یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

دانلود مقاله دینامیک سیالات در توربو ماشین ها

اختصاصی از یارا فایل دانلود مقاله دینامیک سیالات در توربو ماشین ها دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله دینامیک سیالات در توربو ماشین ها


دانلود مقاله دینامیک سیالات در توربو ماشین ها

در طراحی کنونی توربو ماشینها، و بخصوص برای کاربردهای مربوط به موتورهای هواپیما، تاکید اساسی بر روی بهبود راندمان موتور صورت گرفته است. شاید بارزترین مثال برای این مورد، «برنامه تکنولوژی موتورهای توربینی پر بازده مجتمع» (IHPTET) باشد که توسط NASA و DOD حمایت مالی شده است.

هدف IHPTET، رسیدن به افزایش بازده دو برابر برای موتورهای توربینی پیشرفته نظامی، در آغاز قرن بیست و یکم می باشد. بر حسب کاربرد، این افزایش بازده از راههای مختلفی شامل افزایش نیروی محوری به وزن، افزایش توان به وزن و کاهش معرف ویژه سوخت (SFC) بدست خواهد آمد.

وقتی که اهداف IHPTET نهایت پیشرفت در کارآیی را ارائه می دهد، طبیعت بسیار رقابتی فضای کاری کنونی، افزایش بازده را برای تمام محصولات توربو ماشینی جدید طلب می کند. به خصوص با قیمتهای سوخت که بخش بزرگی از هزینه های مستقیم بهره برداری خطوط هوایی را به خود اختصاص داده است،  SFC، یک فاکتور کارایی مهم برای موتورهای هواپیمایی تجاری می باشد.

اهداف مربوط به کارایی کلی موتور، مستقیما به ملزومات مربوط به بازده آیرودینامیکی مخصوص اجزاء منفرد توربو ماشین تعمیم می یابد. در راستای رسیدن به اهداف مورد نیازی که توسط IHPTET و بازار رقابتی به طور کلی آنها را تنظیم کرده اند، اجزای توربو ماشینها باید به گونه ای طراحی شوند که پاسخگوی نیازهای مربوط به افزایش بازده، افزایش کار به ازای هر طبقه، افزایش نسبت فشار به ازای هر طبقه، و افزایش دمای کاری، باشند.

بهبودهای چشمگیری که در کارایی حاصل خواهد شد، نتیجه ای از بکار بردن اجزایی است که دارای خواص آیرودینامیکی پیشرفته ای هستند. این اجزا دارای پیچیدگی بسیار بیشتری نسبت به انواع قبلی خود هستند که شامل درجه بالاتر سه بعدی بودن، هم در قطعه و هم در شکل مسیر جریان می باشد.

میدان های جریان مربوط به این اجزا نیز به همان اندازه پیچیده و سه بعدی خواهد بود. از آنجایی که درک رفتار پیچیده این جریان، برای طراحی موفق چنین قطعاتی حیاتی است، وجود ابزارهای تحلیلگر کارآتری که از دینامیک سیالات محاسباتی (CFD) بهره می برند، در پروسه طراحی، اساسی می باشد.

در گذشته، طراحی قطعات توربو ماشین ها با استفاده از ابزارهای ساده ای که بر اساس مدلهای جریان غیر لزج دو بعدی بودند کفایت می کرد. اگرچه با روند کنونی به سمت طراحی ها و میدانهای جریان پیچیده تر، ابزارهای پیشین دیگر برای تحلیل و طراحی قطعات با تکنولوژی پیشرفته مناسب نیستند. در حقیقت جریانهایی که با این قطعات برخورد می کنند، به شدت سه بعدی (3D)، ویسکوز، مغشوش و اغلب با سرعت ها ، در حد سرعت صوت می باشند. این جریان های پیچیده، قابل فهم و پیش بینی نیستند، مگر با بکار بردن تکنیک های مدلسازی که به همان اندازه پیچیده هستند. برای پاسخگویی به نیاز طراحی چنین قطعاتی، ابزارهای CFD پیشرفته ای لازم است که قابلیت تحلیل جریانهای سه بعدی، لزج و در محدوده صوتی، مدل سازی اغتشاش و انتقال حرارت و برخورد با پیکربندی های هندسی پیچیده را داشته باشد. علاوه بر این، جریانهای گذرا (ناپایا) و تعامل ردیفهای چندگانه تیغه ها باید مورد ملاحظه قرار گیرد.

هدف این فصل این است که بازنگری مختصری از مشخصات جریان در انواع مختلف قطعات توربوماشینها ارائه داده و نیز خلاصه ای از قابلیتهای تحلیلی CFD که مورد نیاز برای مدل کردن چنین جریانهایی هستند را بیان کند.

این باید به خواننده، درک بهتری در مورد تاثیر جریان بر طراحی چنین اجزایی و میزان کارایی مدل سازی مورد نیاز برای آنالیز اجزاء بدهد. تمرکز بر روی کاربردهای موتورهای هواپیما خواهد بود، ولی دهانه های ورودی، نازلها و محفظه های احتراق مورد توجه خواهند بود. به علاوه یک بررسی از هر دو گرایش طراحی قطعات و ابزارهای تحلیل CFD را شامل می شود. به علت پیچیدگی این موضوعات، تنها یک بحث گذرا ارائه خواهد شد. اگرچه مراجع فراهم شده اند تا به خواننده اجازه دهد این مباحث را با جزئیات بیشتر جستجو کند.

ویژگیهای میدان های جریان در توربو ماشین ها:

در این قسمت از فصل، خصوصیات اولیه میدانهای جریان توربو ماشینها بررسی خواهد شد. اگرچه بحث اساسا کاربرد موتورهای هواپیما را مورد توجه قرار خواهد داد، ولی بسیاری از خصوصیات جریان برای توربو ماشینها عمومیت دارند علاوه بر بازنگری مختصر بر ویژگیهای میدانهای جریان عمومی، طبیعت جریانهای خاص در انواع گوناگون اجزاء مورد توجه قرار خواهد گرفت.

ویژگیهای اساسی جریان:

میدان های جریان در توربو ماشین های ذاتا بسیار پیچیده و سه بعدی است. در بسیاری از موارد، جریان ها تراکم پذیرند و ممکن است از مادون صوت به جریان با سرعت صوت و به فراصوتی تغییر کنند. در مسیر جریان ممکن است شوک وجود داشته باشد و تعامل شوک و لایه مرزی ممکن است اتفاق بیفتد که باعث افت بازده می شود. گرادیان فشارهای قابل توجه، در هر جهتی می تواند وجود داشته باشد.

همچنین چرخش، یک فاکتور مهم است که رفتار جریان را تحت تاثیر قرار می دهد.

جریانها اکثرا لزج و مغشوش هستند، اگرچه ناحیه هایی با جریان لایه ای و انتقالی نیز وجود دارد. اغتشاش و تلاطم در میدان جریان می تواند در لایه مرزی و جریان آزاد اتفاق بیفتد، جایی که میزان اغتشاش، بسته به شرایط جریان بالادست، تغییر می کند. برای مثال جریان پایین دست یک محفظه احتراق یا کمپرسور چند طبقه می تواند اغتشاش جریان آزاد بسیار بیشتری نسبت به جریان ورودی به یک فن داشته باشد.

تنش های پیچیده و کاهش کارآیی می تواند ناشی از پدیده های جریان لزج، مثل لایه های مرزی سه بعدی، اثر متقابل بین لایه مرزی تیغه و دیواره، حرکت جریان نزدیک دیوار، جریان جدا شده، گردابه های مربوط به لقی نوک پره، گردابه های لبه فرار، دنباله ها، و اختلاط باشد. علاوه بر این، حرکت نسبی دیواره و انتقال بین دیواره های دوار و ثابت می تواند رفتار لایه مرزی را تحت تاثیر قرار دهد. جریان ناپایدار می تواند در اثر تغییرات شرایط بالادست جریان با زمان، گردابه های رها شده از لبه فرار تیغه ها، جدایی جریان و یا اثر متقابل بین ردیف پره های دوار و ثابت، ایجاد شود، که می تواند منجر به بارگذاری ناپایدار بر روی تیغه ها شود.

اثرات حرارت و انتقال حرارت می تواند فاکتور مهمی باشد، بخصوص در قسمتهای داغ موتور. گازهای داغ محفظه احتراق از میان توربین عبور می کنند و رگه های داغی را بوجود می آورند که توسط میدان جریان توربین منتقل می شوند. برای حفاظت از اجزائی که در معرض بالاترین دما قرار دارند، جریانهای خنک کننده از میان سوراخهای موجود در تیغه های توربین به مسیر گازهای داغ اولیه تزریق می شود و برای سطوح تیغه ها خنک کنندگی لایه ای را فراهم می آورد. به طور مشابه، جریانهای خنک کننده ممکن است به جریان اصلی در طول دیواره نیز تزریق شود.

بیشتر پیچیدگی میدانهای جریان سیال در توربو ماشین ها مستقیما تحت تاثیر مسیر جریان و هندسه اجزاء می باشد. ملاحظات هندسی شامل منحنی و شکل endwall مسیر جریان، فاصله بین ردیف های تیغه ها، گام تیغه، و stagger می شود. موارد دیگری از هندسه مسیر جریان شامل پیکربندی ردیفهای تیغه ها، از قبیل استفاده از «tandem blades»، تیغه های جداکننده، دمپرهای midspan وعملیات روی نوک تیغه ها می باشد. جزئیات بیشماری مربوط به شکل تیغه، مثل توزیع ضخامت، خمیدگی، جهت، قوس، به عقب برگشتگی، حلزونی، پیچ خوردگی، ضریب شکل، صلبیت، نسبت شعاع توپی به نوک، شعاع لبه حمله تیغه و لبه فرار تیغه، اندازه فیلت و فاصله نوک تیغه نیز از همان اهمیت برخوردارند. خنک کاری تیغه ها نیز دارای اهمیت هستند، اندازه و موقعیت سوراخهای خنک کننده درون تیغه، مسیر اولیه گاز را تحت تاثیر قرار می دهد.

بنابراین، رفتار جریان در اجزای توربو ماشینها نیز کاملا پیچیده بوده و بسیار متاثر از هندسه مسیر جریان است. یک فهم عمیق از اثرات هندسه مسیر جریان و اجزا و قطعات، به طراح اجازه خواهد داد تا از جریانی که حاصل شده، سود ببرد. برای رسیدن به این درک و برای انجام تحلیلهای لازم برای بهینه کردن رفتار بسیار پیچیده جریان لازم است از تکنولوژی پیشرفته مدلسازی جریان استفاده شود.

شامل 189 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله دینامیک سیالات در توربو ماشین ها

دانلود مقاله انتقال حرارت به سیالات با خواص متغیر

اختصاصی از یارا فایل دانلود مقاله انتقال حرارت به سیالات با خواص متغیر دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله انتقال حرارت به سیالات با خواص متغیر


دانلود مقاله انتقال حرارت به سیالات با خواص متغیر

 

مشخصات این فایل
عنوان: انتقال حرارت به سیالات با خواص متغیر
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 114

این مقاله درمورد انتقال حرارت به سیالات با خواص متغیره می باشد.

بخشی از تیترها به همراه مختصری از توضیحات هر تیتر از مقاله انتقال حرارت به سیالات با خواص متغیر

ـ  اثر شناوری
در جریانهای سیالات با خواص ثابت، وجه غالب در انتقال گرما، جابجایی اجباری میباشد. جریانهای سیالات با خواص متغیر (شرایط فوق بحرانی) اتقال حرارت بصورت ترکیبی از جابجایی آزاد و اجباری خواهدبود. جابجای آزاد، در واقع ناشی از تأثیر نیروهای شناوری است. در مورد لولههای قائم، شناوری موجب میشود که بین ضرایب انتقال حرارت بدست آمده برای  جریان بالارو و پایینرو اختلاف اساسی ایجاد شود. انتقال حرارت در جریان پایینرو افزایش مییابد در حالیکه درجرانهای بالارو انتقال حرارت دچار اخلال و زوال میگردد. در لولههای افقی در شرایطی که قطر لوله نسبتاً بزرگ، شار جرمی  کم و شار حرارتی زیاد باشد اثرات شناوری نمود میکند. در این لولهها اثرات شناوری باعث تغییرات محیطی در ضرایب انتقال حرارت میشود، بطوریکه مقادیر ضریب انتقال حرارت در قسمتهای فوقانی لوله کمتر از مقادیر مربوطه در قسمتهای تحتانی لوله میشود. اختلال ایجاد شده در انتقال حرارت در قسمت فوقانی لولههای افقی را میتوان به لایهبندی و طبقهبندی  در جریان نسبت داد. در واقع در لولهها افقی در حالتی که شار جرمی کم، شار حرارتی زیاد و دمای دیواره از دمای شبه بحرانی بیشتر شده باشد، سیال در نزدیکی دیواره به حالت شبه گاز و در قسمت مرکزی لوله به حالت شبه مایع در می آید .در این حالت دمای لایه های نزدیک دیواره به دمای شبه بحرانی رسیده و باعث تغییرات بسیار زیاد در خواص سیال میشود. یکی از این تغییرات  کاهش چشمگیر چگالی میباشد. لذا....(ادامه دارد)

(الف) در شار حرارتی کوچک (ب) در شار حرارتی بزرگ

با توجه به نتایج فوق، یاماگاتا  ] [ رفتار ضریب انتقال حرارت را در ارتباط با فشار و دما همانند رفتار ظرفیت گرمای ویژه دانست . همچنین یاماگاتا  ] [ با بررسی جریانها با جهات مختلف ، جریان افقی ، جریان عمودی رو به بالا ، جریان عمودی رو به پایین ، به این مطلب دست یافت که در شار حرارتی کوچک ، تفاوت محسوسی بین ضرایب انتقال حرارت در جهات مختلفی وجود ندارد . (شکل (2-3-الف ) ) . در حالی که با افزایش شار حرارتی و یا کاهش شار جرمی این اختلافات افزایشی می یابد (شکل (2-3- ب ). وی این تفاوتها بین منحنی های ضرایب انتقال حرارت در شارهای حرارتی بالا( نسبت به شار جرمی ) را به اثر شناوری استناد داد .
یاماگاتا با استفاده از داده های آزمایشگاهی خود نهایتاً به این نتیجه دست یافت که در شار حرارتی پایین ( نسبت به شار جرمی ) ، انتقال حرارت در نزدیکی خط شبه بحرانی افزایش می یابد . و در شار حرارتی بالا اخلال انتقال حرارت اتفاق می افتد . آزمایشات یاماگاتا یکی از معروف ترین آزمایشات در زمینه انتقال حرارت به سیال فوق بحرانی می باشد به طوری که در اکثر مقالات از داده ها و نتایج وی به عنوان مرجع استفاده می شود .
آکرمان   ] [ درلحظه شروع اخلال انتقال حرارت یک صدای شبیه به جوشش را شنید که بدین ترتیب وی در فشار های شبه بحرانی همانند یک پدید شبیه به بحران جوشش رفتار کرد. داده های ....(ادامه دارد)

4ـ1ـ مدل آشفتگی
همانطور که در فصل 2 ذکر شد مدلهای آشفتگی گوناگونی توسط دانشمندان جهت حل عددی مسئله انتقال حرارت به جریان آشفته سیال فوق بحرانی داخل لوله استفاده شده است. در سالهای اخیر با توجه به پیشرفت قابلیت کامپیوترها استفاده از مدلهای آشفتگی پیچیده همچون مدل  -k افزایش یافته است. ولیکن همانطور که گفته شد استفاده از مدلهای آشفتگی بسیار پیچیدهتر نظیر مدل  -k اغلب منجر به نتایج بهتر نسبت به مدلهای ساده پخش گردابهای نگردیده است. علت آنکه مدلهای آشفتگی پیشرفتهتری همچون مدل  -k اغلب  نمیتوانند منجر به نتایج قابل قبولی برای جریانهای فوق بحرانی شوند آن است که ثوابت و تقریبهای مورد استفاده در این مدلها اصولاً برای جریان سیالات با خواص ثابت یا خواص کم تغیّر بدست آمدهاند و بنابراین استفاده از این مدلها برای جریانهای فوق بحرانی که در آنها خواص به شدت در حال تغییر هستند منجر به خطاهای قابل ملاحظهای میشود.
لذا در اینجا نیز استفاده از مدلهای آشفتگی پخش گردابهای به مدلهای پیچیده همچون مدل  -k ....(ادامه دارد)

برر سی اثر شتاب
دربخش (3ـ6) با حذف ترم های جابجایی از معادله اندازه حرکت (3ـ21) به معادلات (3ـ31)  الی (3ـ33) رسیدیم .و با همان روشی که معادلات (3ـ20) الی (3ـ22) را حل کردیم می توان معادلات بدون شتاب را نیز حل کرد با این تفاوت که جهت بدست آوردن سرعت محوری   u از روش صریح و همانند حل یک بعدی استفاده می شود.
با حل عددی این معادلات و مقایسه نتایج حاصل از آن با نتایج حل دو بعدی اصلی ( با حضور شتاب ) می توان به اثر شتاب در معادلات پی برد.
شکل (5ـ16) نمودارهای ضرایب انتقال حرارت را در دو حالت بدون در نظر گرفتن شتاب و با حضور شتاب نشان می دهد. همانطور که مشاهده می شود با حذف شتاب از معادلات حاکم، ضرایب انتقال حرارت بدست آمده کاهش می یابند. این کاهش در نزدیک
نقطه شبه بحرانی (500    Hbulk ) چشمگیر تر می شود . این قضیه نشان می دهد که اثر شتاب در ناحیه شبه بحرانی تقویت می یابد.
شکل (5ـ16): اثر حضور شتاب بر ضریب انتقال حرارت
همچنین با مقایسه این شکل با داده های آزمایشگاهی یاماگاتا ( شکل (5ـ12ـ ب)) می توان دریافت که عدم حضور شتاب نتایج را از داده های آ›مایشگاهی دورتر می کند. لذا این قضیه فرضیه محققانی را که معادلات را به صورت یک بعدی حل کرده و اثرات مقاطع پیشین را در حل عددی خود در نظر نمی گیرند کاملاً رد می کند.
در شارهای حرارتی بالا اثر شتاب باعث ایجاد پدیده اخلال می گردد. یعنی در یک لحظه در ناحیه شبه بحرانی کاهش شدیدی در انتقال حرارت اتفاق می افتد . در اینجا به دلیل ناتوانی مدل دو بعدی....(ادامه دارد)

بخشی از فهرست مطالب مقاله انتقال حرارت به سیالات با خواص متغیر

فصل اول مقدمه
۱-۱-سیال فوق بحرانی
۱-۲-کاربردهای سیالات فوق بحرانی
مزایای روش scwo عبارتند از
۱-۳-شمای کلی انتقال حرارت
۱-۳-۱-خواص فیزیکی حرارتی
۱-۳-۲-انتقال حرارت در فشارهای فوق بحرانی
ـ اثر شناوری
ـ اثر شتاب حرارتی
فصل دوم مروری بر مطالعات گذشته
۲-۱- مقالات بازبینی
۲-۴-روشهای پیش بینی
۲-۵ اخلال انتقال حرارت
۲-۶ – اثر شتاب حرارتی
فصل سوم معادلات حاکم
۳-۱- معادلات لحظه ای حاکم
۳-۲- فرضیات ساده کننده
۳-۲- معادلات متوسط زمانی حاکم بر جریان
۳-۴ – شرایط مرزی
۳ـ۵ـ مدل یک بعدی
۳ـ۶ـ مدل ریاضی معادلات با حذف شتاب
فصل ۴ مدلسازی و حل عددی
۴ـ۱ـ مدل آشفتگی
۴ـ۲ـ ایجاد شبکه غیریکنواخت
۴ـ۳ـ روش حل عددی
فصل پنجم ارزیابی مدل و بررسی نتایج
۵ـ۱ـ پایداری حل عددی
۵ـ۲ـ اثر ضریب افزایش اندازه مش‌ها
۵ـ۳ـ تأثیر مدل آشفتگی
۵ـ۴ـ اثر قطر لوله بر انتقال حرارت
اثر شار جرمی بر انتقال حرارت
اثر شار حرارتی
5ـ7ـ مقایسه نتایج حل عددی با دادههای آزمایشگاهی
5ـ8ـ بررسی اثر شتاب
نتیجه گیری و پیشنهادات
6ـ2ـپیشنهادات :


دانلود با لینک مستقیم


دانلود مقاله انتقال حرارت به سیالات با خواص متغیر

مقاله نفت آزمایشگاه مکانیک سیالات

اختصاصی از یارا فایل مقاله نفت آزمایشگاه مکانیک سیالات دانلود با لینک مستقیم و پر سرعت .

مقاله نفت آزمایشگاه مکانیک سیالات


مقاله نفت آزمایشگاه مکانیک سیالات

این محصول در قالب ورد و قابل ویرایش در 89 صفحه می باشد.

منشاء نفت و روند تشکیل آن نفت خام مایعی است غلیظ به رنگ سیاه یا قهوهای تیره که اساسن از هیدروکربن ها تشکیل شده است.در مورد منشاء نفت به دو نظریهء معدنی و آلی می رسیم.نظریهء منشاء معدنی نفت: که در سال 1886 توسط  برتلو داده شد اینک رد شده است. همچنین در سالهای 1889( مندلیوف) نظریهء برتلو را تایید کرد و پس از ان در سال1901  سا باتیه و ساندرنس نظریهء منشاء معدنی بودن نفت را تایید کردند

نظریهء منشاء آلی:

امروزه می توان گفت که نظریهء منشاءآلی نفت برای نفت خام سبک به هر نظریه دیگری قابل قبول تر است این نظریه به دلایل زیر متکی است:

1- نفت خام همیشه در لایهای رسوبی یافت می شود که همواره مقدار زیادی از مواد آلی نیز در این لایها وجود دارند.

2- نفت خام محتوی ماده ای به نام پور فیرین می باشد.این ماده فقط در عامل سرخی خون ( هِمین) حیوانات و نیز در سبزینهء گیاهان وجود دارد.

3- اکثر نفتهای خام خاصیت چر خش سطح پلاریزاسیون نور را دارند. این خاصیت مربوط به وجود کلسترول است با منشاء حیوانی یا گیاهی.

به نظر می رسد که موجودات بسیار کوچک و بیشماری که در دریا ها و مرداب ها زندگی می کنندو پلانگتون  (فیتو پلانگتون و زئوپلانگتونها) نامیده می شوند منشاء آلی نفت می باشند.

توزیع  پلانکتونها  در  سطح  دریا  یکنواخت  نیست.این  موجودات  در  قسمت  بالای  آب  دریا    (عمق 50 تا 100 متری) که اشعهء خورشید نفوذ می کند و نیز در مجاورت سواحل متمرکز ند.تولید مثل این موجودات بسیار زیاد است و پس از نابودی در کف دریا سوب می دهند.البته پلانکتونها تنها منبع مواد آلی نیستند. اب رود خانه ها یی که به دریا میریزند حاوی مقداری مواد هیو میک است که ترکیبشان نزدیک به هیدرو کربنها است.                             

 نفت خام

بسیاری از دانشمندان عقیده دارند که نفت از باقیمانده موجودات ریز و گیاهانی که صدها میلیون سال پیش در دریاها می زیسته اند به وجود آمده است.  زمانی که آنان مرده اند  ، بدن آنان در کف دریا ، بین رسوبات دریا محصور شده  است.

بعد از میلیونها سال ، گرما و فشار آنها را به نفت و گاز تبدیل کرده است. نفت و گاز معمولاً همراه  با هم در پوسته زمین یافت می شوند و  برای به دست آوردن آنها نیاز به حفاری در پوسته زمین است.  در نمودار زیر  دوره زمانی شکل گیری نفت خام نمایش داده شده است.

 


دانلود با لینک مستقیم


مقاله نفت آزمایشگاه مکانیک سیالات

دانلود جزوه سیالات

اختصاصی از یارا فایل دانلود جزوه سیالات دانلود با لینک مستقیم و پر سرعت .

دانلود جزوه سیالات


دانلود جزوه سیالات

سیال ماده ای است که هر گاه تحت تأثیر نیروی برشی قرار گیرد، هر چند این نیروی برشی کوچک باشد، به تغییر شکل خود ادامه می دهد و تا زمانی که نیروی برشی بر سیال اعمال می شود، تغییر شکل سیال ادامه پیدا خواهد کرد. اما جامد، اگر یک قطعه جامد الاستیک (کشسان) تحت تأثیر نیروی برشی معینی قرار گیرد، بلافاصله تغییر شکل معینی پیدا خواهد کرد. به محض حذف نیروی برشی، جسم جامد الاستیک به حالت اولیه خود بر می گردد. یعنی شکل خود را بازیابی می کند. در صورتی که سیال نمی تواند پس از حذف نیروی برشی به شکل اولیۀ خود برگردد و یا در واقع نمی تواند تغییر شکل خود را بازیابی کند. بنابراین سیال ماده ای است که تحت اثر نیروی برشی نمی تواند ساکن باقی بماند.

در شکل زیر نیروی برشی برای جسم جامد الاستیک نشان داده شده است.

شامل 126 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود جزوه سیالات

گزارش کارآموزی رشته مکانیک سیالات شرکت فنی و مهندسی چاد

اختصاصی از یارا فایل گزارش کارآموزی رشته مکانیک سیالات شرکت فنی و مهندسی چاد دانلود با لینک مستقیم و پرسرعت .

گزارش کارآموزی رشته مکانیک سیالات شرکت فنی و مهندسی چاد


گزارش کارآموزی  رشته مکانیک سیالات شرکت فنی و مهندسی چاد

دانلود گزارش کارآموزی  رشته مکانیک سیالات شرکت فنی و مهندسی چاد بافرمت ورد وقابل ویرایش تعدادصفحات 100

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی,گزارش کارورزی


این پروژه کارآموزی بسیاردقیق و کامل طراحی شده و جهت ارائه واحد درسی کارآموزی میباشد

پیشگفتار

اینجانب محسن سعدین  پروژه کارآموزی خود را در شرکت فنی و مهندسی چادگذراندم .  این پروژه شامل گزارش ها ، و تجربیاتی است که در شرکت به مدت 240 ساعت کارآموزی ، ثبت شده است و مقایسه اطلاعات و تئوری های مختلف با عمل و اجرای کار صورت گرفته است. اینجانب نیز در طی مدت حضور خود در محل کارآموزی استفاده های علمی و عملی خوبی نموده ، با توجه به زمان محدود 240ساعته تقریبا به همه ریزه کاریها ی اجرایی ونظارتی واقف شدم ، از اینرو شاید بهتر باشد واحد کارآموزی به دوقسمت تقسیم شده تا این نقیصه جبران گشته و ارتباط با محیط کار حفظ شود ، همچنین پیشنهاد می شود در صورت امکان تعامل بیشتری بین استاد کارآموزی و سرپرست و همچنین دفتر ارتباط با صنعت دانشگاه بوجود آید تا دانشجو با تعهد بیشتری پا به عرصه عمل بگذارد .                       فصل اول ( آشنایی کلی با مکان کارآموزی )      مشخصات کلی با مکان  کارآموزی شرکت فنی و مهندسی چاد واقع در بندر عسلویه که دفتراصلی  این شرکت واقع در تهران خیابان استاد نعمت الهی که شروع کار این شرکت در تاریخ 1370 بوده است . ودر حال حاضر مشغول به انجام پروژه تاسیساتی در فازهای 6 و 7 و 8 پارس جنوبی می باشد .                     پروژه های اجرا شده و در دست اقدام و بار مالی آنها  ردیف    پروژه     عنوان پروژه     کارفرما    مبلغ میلیون ریال    سال 1        عملیات لوله کشی طرح توسعه صنایع شیمیایی فارس    صنایع شیمیایی شیراز         1370 2        طراحی سیستم توزیع برق به روش BUS-DUCT تابلوها ، نصب ماشین آلات ، تاسیسات جانبی و لوله کشی ، C.S CU و S.S از قطر 2/1 الی 12 کارخانه کمپرسور سازی شیراز     شرکت پارس کمپرسور شیراز         1373-74 3        ساخت مخازن ذخیره آب ، سوخت و لوله کشیها و سیستم برق کارخانه شیر پاستوریزه یاسوج     شرکت سرمایه گذاری صنایع تبدیلی بنیاد    161    1374 4        ساخت و نصب اسکلت فلزی کارخانه گلوکز یاسوج     شرکت آرد و نشاسته و گلوکز یاسوج    61    1374-75 5        ساخت و نصب سیستم تصفیه OINION&CATION EXCHANGER ،نصب ماشین آلات ، لوله کشی ها و بخصوص لوله ها C.S ،  S.S. ، P.P (مقاوم در مقابل جوهر نمک و تجهیزات استنلس استیل 904L)و برق و ابزار دقیق عملیات پیش راه اندازی کارخانه گلوکر یاسوج     شرکت آرد و نشاسته و گلوکز یاسوج     166    1374-75 6        ساخت مخازن سوخت و آب ، نصب ماشین آلات ، لوله کشی ها و عایق کاری و سیستم برق و ابزار دقیق و عملیات راه اندازی کارخانجات مایعات پاکساز خرمشهر    شرکت تولی برس     384/2    1376-77 7        عملیات لوله کشی G.R.P و شیرآلات مربوطه به قطر 200MM خط انتقال آب یزد     سازمان آب منطقه ای یزد     119    1378 8        نصب و راه اندازی تاسیسات برقی و مکانیکی کارخانه ریخته گری شرکت آتمسفر    شرکت آتمسفر تهران     720    1379 9    EPC    اجرای سیستم های مکانیکی ،برقی و ابزار دقیق و نصب راه اندازی طراح LABS خرمشهر به صورت EPC    پاکینه شوی وابسته به سرمایه گذاری البرز    850-3    1380 10    EPC    طراحی و ساخت و نصب کارخانه نوشابه سازی     بهنوش ایران     420/2    1380 11    PC    تهیه مصالح ، نصب و پیش راه اندازی تاسیسات جانبی کارخانه سیمان     سیمان فارس نو    359/14    1384 12    EPC    طراحی ، تهیه مصالح و ماشین آلات داخلی احداث ساختمان های تولیدی و جانبی ، سازه های فلزی ، تهیه تاسیسات برقی ، مکانیکی ، ابزار دقیق و نصب و پیش راه اندازی کارخانه پشم شیشه اشتهارد با همکاری WOLTZ آلمان بصورت EPC     شرکت آریاپارس     500/74+ 000/700/3 EURO    1384-85 13        تهیه و ساخت تجهیزات خط تولید STPP (ساخت داخل ) اجرای تاسیسات مکانیکی ، برق و ابزار دقیق و نصب تجهیزات خط تولید STPP    مجتمع فسفات کارون     127/44    1384-85 14           در بخش تاسیسات و نصب پروژه پارس جنوبی فازهای 6 و 7 و 8    شرکت فنی مهندسی جنوب    154    1386                فصل دوم ( ارزیابی بخشهای مرتبط با رشته علمی کارآموزی )         تشریح کلی از نحوة کار، وظایف و مسئولیت‌های کارآموزی در محل کارآموزی و ارائه لیستی از عناوین کارهای انجام شده توسط دانشجو: از جمله وظایف انجام شده در شرکت فنی ومهندسی چاد به شرح زیر می باشد. 1- آشنایی با کارهای که در شرکت انجام می دهند . 2- آشنایی کلی باراه اندازی موتورخانه و اصول کار در موتورخانه   3- آشنایی کلی با دیگ های بخار                             فصل سوم ( آزمون آموخته‌ ها، نتایج و پیشنهادات )       گزارش کار کارآموز  ابنجانب برای بدست آوردن این اطلاعات در قسمت نصب و راه اندازی  موتورخانه  شرکت فنی و مهندسی  چاد حضور پیدا کرده ام و   با نحوه کار موتورخانه و دستگاه مربوطه  این شرکت  آشنا شده و با حضور در کنار کارکنان این بخش به فعالیتهای تاسیساتی  پرداخته ام ودر پایان گزارشی از کارهای انجام شده توسط خود در این شرکت که با آنها آشنایی پیدا کرده ام را ارائه داده ام . همچنین از آقای  مدیر امور مالی شرکت فنی و مهندسی  چاد و دیگر همکارانش در این بخش که  نهایت همکاری با این جانب را در فراگیری و انجام کارهای مربوط را داشته اند کمال تشکر و قدردانی را دارم.              موتورخانه   در حال حاضر میزان درجه حرارت آب گرم چرخشی و آب گرم مصرفی در موتورخانه ها بصورت دستی و تمام تنظیم درجه حرارت  ترموستات دیگ و یا پمپهای سیرکولاسیون انجام می گردد و معمولاً برای تمام مدت بر روی یک عدد ثابت قرار دارد. تغییرات دمای هوا  درطول روز موجب افزایش یا کاهش دمای داخل ساختمان شده که نتیجه آن انحراف دمای داخل ساختمان از محدوده آسایش و  مصرف بیهوده سوخت و انرژی می باشد. همچنین در بسیاری از ساختمانهای غیرمسکونی با کاربری اداری- عمومی- آموزشی- تجاری که از فضای ساختمان بصورت غیرپیوسته و تنها در بخشی از ساعات روز استفاده می گردد و نیازی به کارکرد موتورخانه پس از اتمام ساعت کاری وجود ندارد.  روش فعلی تنظیم دستی ترموستات دیگها و پمپها، قابلیت اعمال خاموشی و یا کنترل تجهیزات در وضعیت آماده باش را ندارند.        بنابراین با توجه به عدم کارآیی دقیق و محدودیتهای کنترلی ترموستاتهای دستی، ضرورت استفاده از سیستم های کنترل هوشمند موتورخانه به  منظور :      راهبری و کنترل صحیح تجهیزات موتورخانه شامل مشعلها و پمپها       بهینه سازی و جلوگیری از مصرف بیهوده سوخت و انرژی الکتریکی      تثبیت محدوده آسایش حرارتی ساکنین ساختمان      کاهش استهلاک تجهیزات و هزینه های مربوطه      کاهش هزینه های سرویس- نگهداری تاسیسات حرارتی      کاهش تولید و انتشار آلاینده های زیست محیطی آشکار  می گردد.  اصول بهینه سازی مصرف سوخت و انرژی توسط سیستمهای کنترل هوشمند موتوخانه مبتنی بر کنترل گرمایش از مبداء و محل تولید انرژی حرارتی (موتورخانه) می باشد. این سیستم با دریافت اطلاعات از سنسورهای حرارتی که در محلهای زیر نصب می گردند :     ضلع شمالی ساختمان جهت اندازه گیری دمای سایه (حداقل دمای محیط خارج ساختمان)      کلکتور آب گرم چرخشی      خروجی منبع آب گرم مصرفی   لحظه به لحظه اطلاعات حرارتی موقعیتهای فوق را اندازه گیری و با تشخیص هوشمند نیاز حرارتی ساختمان تا برقراری شرایط  مطلوب در تابستان یا زمستان تجهیزات حرارتی موتورخانه شامل مشعلها و پمپهای آب گرم چرخشی را راهبری می نماید. بدین صورت  مصارف گرمایشی (گرمایش- آب گرم مصرفی) نیز متناسب با نوع کاربری ساختمان مسکونی یا غیرمسکونی (اداری- عمومی- آموزشی- تجاری) تامین و کنترل می شود. صرفه جویی مصرف انرژی حاصل از عملکرد سیستم به دو دسته تقسیم می شوند :      کنترل مصارف گرمایشی درزمان استفاده از ساختمان (مسکونی و غیرمسکونی)       خاموشی یا آماده باش موتورخانه پس از ساعت کاری ساختمان های غیرمسکونی (در ساختمانهای اداری-آموزشی- عمومی- تجاری)  هنگام استفاده از موتورخانه در ساختمانهای مسکونی و یا غیرمسکونی و با در نظر گرفتن شرایط کارکرد زمستانی تابستانی و برای کنترل گرمایش، مشعلها و پمپها توسط یک منحنی حرارتی کنترل می شوند. در این منحنی دمای آب گرم چرخشی در تاسیسات، تابعی از  درجه حرارت محیط خارج ساختمان می باشد و به صورت لحظه ای و خودکار متناسب با تغییرات دمای خارج ساختمان کنترل می  شود و باعث ایجاد دمای یکنواخت در داخل ساختمان می گردد. بدین صورت هنگام گرم شدن دمای محیط خارج ساختمان مشعلها و پمپها  به اندازه ای کار می کنند که گرمایش در حد مورد نیاز و در محدوده آسایش حرارتی تامین شود و از تولید بیش از حد حرارت که موجب کلافگی و باز شدن پنجره ها بمنظور تعدیل دمای اتاقها می گردد جلوگیری می نماید.  برای تامین دمای آب گرم مصرفی مطابق با شرایط مطلوب تعریف شده نیز تجهیزات موتورخانه به اندازه ای کار می کنند که تنها دمای آب گرم مصرفی در ساعتهای مورد نظر به حد تعریف شده و مطلوب برسد و نه بیشتر.   در ساختمانهای با کاربری غیرمسکونی نظیر ادارات، مدارس، مجتمع های تجاری و ... نیز بدلیل غیرپیوسته بودن ساعت بهره برداری از ساختمان، سیستم کنترل هوشمند موتورخانه توسط یک تقویم زمانی پس از ساعت کاری و تا زمان پیش راه اندازی موتورخانه در صبح روز بعد، موتورخانه را کاملاً خاموش و یا در وضعیت آماده باش (کنترل دمای آب گرم چرخشی در یک دمای ثابت و پائین) قرار می دهد.   ویژگیهای منحصربفرد استفاده از سیستم های کنترل هوشمند موتورخانه در مقایسه با سایر روشهای بهینه سازی مصرف انرژی : مستقل بودن عملکرد سیستم از مساحت زیربنای ساختمان: با افـزایش مساحت زیربنـای ساختمـان، مصرف سوخت و انرژی آن نیز به نسبت ساختمانهای کوچکتر افزایش می یابد و موجب می شود تا اجرای روشهای بهینه سازی مصرف انرژی در ساختمانهای بزرگتر، پر هزینه تر شود. بعنوان مثال درصورتیکه مساحت پنجره های هر ساختمان 15% مساحت کل ساختمان در نظر گرفته شود در یک ساختمان با مساحت 000/10 متر مربع، مقدار و هزینه اجرای پنجره دو جداره 5 برابر مقدار و هزینه اجرای آن در یک ساختمان با مساحت 2000 متر مربع می باشد و به همین ترتیب برای اجرای   روشهای دیگری مانند : عایق حرارتی، عایق های حرارتی دیوار و کف و سقف، شیرهای ترموستاتیک رادیاتور. برخلاف روشهای فوق، سیستم های کنترل هوشمند موتورخانه دارای ویژگی منحصربفرد و متمایز "مستقل بودن عملکرد از مساحت  بنای ساختمان" می باشند. به عبارت دیگر در موتورخانه هر ساختمان، صرف نظر از مساحت آن، تنها با نصب یک دستگاه با هزینه ای ثابت و حداقل، موتورخانه هوشمند می گردد. دلیل این ویژگی منحصربفرد در تعداد مشعلها و دیگهای هر موتورخانه است. تعداد و ظرفیت حرارتی مشعلها و دیگهای تاسیسات حرارتی هر ساختمان (مصرف کنندگان سوخت) با مساحت آن نسبت مستقیم دارد و همواره تعداد مشعلها و ترکیب ظرفیت حرارتی آنها به نحوی است که علاوه بر تامین بار حرارتی مورد نیاز ساختمان، موجب افزایش هزینه های اجرایی نیز نگردند. طبق تحقیقات انجام شده در سطح موتورخانه های کشور در بیش از 99% ساختمانهای موجود تعداد دیگها و مشعلها حداکثر 3 دستگاه می باشد. در ساختمانهای کوچک با مساحت زیر 2000 مترمربع، ظرفیت حرارتی مشعلها و دیگها پائین و در حدود kcal/h 150000 – 100000 می باشد و با افزایش مساحت ساختمان با ثابت ماندن تعداد دیگ و مشعل، ظرفیت حرارتی آنها افزایش می یابد و حتی به حدود kcal/h 1000000 و یا بیشتر نیز می رسد.  عملکرد هر خروجی مشعل یا پمپ در سیستم های کنترل هوشمند موتورخانه به شکلی است که بصورت سریال (سری) در مدار برق این تجهیزات قرار گرفته و صرف نظر از ظرفیت جریانی و آمپراژ آنها با فرمان ON/OFF در زمانهای مقتضی آنها را کنترل می نماید. بنابراین با توجه به توضیحات فوق سیستم های کنترل هوشمند موتورخانه با قابلیت کنترل تا 3 مشعل دارای ویژگی منحصربفرد مستقل بودن عملکرد از مساحت بنای ساختمان می گردند. 


دانلود با لینک مستقیم