یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

تحقیق درمورد شبکه های عصبی

اختصاصی از یارا فایل تحقیق درمورد شبکه های عصبی دانلود با لینک مستقیم و پر سرعت .

تحقیق درمورد شبکه های عصبی


تحقیق درمورد شبکه های عصبی

دسته بندی : کامپیوتر ،

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

فروشگاه کتاب : مرجع فایل 

 


 قسمتی از محتوای متن ...

تعداد صفحات : 95 صفحه

درس هوش مصنوعی عنوان تحقیق : شبکه های عصبی فهرست مطالب عنوان صفحه مقدمه 1 شبکه عصبی چیست ؟
2 یادگیری در سیستم های بیولوژیک 4 سازمان مغز 6 نرون پایه 7 عملیات شبکه های عصبی 7 آموزش شبکه های عصبی 10 معرفی چند نوع شبکه عصبی 14 پرسپترون تک لایه 14 پرسپترون چند لایه 21 backpropagation 25 هاپفیلد 49 ماشین بولتزمن 67 کوهونن 83 کاربردهای شبکه های عصبی 86 منابع 90 مقدمه الگوریتم ها در کامپیوتر ها اعمال مشخص و واضحی هستند که بصورت پی در پی و در جهت رسیدن به هدف خاصی انجام می شوند.

حتی در تعریف الگوریتم این گونه آمده است که الگوریتم عبارت است از مجموعه ای ازاعمال واضح که دنبال ای از عملیات را برای رسیدن به هدف خاصی دنبال می کنند.
آنچه در این تعریف خود نمایی می کند کلمه دنباله می باشد که به معنای انجام کار ها بصورت گام به گام می باشد.
این امر مشخص می کند که همه چیز در الگوریتم های سنتی باید قدم به قدم برای کامپیوتر مشخص و قابل فهم و درک باشد.
حتی در اولین الگوریتمهای هوش مصنوعی نیز بر همین پایه و کار قدم به قدم بنا نهاده شده اند.
در اواخرقرن بیستم رویکرد به الگوریتم های جدید صورت گرفت که علتهای مختلفی داشت مثل حجیم بودن میزان محاسبات برخی مسایل و بالا بودن مرتبه زمانی الگوریتم های سنتی در م

  متن بالا فقط تکه هایی از محتوی متن مقاله میباشد که به صورت نمونه در این صفحه درج شدهاست.شما بعد از پرداخت آنلاین ،فایل را فورا دانلود نمایید 

 


  لطفا به نکات زیر در هنگام خرید دانلود مقاله :  توجه فرمایید.

  • در این مطلب،محتوی متن اولیه قرار داده شده است.
  • به علت اینکه امکان درج تصاویر استفاده شده در ورد وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید.
  • پس از پرداخت هزینه ،ارسال آنی مقاله یا تحقیق مورد نظر خرید شده ، به ادرس ایمیل شما و لینک دانلود فایل برای شما نمایش داده خواهد شد.
  • در صورت  مشاهده  بهم ریختگی احتمالی در متون بالا ،دلیل آن کپی کردن این مطالب از داخل متن میباشد ودر فایل اصلی این ورد،به هیچ وجه بهم ریختگی وجود ندارد.
  • در صورتی که محتوی متن ورد داری جدول و یا عکس باشند در متون ورد قرار نخواهند گرفت.
  • هدف اصلی فروشگاه ، کمک به سیستم آموزشی میباشد.

دانلود فایل   پرداخت آنلاین 


دانلود با لینک مستقیم


تحقیق درمورد شبکه های عصبی

دانلود تحقیق بهبود سرعت یادگیری شبکه های عصبی

اختصاصی از یارا فایل دانلود تحقیق بهبود سرعت یادگیری شبکه های عصبی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق بهبود سرعت یادگیری شبکه های عصبی


دانلود تحقیق بهبود سرعت یادگیری شبکه های عصبی

مقدمه

شبکه های عصبی چند لایه پیش خور1 به طور وسیعی د ر زمینه های متنوعی از قبیل طبقه بندی الگوها، پردازش تصاویر، تقریب توابع و ... مورد استفاده قرار گرفته است.

الگوریتم یادگیری پس انتشار خطا2، یکی از رایج ترین الگوریتم ها جهت آموزش شبکه های عصبی چند لایه پیش خور می باشد. این الگوریتم، تقریبی از الگوریتم بیشترین تنزل3 می باشد و در چارچوب یادگیری عملکردی 4 قرار می گیرد.

عمومیت یافتن الگوریتمBP ، بخاطر سادگی و کاربردهای موفقیت آمیزش در حل مسائل فنی- مهندسی می باشد.

علیرغم، موفقیت های کلی الگوریتم BP در یادگیری شبکه های عصبی چند لایه پیش خور هنوز، چندین مشکل اصلی وجود دارد:

- الگوریتم پس انتشار خطا، ممکن است به نقاط مینیمم محلی در فضای پارامتر، همگرا شود. بنابراین زمانی که الگوریتم BP همگرا                می شود، نمی توان مطمئن شد که به یک جواب بهینه رسیده باشیم.

- سرعت همگرایی الگوریتم BP، خیلی آهسته است.

از این گذشته، همگرایی الگوریتم BP، به انتخاب مقادیر اولیه وزنهای شبکه، بردارهای بایاس و پارامترها موجود در الگوریتم، مانند نرخ یادگیری، وابسته است.

در این گزارش، با هدف بهبود الگوریتم BP، تکنیک های مختلفی ارائه شده است. نتایج شبیه سازیهای انجام شده نیز نشان می دهد، الگوریتم های پیشنهادی نسبت به الگوریتم استاندارد BP، از سرعت همگرایی بالاتری برخوردار هستند.

خلاصه ای از الگوریتم BP

از قانون یادگیری پس انتشار خطا (BP)، برای آموزش شبکه های عصبی چند لایه پیش خور که عموماً شبکه های چند لایه پرسپترون 5 (MLP) هم نامیده می شود، استفاده می شود، استفاده می کنند. به عبارتی توپولوژی شبکه های MLP، با قانون یادگیری پس انتشار خطا تکمیل می شود. این قانون تقریبی از الگوریتم بیشترین نزول (S.D) است و در چارچوب یادگیری عملکردی قرار می گیرد.

بطور خلاصه، فرایند پس انتشار خطا از دو مسیر اصلی تشکیل می شود. مسیر رفت6 و مسیر برگشت 7 .

در مسیر رفت، یک الگوی آموزشی به شبکه اعمال می شود و تأثیرات آن از طریق لایه های میانی به لایه خروجی انتشار می یابد تا اینکه

_________________________________

  1. Multi-Layer Feedforward Neural Networks
  2. Back-Propagation Algorithm
  3. Steepest Descent (S.D)
  4. Performance Learning
  5. Multi Layer Perceptron
  6. Forward Path
  7. Backward Path

نهایتاً خروجی واقعی شبکه MLP، به دست می آید. در این مسیر، پارامترهای شبکه (ماتریس های وزن و بردارهای بایاس)، ثابت و بدون تغییر در نظر گرفته می شوند.

در مسیر برگشت، برعکس مسیر رفت، پارامترهای شبکه MLP تغییر و تنظیم می گردند. این تنظیمات بر اساس قانون یادگیری اصلاح خطا1 انجام می گیرد. سیگنال خطا، رد لایه خروجی شبکه تشکیل می گردد. بردار خطا برابر با اختلاف بین پاسخ مطلوب و پاسخ واقعی شبکه می باشد. مقدار خطا، پس از محاسبه، در مسیر برگشت از لایه خروجی و از طریق لایه های شبکه به سمت پاسخ مطلوب حرکت کند.

در شبکه های MLP، هر نرون دارای یک تابع تحریک غیر خطی است که از ویژگی مشتق پذیری برخوردار است. در این حالت، ارتباط بین پارامترهای شبکه و سیگنال خطا، کاملاً پیچیده و و غیر خطی می باشد، بنابراین مشتقات جزئی نسبت به پارامترهای شبکه به راحتی قابل محاسبه نیستند. جهت محاسبه مشتقات از قانون زنجیره ای2 معمول در جبر استفاده می شود.

فرمول بندی الگوریتم BP

الگوریتم یادگیری BP، بر اساس الگوریتم تقریبی SD است. تنظیم پارامترهای شبکه، مطابق با سیگنالهای خطا که بر اساس ارائه هر الگو به شبکه محاسبه می شود، صورت می گیرد.

الگوریتم بیشترین تنزل با معادلات زیر توصیف می شود:

...

 

 

 

 

نوع فایل : WORD

تعداد صفحه : 30


دانلود با لینک مستقیم


دانلود تحقیق بهبود سرعت یادگیری شبکه های عصبی