فرمت فایل : word(قابل ویرایش)
تعداد صفحات:170
فهرست مطالب:
عنوان صفحه
فصل اول : مقدمه ای بر تولید برق در ایران
1-1 انواع نیروگاه های تولید برق 2
1-2 عرضه و تقاضای انرژی برق 6
1-3 تولید نیروگاه های ایران 11
فصل دوم : آشنایی با نیروگاه های سیکل ترکیبی ( بخاری گازی )
2-1 نیروگاه های بخاری 18
2-1-1 مقدمه 18
2-1-2 سیکل ترمودینامیکی نیروگاه بخاری 20
2-1-3 دیگ بخار و تجهیزات جانبی آن 24
2-2 نیروگاه گازی 31
2-2-1 مقدمه 31
2-2-2 سیکل قدرت گازی 32
2-2-3 تجهیزات نیروگاه گازی 36
2-3 نیروگاه سیکل ترکیبی 42
2-3-1 مقدمه 42
2-3-2 نیروگاه چرخه ترکیبی با دیگ بخار بازیاب 46
فصل سوم : مصرف داخلی نیروگاه های تولید برق
3-1 مقدمه 53
3-2 سیستمهای داخلی نیروگاه سیکل ترکیبی 54
3-3 انتخاب ولتاژ مصرف داخلی 55
3-4 تغذیه مصرف داخلی نیروگاه 57
3-4-1 تغذیه از شین اصلی نیروگاه 57
3-4-2 تغذیه از پایانه ژنراتور 59
3-4-3 تغذیه مصرف داخلی با اتصال گروهی واحدها 64
3-5 تغذیه برق اضطراری 65
3-6 تغذیه شین DC 67
3-7 سیستم برق اضطراری 68
3-8 شاخص های مطرح در طراحی سیستم مصرف داخلی نیروگاه 69
3-9 بارهای مصرفی در سیستم مصرف داخلی نیروگاه 70
3-9-1 انواع بارهای مصرفی تقسیم بندی آنها 70
3-9-2 دسته بندی بارها از لحاظ اهمیت و حساسیت 71
3-9-3 بررسی انواع مصرف کننده های انرژی الکتریکی 73
3-10 انواع بارهای موجود در نیروگاه سیکل ترکیبی یزد 76
فصل چهارم : ترانسفورماتورهای قدرت
4-1 مقدمه 86
4-2 دسته بندی های مختلف ترانسفورماتور 87
4-3 اتصالات مختلف ترانسفورماتورهای قدرت 88
4-4 تجهیزات اساسی ترانسفورماتورهای قدرت 90
4-5 مشخصات پلاک ترانسفورماتورها 105
4-6 خصوصیات ترانسفورماتور قدرت نیروگاه 112
فصل پنجم : محاسبات سطح مقطع کابل ها
5-1 کابل های نیروگاهی 119
5-1-1 کابل های فشار ضعیف و متوسط 119
5-1-2 کابل های فشار قوی 120
5-2 سطح مقطع کابل ها 121
5-3 اصول و شرایطی که در تعیین سطح مقطع کابل ها بکار می روند 122
5-4 محاسبات سطح مقطع برای سطح ولتاژ MV 125
5-5 محاسبات سطح مقطع برای سطح ولتاژ LV
فصل ششم : پخش بار در شبکه داخلی نیروگاه سیکل ترکیبی یزد
6-1 مقدمه
6-2 مساله پخش بار
6-3 برنامه کامپیوتری پخش بار
6-4 اجرای برنامه پخش بار برای شبکه داخلی نیروگاه سیکل ترکیبی یزد
منابع ماخذ
مقدمه ای بر تولید برق در ایران
1-1 انواع نیروگاههای تولید برق :
در میان پرکار برد ترین و مهمترین نیروگاههای متداول در جهان و ایران ، می توان از نیروگاههای حرارتی نام برد . این نوع نیروگاهها ، مبدل هایی هسنتد که انرژی نهفته در سوخت های جامد ، مایع ، گازی و یا سوخت های هسته ای را به انرژی برق تبدیل می کند .
نیروگاههای حرارتی ، طیف وسیعی از نیروگاهها را در برمی گیرند که از آن جمله می توان به نیروگاههای بخاری ، گازی ، چرخه ترکیبی ، دیزلی و هسته ای اشاره نمود . نوع بسیار متداول نیروگاههای حرارتی ، نیروگاههای بخاری می باشد . در این نوع نیروگاه با مشتمعل شدن سوخت های فسیلی ، آب سیکل ، تبدیل به بخار می شود .سپس انرژی بخاری تولیدی ، سبب چرخش توربین و در نهایت ، تولید انرژی برق می گردد . تفاوت اساسی نیروگاههای گازی با بخاری در آن است که سیال سیکل توربین گازی ، هوای محیط می باشد . اما نیروگاههای سیکل ترکیبی , متشکل از واحدهای گازی و بخاری می باشند که در آنها به منظور افزایش بازده کل حرارتی و بازیافت بخشی از انرژی باقی مانده در گازهای خروجی از توربین های گازی ، این گازها را به یک دیگ بخار بازیاب هدایت می کنند . بخار حاصل از این طریق ، توربین بخاری را به گردش در می آورد . از مهمترین نیروگاههای حرارتی می توان به نیروگاههای هسته ای ( اورانیم غنی شده ، پلوتونیم و … ) بخار با انرژی نهفته بسیار زیادی تولید می شود . با استفاده از انرژی بخار تولید شده ، توربین بخاری به چرخش در می آید و در نهایت انرژی الکتریکی تولید می شود .
در نیروگاههای برق آبی ، عامل و سیال واسطه ، جریان آب یا انرژی پتانسیل آب پشت سدها و آب بند ها است . نیروگاههای جریان رودخانه ای و نیروگاههای برق آبی از این نوع نیرگاهها هستند . از انرژی موجود در جریان آب رودخانه ها می توان در چرخاندن پرهای یک توربین آبی برای تولید انرژی مکانیکی ( و پس از آن تولید الکتریکی توسط ژنراتورها ) بهره جست . همچنین با ایجاد سدها و ذخیره سازی آب رودخانه در پشت این سدها می توان می توان از انرژی پتانسیل نهفته درآب پشت سد ( برای به چرخش در آوردن توربین ها ) نیز استفاده نمود .
در حال حاضر نیروگاههای حرارتی ، بیشترین سهم را در تولید و تامین انرژی برق مورد نیاز صنعت را بر عهده دارند . البته کشورهایی وجود دارند که سهم تولید انرژی نیروگاهای برق آبی آنها قابل توجه و یا حتی بیشتر از تولید نیروگاههای حرارتی است که در این میان ، می توان از کشورهای نروژ ، پرتغال ، سوئیس ، اتریش ، آلبانی ، کانادا ، برزیل و برخی دیگر از کشورهای آمریکای جنوبی نام برد
علاوه به نیروگاههای بخاری ، هسته ای ،گازی ، سیکل ترکیبی . آبی که کاربرد بیشتری دارند ، می توان انواع زیر را نام برد :
1- نیروگاههای دیزلی :
در این نوع نیروگاهها، نیروی محرکه ژنراتور یک موتور درو نسوز دیزلی است . امروزه از نیروگاه دیزلی به عنوان یک نیروگاه پایه ، کمتر استفاده می شود و بیشتر برای مواقع اضطراری و احتمالا برای حداکثر شبکه استفاده می گردد در حالیکه در مناطقی از ایران که به شبکه سراسری وصل نیستند ، از نیروگاههای دیزلی هم که قدرت تولیدی آنها معمولا تا 5000 کیلو وات می باشد ، استفاده می شود.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:11
چکیده:
موضوع آزمایش : سیکل تبرید
هدف آزمایش :
بررسی سیکل تبرید
تئوری آزمایش :
T P
S V
در این بخش سیکل ایده آل تبرید را بررسی می کنیم:
حالت ۳ نشان دهنده مایع اشباع در درجه حرارت چگالنده است و حالت ۱ نمایانگر بخار اشباع در درجه حرارت تبخیر کننده می باشد این بدان معنااست که فرایند انبساط آیزنتروپیک ۴-۳ در ناحیه دو فازی است و بیشتر آنرا مایع تشکیل می دهد . درنتیجه مقدار کار خروجی این فرایند بسیار اندک می باشد بگونه ای که توجیهی برای افزودن این قطعه از تجهیزات به سیستم وجود ندارد بنابراین توربین را با یک وسیله احتناق دهنده جایگزین می کنیم معمولا“ این وسیله یک شیر یا یک لوله طویل با قطر کم است که در آن سیال فعال از فشار بالا تا فشار پایین احتناق می یابد .
بخار اشباع در فشار پایین وارد کمپرسور می شود و در فرایند ۲-۱ یک تراکم آدیاباتیک بازگشت پذیر را طی می کند سپس در فرایند ۳-۲ با فشار ثابت حرارت رفع می شود و سیال فعال به حالت مایع اشباع از چگالنده خارج خواهد شد . به دنبال آن فرایند احتناق آدیاباتیک ۴-۳ بوقوع می پیوندد و سپس سیال فعال در فشار ثابت طی فرایند ۱-۴ تبخیر می شود و سیکل کامل خواهد شد .
ضریب عملکرد :
ضریب عملکرد یک سیکل تبرید عبارت است از نسبت ظرفیت تبرید به کار کمپرسور.
ضریب عملکرد پمپ حرارتی عبارت است از نسبت حرارت دفع شده به کار کمپرسور .
سیکل تبرید واقعی :
بدلیل افتهای ناشی از جریان سیال و نیز تبادل حرارت با محیط ، سیکل تبرید حقیقی از سیکل ایده آل انحراف خواهد داشت سیکل حقیقی می تواند به سیکل بالا نزدیک شود .
احتمالا“ بخار ورودی به کمپرسور بصورت مافوق گرم خواهد بود و در طی فرایند تراکم ، بازگشت ناپذیریها و تبادل حرارت با محیط (باتوجه به درجه حرارت مبرد و محیط) صورت می گیرد . بنابراین در طی این فرایند آنتروپی ممکن است افزایش یا کاهش یابد . بازگشت ناپذیریها و انتقال حرارت به مبرد موجب افزایش آنتروپی می شود و انتقال حرارت از مبرد موجب کاهش آنتروپی می گردد . این احتمالات با دو خط چین ۲-۱ و –۱ نشان داده شده است . فشار مایع خروجی از چگالنده کمتر از فشار بخار ورودی به آن می باشد و درجه حرارت مبرد در چگالنده مقداری بیشتر از درجه حرارت محیطی است که با آن تبادل حرارت می کند معمولا“ درجه حرارت مایع خروجی از چگالنده کمتر از درجه حرارت اشباع است و احتمال دارد که مقدار آن در لوله های بین چگالنده و شیر انبساط افت بیشتری داشته باشد . این یک مزیت است زیرا در اثر این انتقال حرارت موبرد با آنتالپی کمتری وارد تبخیر کننده می شود و می توان در تبخیر کننده مقدار حرارت بیشتری به مبرد انتقال داد .
درحین جریان یافتن از درون تبخیر کننده مقداری افت فشار روی خواهد داد . امکان دارد مبرد در هنگام خروجی از تبخیر کننده کمی مافوق گرم باشد، همچنین در اثر انتقال حرارت از محیط به لوله بین تبخیر کننده و کمپرسور درجه حرارت مبرد می تواند افزایش یابد. این انتقال حرارت نشان دهنده یک نوع افت است زیرا در اثر افزایش حجم مخصوص سیال ورودی به کمپرسور ، کار کمپرسور نیز افزایش خواهد یافت .
پمپ حرارتی :
در سیستم پمپ حرارتی هدف ثابت نگه داشتن درجه حرارت یک فضا در درجه حرارت است که بالاتر از درجه حرارت محیط (یا منبع دیگر) می باشد .
شرح دستگاه :
سیستم شامل یک کمپرسور یک کندانسور می باشد که مبرد از پوسته بیرونی و آب از پوسته درونی حرکت می کند تا از این طریق مبرد هم بتواند توسط آب خنک شود و هم بتواند توسط هوا خنک شود . و همچنین شامل یک اواپراتور می باشد که این اواپراتور یک فن می باشد که از طریق فن می توان دبی هوایی که با مبرد در تماس می باشد را تغییر داد که درنتیجه می توان مقدار انتقال حرارت بین مبرد و هوا را تغییر داد . و دارای یک شیر انبساط از نوع ترمواستاتیکی است که از طریق این شیر می توان فشار مایع مبرد را انداخت که درحالت ایده آل این عمل بصورت آنتالپی ثابت صورت می گیرد . و دارای دماسنجهای دیجیتالی می باشد که دبی آب توسط روتامتر اندازه گیری می شود . اگر فشار کندانسور از KW/m1400 بالاتر رود یا اینکه بار کمپرسور از حد مجاز بیشتر شود توسط سیستم های حفاظتی کمپرسور خاموش می شود .
روش آزمایش :
شیر آب کندانسور را به اندازه مشخص باز می کنیم سپس دستگاه را روشن می کنیم و بعد صبر می کنیم تا سیکل تبرید حالت پایدار پیدا کند پس از اینکه سیکل تبرید به حالت پایدار رسید فشار و دما را در نقاط مورد نظر می خوانیم و در جدول قرار می دهیم . در مرحله بعد دبی آب را کاهش می دهیم و همانند مرحله قبل صبر می کنیم تا سیکل به حالت پایدار خود برسد ، این بار نیز فشار و دما را در نقاط مورد نظر خوانده و در جدول یادداشت می کنیم . این عمل را برای یک مرحله دیگر و با دبی کمتر تکرار می کنیم .
برای اندازه گیری قدرت ورودی به کمپرسور توسط وات ـ ساعت . متر می آییم و زمانی که دیسک دو دور کامل را می زند بدست می آوریم سپس این زمان را بر دو تقیسم می کنیم تا مدت زمانی که دیسک یک دور کامل را می زند را بدست بیاوریم .
توجه کنید که ما برای بدست آوردن زمانی که دیسک یک دور کامل را می زند اگر تعداد دورهای بیشتری را زمانگیری کنیم دقت جواب ما بالاتر می رود .
سپس با استفاده از رابطه زیر توان کمپرسور را بدست می آوریم :
محاسبات :
مرحله اول :
انتقال حرارت در کندانسور :
P=250 P=250
=۷۳٫۴۸h 212.25=h
T=79.3 T=38.9
انتقال حرارت در اواپراتور :
P=3 P=3
=۱۹۴٫۷۸h 35.26=h
T=1.1 T=17.5
ضریب انتقال حرارت :
در کندانسور :
در اواپراتور :
مرحله دوم :
انتقال حرارت در کندانسور :
P=1025 P=1025
=۷۷٫۳۵h 212.87=h
T=80.6 T=42.7
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:11
چکیده:
موضوع آزمایش : سیکل تبرید
هدف آزمایش :
بررسی سیکل تبرید
تئوری آزمایش :
T P
S V
در این بخش سیکل ایده آل تبرید را بررسی می کنیم:
حالت ۳ نشان دهنده مایع اشباع در درجه حرارت چگالنده است و حالت ۱ نمایانگر بخار اشباع در درجه حرارت تبخیر کننده می باشد این بدان معنااست که فرایند انبساط آیزنتروپیک ۴-۳ در ناحیه دو فازی است و بیشتر آنرا مایع تشکیل می دهد . درنتیجه مقدار کار خروجی این فرایند بسیار اندک می باشد بگونه ای که توجیهی برای افزودن این قطعه از تجهیزات به سیستم وجود ندارد بنابراین توربین را با یک وسیله احتناق دهنده جایگزین می کنیم معمولا“ این وسیله یک شیر یا یک لوله طویل با قطر کم است که در آن سیال فعال از فشار بالا تا فشار پایین احتناق می یابد .
بخار اشباع در فشار پایین وارد کمپرسور می شود و در فرایند ۲-۱ یک تراکم آدیاباتیک بازگشت پذیر را طی می کند سپس در فرایند ۳-۲ با فشار ثابت حرارت رفع می شود و سیال فعال به حالت مایع اشباع از چگالنده خارج خواهد شد . به دنبال آن فرایند احتناق آدیاباتیک ۴-۳ بوقوع می پیوندد و سپس سیال فعال در فشار ثابت طی فرایند ۱-۴ تبخیر می شود و سیکل کامل خواهد شد .
ضریب عملکرد :
ضریب عملکرد یک سیکل تبرید عبارت است از نسبت ظرفیت تبرید به کار کمپرسور.
ضریب عملکرد پمپ حرارتی عبارت است از نسبت حرارت دفع شده به کار کمپرسور .
سیکل تبرید واقعی :
بدلیل افتهای ناشی از جریان سیال و نیز تبادل حرارت با محیط ، سیکل تبرید حقیقی از سیکل ایده آل انحراف خواهد داشت سیکل حقیقی می تواند به سیکل بالا نزدیک شود .
احتمالا“ بخار ورودی به کمپرسور بصورت مافوق گرم خواهد بود و در طی فرایند تراکم ، بازگشت ناپذیریها و تبادل حرارت با محیط (باتوجه به درجه حرارت مبرد و محیط) صورت می گیرد . بنابراین در طی این فرایند آنتروپی ممکن است افزایش یا کاهش یابد . بازگشت ناپذیریها و انتقال حرارت به مبرد موجب افزایش آنتروپی می شود و انتقال حرارت از مبرد موجب کاهش آنتروپی می گردد . این احتمالات با دو خط چین ۲-۱ و –۱ نشان داده شده است . فشار مایع خروجی از چگالنده کمتر از فشار بخار ورودی به آن می باشد و درجه حرارت مبرد در چگالنده مقداری بیشتر از درجه حرارت محیطی است که با آن تبادل حرارت می کند معمولا“ درجه حرارت مایع خروجی از چگالنده کمتر از درجه حرارت اشباع است و احتمال دارد که مقدار آن در لوله های بین چگالنده و شیر انبساط افت بیشتری داشته باشد . این یک مزیت است زیرا در اثر این انتقال حرارت موبرد با آنتالپی کمتری وارد تبخیر کننده می شود و می توان در تبخیر کننده مقدار حرارت بیشتری به مبرد انتقال داد .
درحین جریان یافتن از درون تبخیر کننده مقداری افت فشار روی خواهد داد . امکان دارد مبرد در هنگام خروجی از تبخیر کننده کمی مافوق گرم باشد، همچنین در اثر انتقال حرارت از محیط به لوله بین تبخیر کننده و کمپرسور درجه حرارت مبرد می تواند افزایش یابد. این انتقال حرارت نشان دهنده یک نوع افت است زیرا در اثر افزایش حجم مخصوص سیال ورودی به کمپرسور ، کار کمپرسور نیز افزایش خواهد یافت .
پمپ حرارتی :
در سیستم پمپ حرارتی هدف ثابت نگه داشتن درجه حرارت یک فضا در درجه حرارت است که بالاتر از درجه حرارت محیط (یا منبع دیگر) می باشد .
شرح دستگاه :
سیستم شامل یک کمپرسور یک کندانسور می باشد که مبرد از پوسته بیرونی و آب از پوسته درونی حرکت می کند تا از این طریق مبرد هم بتواند توسط آب خنک شود و هم بتواند توسط هوا خنک شود . و همچنین شامل یک اواپراتور می باشد که این اواپراتور یک فن می باشد که از طریق فن می توان دبی هوایی که با مبرد در تماس می باشد را تغییر داد که درنتیجه می توان مقدار انتقال حرارت بین مبرد و هوا را تغییر داد . و دارای یک شیر انبساط از نوع ترمواستاتیکی است که از طریق این شیر می توان فشار مایع مبرد را انداخت که درحالت ایده آل این عمل بصورت آنتالپی ثابت صورت می گیرد . و دارای دماسنجهای دیجیتالی می باشد که دبی آب توسط روتامتر اندازه گیری می شود . اگر فشار کندانسور از KW/m1400 بالاتر رود یا اینکه بار کمپرسور از حد مجاز بیشتر شود توسط سیستم های حفاظتی کمپرسور خاموش می شود .
روش آزمایش :
شیر آب کندانسور را به اندازه مشخص باز می کنیم سپس دستگاه را روشن می کنیم و بعد صبر می کنیم تا سیکل تبرید حالت پایدار پیدا کند پس از اینکه سیکل تبرید به حالت پایدار رسید فشار و دما را در نقاط مورد نظر می خوانیم و در جدول قرار می دهیم . در مرحله بعد دبی آب را کاهش می دهیم و همانند مرحله قبل صبر می کنیم تا سیکل به حالت پایدار خود برسد ، این بار نیز فشار و دما را در نقاط مورد نظر خوانده و در جدول یادداشت می کنیم . این عمل را برای یک مرحله دیگر و با دبی کمتر تکرار می کنیم .
برای اندازه گیری قدرت ورودی به کمپرسور توسط وات ـ ساعت . متر می آییم و زمانی که دیسک دو دور کامل را می زند بدست می آوریم سپس این زمان را بر دو تقیسم می کنیم تا مدت زمانی که دیسک یک دور کامل را می زند را بدست بیاوریم .
توجه کنید که ما برای بدست آوردن زمانی که دیسک یک دور کامل را می زند اگر تعداد دورهای بیشتری را زمانگیری کنیم دقت جواب ما بالاتر می رود .
سپس با استفاده از رابطه زیر توان کمپرسور را بدست می آوریم :
محاسبات :
مرحله اول :
انتقال حرارت در کندانسور :
P=250 P=250
=۷۳٫۴۸h 212.25=h
T=79.3 T=38.9
انتقال حرارت در اواپراتور :
P=3 P=3
=۱۹۴٫۷۸h 35.26=h
T=1.1 T=17.5
ضریب انتقال حرارت :
در کندانسور :
در اواپراتور :
مرحله دوم :
انتقال حرارت در کندانسور :
P=1025 P=1025
=۷۷٫۳۵h 212.87=h
T=80.6 T=42.7
موضوع :
گزارش کار آزمایشگاه ترمودینامیک : آزمایش بررسی سیکل تبرید
( فایل word قابل ویرایش )
کامل و جامع
تعداد صفحات : 4
هدف :
بررسی سیکل تبرید و راه عملی محاسبات مربوط به بار حرارتی اعمالی بر سیکل
مقدمه :
یکی از مسائل مهم در درس ترمودینامیک بررسی قانون اول در مورد حجم کنترل و پیدا کردن مقدار گرما و کار از طریق قانون اول ترمودینامیک است . یکی از مسائلی که در این مورد مطرح بود سیکل های ترمودینامیکی از سیکلهای توان و تبرید که در حالت ایده ال تحت عنوان حالت پایدار sssf بررسی می کنیم . هدف در این آزمایش نیز استفاده از قانون اول و نیز محاسبه مقدار کار اعمالی بر حجم کنترل و همچنین حرارت مبادله شده بین سطح کنترل و محیط می باشد .