای 13/0 درصد زانتان، 13/0 درصد زانتان و 07/0 درصد کاراجینان ، 13/0 درصد زانتان و 09/0 درصد کاراجینان و 09/0 درصد زانتان و 09/0 درصد کاراجینان دارای کمترین حجم سرم و رسوب و بالاترین میزان حلالیت بودند.
مقدمه
دربسیاری از مواد غذایی، پروتئین و پلی ساکارید بصورت توأم وجود دارد. در فرمولاسیون مواد غذایی کلوئیدی، ازپروتئینها به دلیل خواص امولسیون کنندگی و تولید کف و از کربوهیدراتها بعنوان نگهدارنده آب و قوام دهنده استفاده میشود. علاوه بر این پروتئینها و کربوهیدراتها در ماده غذایی ایجاد بافت و ساختار مناسب مینمایند1,2)).
واکنش پروتئین - پلی ساکارید عمدتاً الکترواستاتیکی است و قدرت واکنش به pH و قدرت یونی بستگی دارد. این واکنش می تواند برای کنترل حلالیت پروتئین، تشدید ژله ای شدن و پایداری امولسیون و کف بکار رود3)). اضافه کردن پلی ساکاریدها به محلول پروتئین از تجمع زیاد مولکولهای پروتئین توسط محدود کردن واکنش پروتئین - پروتئین، یا توسط حفظ گروههای بار دار و یا افزایش ویسکوزیته، جلوگیری می کند( 4).
واکنش دو بیوپلیمر میتواند به صورت تفکیکی (بیوپلیمرها یکدیگر را دفع می کنند که به عنوان عدم سازگاری مطرح می شود) و یا تجمعی باشد که در این صورت پلیمرها یکدیگر را جذب میکنند (5).
واکنش پروتئین و پلی ساکارید به صورتهای حلالیت همزمان، ناسازگاری، رسوب، تشکیل کمپلکس یا جداسازی فاز وجود دارد( 6).
از نقطه نظر ترمودینامیکی، پروتئین وپلی ساکارید در محلول به صورت سازگار و یا ناسازگار وجود دارند. تحت شرایط ناسازگاری ترمودینامیکی، سیستمی شامل دو فاز حاصل می شود که عمدتاً هر فاز دارای مولکولهای متفاوت است(4).
فاکتورهای مؤثر در ایجاد سازگاری پروتئین - پلی ساکارید، شامل نسبت پروتئین به پلی ساکارید، pH، قدرت یونی، میزان کل مواد جامد، درجه حرارت، میزان اسیدی بودن و طبیعت پلیمرها ( وزن مولکولی، بار و قابلیت انعطاف زنجیر) می باشد( 4).
واکنش دافعه، بین پروتئین و پلی ساکارید غیر یونی یا پلی ساکارید آنیونی در pH بالای نقطه ایزوالکتریک پروتئین اتفاق می افتد. واکنش جاذبه غیر خاص بین پروتئین وپلی ساکارید از تشکیل پیوندهای یونی، واندوالس، هیدروژنی و... حاصل می گردد. جاذبه قوی بین پروتئین ها با بار مثبت ( pH زیر نقطه ایزوالکتریک پروتئین ) و پلی ساکارید آنیونی، مخصوصاً درقدرت یونی پایین، و جاذبه ضعیف بین پروتئینهای خنثی یا با بار منفی (pH بالای نقطه ایزوالکتریک پروتئین) و پلی ساکارید اتفاق می افتد (2).
محلول آبی پروتئین وپلی ساکارید، ممکن است در محدوده خاصی از نظر مقدار، جداسازی فاز نشان دهد. جداسازی فاز در اثر دو رفتار ثانویه توده ای شدن یا ناسازگاری ترمودینامیکی صورت میگیرد.
ترکیب دوگانه پروتئین - پلی ساکارید، بسته به دما، شرایط حلال و میزان آنها می تواند توده ای شدن، ناسازگاری یا هیچ کدام را نشان دهد.
توده ای شدن شامل جداسازی خودبهخودی سیستم به دو فاز غنی از حلال و بدون حلال( شامل پروتئین وپلی ساکارید) میباشد. این امر توسط رسوب همزمان مخلوط پروتئین- پلی ساکارید تحت اثر واکنشهای جاذبه الکترواستاتیکی( غیر خاص ) بین بارهای مخالف پروتئین - پلی ساکارید انجام میشود (2). توده ای شدن زمانی که نیروی جاذبه بین دو بیوپلیمر مختلف آنقدر قوی باشد که آنها را بهم نزدیک نماید وتشکیل کمپلکس دهد، اتفاق می افتد. چون کمپلکس حاصل دارای دانسیته متفاوتی نسبت به محیط اطراف خود میباشد، جداسازی در بالا یا پایین سیستم در اثر نیروی جاذبه زمین صورت میگیرد (7). تودهای شدن در میزان کم پلی ساکارید اتفاق میافتد. چون در میزان کم، پلی ساکارید نمیتواند بطور کامل پروتئین را پوشش دهد و پلی ساکارید ممکن است بیشتر از یک مولکول پروتئین را جذب نماید (8, 5).
ناسازگاری ترمودینامیکی شامل جداسازی خود به خودی سیستم به دو فاز غنی از حلال است که در یک فاز پروتئین و در دیگری پلی ساکارید غالب است. این پدیده در اثر مخلوط نشدن محلول پروتئین و پلی ساکارید غیر رقیق، تحت اثر واکنش دافعه پروتئین - پلی ساکارید (2) و در واقع زمانی که واکنش بین بیوپلیمرهای مشابه (1BP-1BP و 2BP- 2BP ) از نظر انرژی نسبت به واکنش بین بیوپلیمرهای مختلف( 2BP- 1BP ) مطلوبتر باشد، اتفاق می افتد(7).
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:13
فهرست مطالب:
درباره خواص پزشکی گیاه کنگر 1
خواص درمانی کنگر در سلامت بدن 3
خواص غذایی کنگر 5
خواص درمانی کنگر در سلامت بدن 6
کنگر باغى - خارلته - کنگر صحرائى - کنگر وحشى 7
محل رشد و پراکنش 9
چکیده:
درباره خواص پزشکی گیاه کنگر
نام دیگر این گیاه آرکیشو است و از گیاهان مغذی است و ریشه آن مورد استفاده قرار می گیرد. در زمان گل دادن، دانه های آن نیز قابل استفاده است. از دانه های آن برای هضم غذا استفاده می شود و بسیار نیروزا است و برای ناراحتی های کبد و طحال مؤثر است.
نام علمی کنگر CYNARA SCOLYMUS است. این گیاه اولین بار در اتیوپی کشت شد و بعد در نقاط مختلف دنیا گسترش پیدا کرده است. محل اصلی رویش این سبزی مدیترانه، جزایر قناری و آمریکای جنوبی است. زمان به گل نشستن این گیاه از بهار تا نیمه ی تابستان است که به عواملی چون شرایط اقلیمی و گرمای هوا وابسته است. دم برگ داخلی سفید رنگ ، راس ساقه و هاگدان قسمت های خوراکی این گیاه را تشکیل می دهد که در سوپ ، خورش و سالاد مورد استفاده قرار می گیرد. در یونان و مصر باستان، این گیاه به دلیل نقش کمکی در هضم مواد غذایی مورد توجه قرار گرفت و در قرن 16 میلادی در اروپا یکی از سبزیجات معروفی بود که توسط اشراف مصرف می شد.
در طب سنتی اروپا ، برگ های کنگر به عنوان ماده افزایش دهنده ادرار ( دیورتیک ) و محرک کلیه ها ، محرک ترشح صفرا از کبد و انقباض کیسه صفرا مورد استفاده قرار می گرفت. این گیاه غنی از پتاسیم بوده، ولی از لحاظ انرژی محدود است.
مواد مغذی اصلی موجودد در 100 گرم کنگر خام
انرژی 18 کیلو کالری
پتاسیم 360 میلی گرم
آهن 1 میلی گرم
فولات 21 میکروگرم
کلسیم 41 میلی گرم
پتنوتنیک اسید 3/0 میلی گرم
ویتامین B1 1/0 میلی گرم
سدیم 27 میلی گرم
بتاکاروتن 39 میکروگرم
فیبر 4 گرم
خواص درمانی کنگر در سلامت بدن
سرگل های این گیاه به عنوان سبزی مصرف می شود که برای دستگاه گوارش مقوی بوده و به هضم مواد غذایی کمک می کند. عصاره ی برگ و ریشه ی کنگر برای جلوگیری از رسوب چربی در جدار رگ ها مفید بوده و در درمان یرقان ، سوء هاضمه ، احساس ناراحتی در معده ، نفخ ، بی اشتهایی ، تهوع ، اسهال خفیف یا یبوست ، نارسایی کبد ، دفع مزمن آلبومین و کم خونی بعد از جراحی موثر بوده و از کبد در برابر سموم شیمیایی محافظت می کند. در بعضی از کشورها به عنوان محرک تمایلات جنسی مصرف می شود.
ماده سینارین که در عصاره برگ کنگر وجود دارد، باعث کاهش کلسترول خون می شود. تحقیقات نشان داده است که سینارین باعث کاهش سطح تری گلیسیرید خون نیز می شود.
سینارین و ماده دیگری که به عنوان اسید کافئیک شناخته شده است، کبد را در برابر عفونت حفظ می کند و به کبد کمک می کند تا بعد از تخریب قسمتی از آن دوباره خود را از نو بسازد. از آنجایی که کنگر محتوی کربوهیدرات پیچیده غیر قابل هضم به نان اینولین است، خاصیت مسهلی دارد. از طرفی اینولین موجود در کنگر باعث افزایش باکتری های مفید و کاهش باکتری های مضر در مدفوع می شود. در حقیقت باعث حفظ سلامتی روده شده و احتمالاً می تواند خطر سرطان روده باریک را کاهش دهد. آنتی اکسیدان موجود در کنگر، پوست را در برابر سرطان محافظت می کند.
مقدار مصرف
بزرگسالان برای بهره گیری از اثرات درمانی کنگر می توانند ،4-1 گرم برگ خشک یا خام آن را سه بار در روز مصرف کنند.
کسانی که نباید کنگر مصرف کنند
- بهتر است زنان باردار، کودکان، بیماران مبتلا به بیماری شدید کبدی یا کلیوی از مصرف برگ کنگر پرهیز کنند.
- از آنجایی که برگ های کنگر محرک انقباض کیسه ی صفراست، افرادی که سنگ کیسه ی صفرا دارند نباید آن را مصرف کنند، چرا که افزایش انقباض کیسه ی صفرا منجر به انسداد مجاری و حتی پارگی کیسه صفرا می شود.
- هم چنین اشخاصی که نسبت به کنگر و یا خواص سینارین حساسیت دارند، باید از مصرف این گیاه پرهیز کنند.
خواص غذایی کنگر
نام علمی کنگر CYNARA SCOLYMUS است. این گیاه اولین بار در اتیوپی کشت شد و بعد در نقاط مختلف دنیا گسترش پیدا کرده است. محل اصلی رویش این سبزی مدیترانه، جزایر قناری و آمریکای جنوبی است. زمان به گل نشستن این گیاه از بهار تا نیمه ی تابستان است که به عواملی چون شرایط اقلیمی و گرمای هوا وابسته است. دم برگ داخلی سفید رنگ ، راس ساقه و هاگدان قسمت های خوراکی این گیاه را تشکیل می دهد که در سوپ ، خورش و سالاد مورد استفاده قرار می گیرد. در یونان و مصر باستان، این گیاه به دلیل نقش کمکی در هضم مواد غذایی مورد توجه قرار گرفت و در قرن 16 میلادی در اروپا یکی از سبزیجات معروفی بود که توسط اشراف مصرف می شد.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:148
فهرست مطالب:
عنوان صفحه
چکیده 3
فصل اول 5
تعاریف و کلیات 6
1-1- تنش 6
2-1- کرنش 6
3-1- نمودار تنش – کرنش 6
4-1- مدول الاستیسه (مدول اولیه) 7
5-1- رفتار الاستیک – پلاستیک ماده 8
6-1- نسبت پواسن 8
7-1- انرژی کرنشی 8
8-1- منحنی تنش – کرنش پارچه 9
9-1- استحکام کششی : 9
10-1- استحکام تا حد پارگی : 9
11-1- روش های مختلف تست کشش : 10
12-1- روش های اندازه گیری استحکام پارچه : 11
13-1- روش نمونه گیری استاندارد پارچه : 11
فصل دوم 12
روشهای مطالعه خواص مکانیکی پارچه 13
1-2- مقدمه 13
2-2- تعیین مدل هندسی 14
3-2- مدل هندسیPeirce 15
4-2- آزمایش تغییرات ابعادی در پارچه کرباس: 18
5-2- مدل هندسی با مقطع بیضوی 18
6-2- مدل هندسی پیرس با مقطعهای نخ مسطح شده 19
تعیین مدل مکانیکی 19
7-2- روش انرژی Hearl , Shanahan 19
8-2- اصلاح مدل ساختمانی پیرس 24
فصل سوم 33
1-3- آزمایشات 34
فصل چهارم 46
1-4- مقدمه : 47
2-4- بررسی استحکام در جهت تار نمونه ها با تراکم های مختلف 48
3-4- تجزیه و تحلیل نتایج : 66
4-4- تجزیه و تحلیل نتایج : 86
5-4- تجزیه وتحلیل داده ها : 140
6-4- طرح پیشنهادی جهت ارائه پروژه 141
چکیده :
یکی از مهمترین خواص مکانیکی پارچه استحکام آن می باشد . همچنین ازدیاد طول تا حد پارگی نیز حائز اهمیت می باشد عوامل مختلف روی این خواص می توانند تاثیر گذار باشند از جمله جنس نخ ، نمره نخ ، نوع نخ و تراکم و غیره .
در این پروژه کارهای ذیل انجام شده است :
- بررسی استحکام پارچه های تاری پودی با تراکم های تار و پود مختلف در سه طرح بافت متفاوت
- بررسی ازدیاد طول تا حد پارگی پارچه های تاری پودی با تراکم های تار و پود مختلف در سه طرح بافت متفاوت
- مقایسه بین استحکام و ازدیاد طول تا حد پارگی در پارچه های مورد آزمایش
آزمایشات بر روی پارچه ها با تراکم های مختلف انجام شد و نتایج بدست آمده مورد تجزیه و تحلیل قرار گرفت که در نهایت در مورد استحکام پارچه مبانی تئوری و نتایج عملی مورد انطباق قرار گرفت ولی در مورد ازدیاد طول روند خاصی ملاحظه نشد و به نظر می رسد بررسی بیشتر و دقیق تری مورد نیاز می باشد .
نتایج حاصله عبارتند از :
- در مورد تاثیر تراکم تار بر روی استحکام در جهت تار و تراکم پود بر روی استحکام در جهت پود می توان پیش بینی نمود با n برابر شدن تراکم هم در تار و هم در پود استحکام نیز n برابر خواهد شد .
- همچنین بین طرح بافتهای سرژه ، تافته و ترکیبی از سرژه و تافته ، طرح سرژه دارای بیشترین استحکام و تافته دارای کمترین استحکام می باشد .
- با تغییر عرض نمونه های آزمایش شده با تراکم های تار مختلف به نحوی که تعداد سرنخ نمونه ها مساوی باشد تغییر خاصی از لحاظ آماری روی استحکام ایجاد نمی شود ولی از لحاظ عددی با افزایش تراکم تار و کاهش عرضی ، استحکام بایستی کاهش یابد .
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:45
مقدمه:
بمنظور آشنائی با خواص اپتیکی مواد (رسانا و غیر رسانا) میبایست میدان الکتریکی E و میدان مغناطیسی B را در مواد بررسی نمود یا در واقع به عنوان محیط موجبری که انرژی یا موجی را انتقال میدهد مورد کنکاش قرار داد. لذا می بایستی که بحث الکترومغناطیسی را بعنوان زیربنا و ساختار لایه های اپتیکی مورد استفاده قرار داد از آنجاییکه عنوان پروژه طراحی فیلترهای نوری میباشد لذا ما فرض میگیریم که خواننده آشنا به مطائل الکترومغناطیسی است ما صرفاً به اعمال شرایط مرزی در یک مرز یا مرز دو محیط بسنده می نمائیم. طراحی فیلترهای منوری بمنظور بازتاب و یا عبور طول موج های خاص و یا باند خاص از طول موجها طراحی میگردد که میزان بازتاب و عبور آن برای طراح بعنوان کیک پارامتر قابل تغییر مطرح می باشد و در واقع میزان بازتاب و عبور را در محدوده خاصی که مورد مظر است اتفزایش و یا کاهش میدهد و یا پالایش طول موجها را با بالا بردن میزان عبور یک طول موج و یا یک محدوده طول موجها و کاهش عبور دیگر طول موجها بوسیله بازتاب یا جذب را انجام میدهد که همه اینها در طراحی فیلتر عملی میگردد.
نیاز و کاربرد به لاسه نشانی و یا طراحی فیلترهای نوری برای آینه های گرمایی (بازتابنده های گرمایی) و آینه های سرد، (که آینه های گرمایی فروسرخ را بازتاب و آینه های سرد فروسرح را عبور میدهند و در نورافکنها استفاده میشود).
آینه های دوررنگی (شامل پالایه های نوارگذاری که بررخهای منشوری لایه نشانی شده تا نور را در دوربینهای رنگی به کانالهای قرمز، سبز و آبی تقسیم کند) آینه های لیزر با بازتاب بالا و یا در انترفرومترهای فابری پرو، مایکسون، لنزهای دوربین های عکاسی، نظامی، تلسکوپها، دوربین های نظامی دید در شب، هدایتگر موشک و ... میباشد.
در این پروژه تکیه بر فیلترهای ضد بازتاب و تا حدی محدود به آینه ها نیز اشاره می نمائیم و ضمناً تلاش بر این بوده که با دستیابی به متد طراحی و محاسبات آن به قدرت طراحی فیلتر توسط کامپیوتر دست یابیم که به این منظور یک سری برنامه هائی در جهت طراحی کارائی فیلترها نوشته شد که نیاز به گسترش خیلی بیشتری دارند بهر حال برای این پروژه بالغ بر 200 صفحه ترجمه و مطالعه شده و نیز بالغ بر 100 ساعت کار با کامپیوتر برای دستیابی به بهترین طراحی ها و برنامه نویسی انجام گردیده است.
امیدوارم این مجموعه در هرچه آشنا شدن به فیلترهای مختلف با محاسبات و طراحی آنها و کارهای عملی انجام شده نقطه شروعی در جهت طراحی فیلتر در صنعت و ... عملی شده باشد.
مرز:
فیلترهای نازک معمولاً شامل یک تعدادی مرز بین لایه های همگن هستند و خوبست بدانیم که این مرزها چه اثری روی موج فرودی که ما می خواهیم محاسبه کنیم خواهند گذاشت یک تک مرز ساده ترین حالت میباشد. ابتدا فرض می گیریم جذب در لایه ناچیز و صفر باشد و یک موج هارمونیک پلاریزه تخت را برای موج فرودی درنظر گرفته ایم هنگامی که یک موج به یک مرز بین دو محیط برخورد می کند یک قسمت از آن بازتاب و یک قسمت آن عبور می کند شکل همه آنها بصورت eiwt میباشد منتهی یک اخلاف فاز از این قسمت ناشی میشود که به میزات ضخامت محیط عبوری دارد. ضمناً میزان دامنه عبوری نیز تغییر می نماید.
میدانیم که میدان الکتریکی مماسی و میدان مغناطیسی مماسی موج فرودی در عبور از مرز در محیط ÷یوسته است. (محیط دی الکتریک درنظر گرفته شده است) با توجه به شکل و با توجه به شرایط مرزی میدانهای E و B را در دو طرف مرز میتوان با معادلات زیر نوشت:
که در اینجا میدان E فرودی اولیه
که در اینجا میدان E بازتابیده از مرز اول a
میدان E عبوری از مرز اول a
میدان E بازتابیده از مرز دوم b
میدان E عبوری از مرز دوم b
حاصل جمع تمام میدانهای E که بطرق فصل مشترک a فرود میآیند
حاصل جمع تمام میدانهای E که بطرق فصل مشترک b فرود میآیند
برای میدان مغناطیسی هم داریم:
بکمک عبارت زیر
مقادیر و را بر حسب میدان E می نویسیم:
که و و را اینگونه تعریف می کنیم:
و نور با یکبار ÷یمودن لایه اختلاف فازی معادل
را ÷یدا می کند که nt ضخامت ا÷تیکی و t ضخامت حقیقی می باشد و n ضریب شکست آن است.
و بعد از جایگذاری در معادله شرایط مرزی به معادلات زیر دست می یابیم.
و از آنجا داریم:
که ماتریس فوق را ناتریس انتقال گویند و این ماتریس میدان الکتریکی و مغناطیسی در سوی دیگر مرز را بما میدهد. این ماتریس را میتوان برای هر لایه نوشت که ضخامت فازی آن از ضخامت فیزیکی آن یعنی t ناشی می شود.
اگر چند لایه داشته باشیم برای هر لایه یک ماتریس انتقال میتوان نوشت که اگر بخواهیم میدان را در لایه لازم بدانیم از شکل زیر استفاده میکنیم.
و میتوان ماتریس انتقال کل را حاصلضرب تمام ماتریس انتقال تک تک لایه ها دانست.
با این تعریف و مراجعه به شرایط مرزی میتوان
به جای معادلش یعنی
به جای معادلش یعنی
به جای معادلش یعنی
به جای معادلش یعنی
اندیس s برای ÷ایه که بصورت Substrate نوشته میشود بکار میرود.
و می توان با تقسیم کردن طرفین بر بصورت
نوشت با استفاده از معادلات اخیر می توان ضرائب بازتاب و عبور را بصورت زیر تعریف نمائیم:
ضریب عبور، ضریب بازتاب
و شکل کلی ضرائب بازتاب و عبور برای هر چند لایه بصورت زیر می باشد:
ضریب بازتاب
ضریب عبور
و شکل ساده آن در فرود عمود بشکل زیر می باشد که در آنجا n0 ضریب شکست محیط فرود n1 ضریب شکست لایه و ns ضریب شکست پایه می باشد.
که میزان عبور از رابطه
که میزان بازتاب از رابطه
بدست می آید برای اینکه برای نور پلاریزه E1 و E11 یعنی برای نوری که میدان E آن عمود بر صفحه تابش می باشد و میدان الکتریکی که موازی صفحه تابش می باشد مقدار فرق می کند در واقع برای نور S پلاریزه و P پلاریزه بصورت زیر می باشد.
برای E1 عمود بر صفحه تابش
برای E11 با صفحه تابش
لازم بذکر است برای فرود عمودی که E1 و E11 متمایز نیستند عبارتها معادل اند زیرا می شود ولی در مورد فرود مایل نتایج برای هر قطبیدگی باید محاسبه شود. برای مثال بازتاب بصورت زیر بدست می آید:
ضخامت:
ضخامت عامل موثری در ایجاد اختلاف فاز می باشد لذا هنگامی که ضخامت تغییر می کند اختلاف فاز ایجاد شده باعث کاهش یا افزایش بازتاب می شود. میزان اختلاف فاز از رابطه زیر بدست می آید.
که در رابطه روبرو k عدد موج و اختلاف راه نوری می باشد.
= اختلاف راه نوری = و
برای اینکه ما یک اختلاف فاز ایجاد کنیم تا در یک رفت و برگشت نور در یک لایه اختلاف فاز با نور فرودی ایجاد شود بایستی در فرمول قرار داده تا مقدار ضخامت را بدست آوریم:
در فرود عمود می باشد
و مقدار nt ضخامت اپتیکی بدست آمده از فرمول روبرو مقدار بدست می آید.
که این مقدار ضخامت برای ایجاد اختلاف فاز لازم است و مقدار فیزیکی ضخامت لایه از رابطه زیر بدست می آید:
در شکل روبرو برای اینکه نور فرودی با بازتابی، o180 اختلاف فاز داشته باشد بایستی مقدار ضخامت اپتیکی لایه باید در نظر گرفته شود.
علت اینکه ما اختلاف فاز بین نور رودی و بازتابی ایجاد نمائیم بعلت این است که بتوانیم با ناهمسازی بین موج فرودی و بازتابی باعث عدم بازتاب در سطحی شده و در نتیجه عبور را افزایش دهیم و اگر مایل به ساخت آینه باشیم می بایست بین نور فرودی و بازتابی همسازی ایجاد کرده و با هم فاز کردن آنها باعث شویم عبور کم شده و نور فرودی با همان دامنه و فاز در سطح اول بازتاب شده در اینصورت بازتاب افزایش یابد که در اینجا با در نظر گرفتن اختلاف فاز 0 یا 2 می توان مقدار ضخامت اپتیکی را بدست آورد البته برای 2 بار رفت و برگشت نور بایستی مضربی از باشد که در نتیجه فقط برای یکبار رفت مقدار nt برابر یا مضاربی از بدست خواهد آمد.
تک لایه ای ضد بازتاب:
برای اینکه یک ضد بازتاب یا کاهنده بازتاب تک لایه داشته باشیم بایستی با در نظر گرفتن ضخامت که اختلاف فاز ایجاد می کند و در یک رفت و برگشت o180 اختلاف فاز با نور فرودی (اولیه) ایجاد می کند استفاده کنیم و با استفاده از این شرایط که بازتاب سطح اول را با بازتاب سطح دوم برابر قرار دهیم می توان مقدار اندیس یا ضریب شکست لایه را بدست آورد. با استفاده از فرمولهای فرنل یا همان ضرایب بازتاب و عبور می توان اینگونه نوشت:
که ضریب شکست پایه می باشد و این شرط برای مینیمم بازتاب یا بازتاب صفر لازم است. بعنوان مثال اگر شما یک تک لایه ربع موجی را بخواهید بر روی یک پایه شیشه ای با ضریب شکست 52/1 دور محیط هوا با اندیس 0/1 انتخاب نمائید بایستی لایه شما با استفاده از فرمول فوق مقدار آن از رابطه زیر بدست خواهد آمد:
البته ماده ای با ضریب شکست 23/1 در عناصر موجود یافت نمی شود و تنها ضرائب شکست 35/1 و 38/1 در دسترس می باشد که متعلق به کریولیت و می باشد.
می توان پایه را با ضریب بالا مثل ژرمانیم که حدود 0/4 است انتخاب نمود که در این صورت با استفاده از فرمول مقدار آن بدست می آید:
که می توان بعنوان تک لایه ای با ضریب شکست 0/2 بر روی پایه ژرمانیمی نشاند.
منحنی های رسم شده توسط کامپیوتر این دو نوع تک لایه ای بر روی پایه با ضریب کم و بر روی پایه با ضریب زیاد ضمیمه می باشد.
ماتریس انتقال یک تک لایه ای بشکل زیر برای آن نوشته می شود.