فرمت:word(قابل ویرایش)
تعداد صفحات:200
فهرست مطالب:
1-6-2- تاریخ کاشت 30
1-6-3- فاصله ردیف و میزان کاشت 34
1-6-4- میزان بذر 38
1-6-5- عمق کاشت 41
1-6-6- ماشین آلات کشت 41
1-6-7- آغشته سازی با باکتری 42
1-6-8- ضد عفونی بذر 44
1-7- بیماری ها 48
1-8- آفات 49
1-9- نیاز سویا به عناصر غذایی 51
1-10- آبیاری 53
1-11- برداشت محصول 54
1-11-1- خشک کردن و انبار داری 56
1-12- فرآیند و مصارف سویا 58
1-13- ترکیبات دانه 59
1-13-1- اجزای فعال بیولوژیکی 64
1-13-2- تهیه کنجاله 64
1-13-3- روغن سویا 65
1-13-4- فرآورده های پروتئینی 66
چکیده 1
فصل اول مقدمه 3
1-1- مقدمه و اهمیت 4
1-2- مشخصات گیاه شناسی سویا 5
1-2-1 – ریشه 6
1-2-2- ساقه 7
1-2-3- برگ 8
1-2-4- گل و غلاف 9
1-2-5- دانه 11
1-3- رشد و تکامل سویا 13
1-4- مرفولوژی دانه و جوانه زنی 16
1-5- اکولوژی سویا 17
1-5-1-احتیاجات جوی و خاک 18
1-5-2- انتخاب واریته 21
1-5-3- حاصلخیزی 22
1-5-4- نیاز سویا به نیتروژن 23
1-5-5- آهک دادن 26
1-6- عملیات زراعی و تهیه بستر 27
1-6-1- کنترل علف هرز 28
1-14- مدل سازی 67
1-14-1- مدل خانواده DSSAT 68
فصل دوم بررسی منابع 70
2-1- ارتفاع بوته 71
2-2- اجزای عملکرد و شاخص های رشد 72
2-3- عملکرد دانه ،عملکرد بیولوژیک ،شاخص برداشت و شاخص های رشد 79
2-4- کیفیت بذر (روغن و پروتئین) 86
2-5- مدل سازی بر اساس معادلات ریاضی 89
فصل سوم : ۳-۱ – مواد و روش ها 92
فصل چهارم : نتایج و بحث 101
4-1- ارتفاع بوته 102
4-2- تعداد غلاف در بوته 106
4-3- تعداد غلاف در متر مربع 109
4-4- تعداد دانه در غلاف 112
4-5- تعداد دانه در متر مربع 115
4-6- وزن صد دانه 120
4-7- وزن پوسته غلاف بدون دانه 123
8-4- عملکرد غلاف 126
4-9- عملکرد دانه 129
4- 10 – عملکرد بیولوژیک 134
4-11- شاخص برداشت 137
4-12- درصد روغن 143
4-13- عملکرد روغن 146
4-14- درصد پروتئین 149
4-15- عملکرد پروتئین 153
4- 16- شاخص سطح برگ 157
4-17- سرعت رشد محصول 159
4-18- سرعت جذب خالص 161
4-19- مدل سازی 164
4-19 -1- شبیه سازی شاخص سطح برگ و شاخص برداشت 153
4- 19 -2- شبیه سازی وزن ساقه ، برگ و غلاف 170
4-19- 3- شبیه سازی عملکرد دانه 175
پیشنهادات 181
منابع 183
چکیده انگلیسی 197
فهرست نمودارها
نمودار ۴-۱- تاثیر تاریخ کاشت بر ارتفاع بوته سویا 104
نمودار ۴-۲- تاثیر ژنوتیپ و رقم بر ارتفاع بوته سویا 105
نمودار ۴-۳- تاثیر متقابل تاریخ کاشت و رقم بر ارتفاع بوته در سویا 105
نمودار ۴-۴ – تاثیر تاریخ کاشت بر تعداد غلاف در بوته سویا 108
نمودار ۴-۵- تاثیر ژنوتیپ و رقم بر تعداد غلاف در بوته سویا 108
نمودار ۴-۶- تاثیر متقابل تاریخ کاشت و رقم بر تعداد غلاف در بوته در سویا 109
نمودار ۴-۷- تاثیر تاریخ کاشت بر غلاف در متر مربع سویا 111
نمودار ۴-۸- تاثیر ژنوتیپ و رقم بر غلاف در متر مربع سویا 111
نمودار ۴-۹- تاثیر متقابل تاریخ کاشت و رقم بر غلاف در متر مربع در سویا 112
نمودار ۴-۱۰- تاثیر تاریخ کاشت بر دانه در غلاف سویا 114
نمودار ۴-۱۱- تاثیر ژنوتیپ و رقم بر دانه در غلاف سویا 114
نمودار ۴-۱۲- تاثیر متقابل تاریخ کاشت و رقم بر دانه در غلاف در سویا 115
نمودار ۴-۱۳- تاثیر تاریخ کاشت برتعداد دانه در متر مربع سویا 116
نمودار ۴-۱۴- – تاثیر ژنوتیپ و رقم برتعداد دانه در متر مربع سویا 117
نمودار ۴-۱۵- تاثیر متقابل تاریخ کاشت و رقم برتعداد دانه در متر مربع در سویا 117
نمودار ۴-۱۶- تاثیر تاریخ کاشت بر وزن صد دانه سویا 122
نمودار ۴-۱۷- تاثیر ژنوتیپ و رقم بر وزن صد دانه سویا 122
نمودار ۴-۱۸- تاثیر متقابل تاریخ کاشت و رقم بر وزن صد دانه در سویا 123
نمودار ۴-۱۹- تاثیر تاریخ کاشت بر پوسته غلاف بدون دانه سویا 124
فهرست نمودارها
نمودار ۴-۲۰ – تاثیر ژنوتیپ و رقم برپوسته غلاف بدون دانه سویا 125
نمودار ۴-۲۱- تاثیر متقابل تاریخ کاشت و رقم برپوسته غلاف بدون دانه در سویا 125
نمودار ۴- ۲۲- تاثیر تاریخ کاشت بر عملکرد غلاف در سویا 127
نمودار ۴-۲۳ – تاثیر ژنوتیپ و رقم بر عملکرد غلاف سویا 128
نمودار ۴-۲۴- تاثیر متقابل تاریخ کاشت و رقم بر عملکرد غلاف در سویا 128
نمودار ۴-۲۵- تاثیر تاریخ کاشت بر عملکرد دانه سویا 132
نمودار ۴-۲۶- تاثیر ژنوتیپ و رقم بر عملکرد دانه سویا 133
نمودار ۴-۲۷- تاثیر متقابل تاریخ کاشت و رقم بر عملکرد دانه در سویا 133
نمودار ۴- ۲۸- تاثیر تاریخ کاشت بر عملکرد بیولوژیک سویا 136
نمودار ۴- ۲۹ – تاثیر ژنوتیپ و رقم بر عملکرد بیولوژیک سویا 136
نمودار ۴- ۳۰- تاثیر متقابل تاریخ کاشت و رقم بر عملکرد بیولوژیک در سویا 137
نمودار ۴-۳۱- تاثیر تاریخ کاشت بر شاخص برداشت سویا 139
نمودار ۴-۳۲- تاثیر ژنوتیپ و رقم بر شاخص برداشت سویا 140
نمودار ۴-۳۳- تاثیر متقابل تاریخ کاشت و رقم بر شاخص برداشت در سویا 140
نمودار ۴-۳۴- تاثیر تاریخ کاشت بر درصد روغن سویا 145
نمودار ۴-۳۵- تاثیر ژنوتیپ و رقم بر درصد روغن سویا 145
نمودار ۴-۳۶- تاثیر متقابل تاریخ کاشت و رقم بر درصد روغن در سویا 146
نمودار ۴-۳۷- تاثیر تاریخ کاشت بر عملکرد روغن سویا 147
نمودار ۴-۳۸- تاثیر ژنوتیپ و رقم بر عملکرد روغن سویا 148
نمودار ۴-۳۹- تاثیر متقابل تاریخ کاشت و رقم بر عملکرد روغن در سویا 148
نمودار ۴-۴۰- تاثیر تاریخ کاشت بر درصد پروتئین سویا 151
نمودار ۴-۴۱- تاثیر ژنوتیپ و رقم بر درصد پروتئین سویا 152
نمودار ۴-۴۲- تاثیر متقابل تاریخ کاشت و رقم بر درصد پروتئین در سویا 152
نمودار ۴-۴۳- تاثیر تاریخ کاشت بر عملکرد پروتئین سویا 153
نمودار ۴-۴۴- تاثیر ژنوتیپ و رقم بر عملکرد پروتئین سویا 154
نمودار ۴-۴۵- تاثیر متقابل تاریخ کاشت و رقم بر عملکرد پروتئین در سویا 154
نمودار ۴-۴۶- روند تغییرات شاخص سطح برگ در تاریخ های مختلف کاشت 157
نمودار ۴-۴۷- روند تغییرات شاخص سطح برگ در ارقام سویا 158
نمودار ۴-۴۸-تغییرات سرعت رشد محصول در تاریخ های مختلف کاشت 160
نمودار ۴-۴۹- تغییرات سرعت رشد محصول در ارقام سویا 161
نمودار ۴-۵۰- تغییرات سرعت جذب خالص در تاریخ های مختلف کاشت سویا 162
نمودار ۴-۵۱- روند تغییرات سرعت جذب خالص در ارقام سویا 163
نمودار ۴-۵۲ – روند تغییرات شاخص سطح برگ و شاخص برداشت در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینL17 164
نمودار ۴-۵۳- روند تغییرات شاخص سطح برگ و شاخص برداشت در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینM7 166
نمودار ۴-۵۴ -روند تغییرات شاخص سطح برگ و شاخص برداشت در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Williams 167
نمودار ۴- ۵۵ – روند تغییرات شاخص سطح برگ و شاخص برداشت در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Zin 168
نمودار ۴-۵۶ – روند تغییرات وزن ساقه(a ) وزن برگ(b ) و وزن غلاف (c) در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینL17 170
نمودار ۴- ۵۷ – روند تغییرات وزن ساقه(a ) وزن برگ(b ) و وزن غلاف (c) در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینM7 172
نمودار ۴- ۵۸ – روند تغییرات وزن ساقه(a ) وزن برگ(b ) و وزن غلاف (c) در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Williams 173
نمودار ۴- ۵۹ – روند تغییرات وزن ساقه(a ) وزن برگ(b ) و وزن غلاف (c) در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Zin 174
نمودار ۴- ۶۰ – روند تغییرات میانگین عملکرد دانه مشاهده شده در در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینL17 در تاریخ کاشت دوم 175
نمودار ۴- ۶۱ – روند تغییرات میانگین عملکرد دانه مشاهده شده در در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای لاینM7 در تاریخ کاشت دوم 177
نمودار ۴- ۶۲ – روند تغییرات میانگین عملکرد دانه مشاهده شده در در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Williams در تاریخ کاشت دوم 178
نمودار ۴- ۶۳ – روند تغییرات میانگین عملکرد دانه مشاهده شده در در شرایط مزرعه(*)و میزان برآورد شده توسط مدل Crop Gro soybean برای رقم Zin در تاریخ کاشت دوم 180
فهرست جداول
جدول ۱-۱- مراحل رشد سویا 13
جدول ۱-۲- پیشنهاد میزان بذر کاری 39
جدول ۱-۳-مثال هایی از انواع علف کش ها 45
جدول ۱-۴- مقادیر تقریبی ترکیبات دانه سویا در قسمت های مختلف آن 59
جدول ۱-۵-اسید آمینه در پروتئین سویا 60
جدول ۱-۶-اسید های چرب روغن سویا 62
جدول ۱-۷-فرآورده های کنجاله بدون چربی 64
جدول ۱-۸- درصد ترکیبات کنجاله بدون چربی 66
جدول ۳-۱- آزمون خاک قبل از آزمایش 94
جدول ۳-۲- پارامترهای مورد استفاده در ارزیابی خروجی های مدل 98
جدول ۳-۳- مراحل نموی استاندارد جهت ورود به مدل DAST 99
جدول ۴-۱- تجزیه واریانس ارتفاع بوته ،تعداد غلاف در بوته ،تعداد غلاف در متر مربع ،تعداد دانه در غلاف و تعداد دانه در متر مربع در تیمار تاریخ کاشت و رقم 118
جدول ۴-۲-مقایسه میانگین اثرات ساده تاریخ کاشت و رقم در ارتفاع بوته ،تعداد غلاف در بوته ،تعداد غلاف در متر مربع ،تعداد دانه در غلاف و تعداد دانه در متر مربع 118
جدول ۴-۳- مقایسه میانگین اثرات متقابل تاریخ کاشت و رقم در ارتفاع بوته ،تعداد غلاف در بوته ،تعداد غلاف در متر مربع ،تعداد دانه در غلاف و تعداد دانه در متر مربع 119
جدول ۴-۴- تجزیه واریانس وزن صد دانه ،وزن پوسته غلاف، عملکرد غلاف،عملکرد دانه ، عملکرد بیولوژیک،شاخص برداشت در تیمار تاریخ کاشت و رقم 141
جدول ۴-۵- مقایسه میانگین اثرات ساده تاریخ کاشت و رقم بر وزن صد دانه ،وزن پوسته غلاف، عملکرد غلاف،عملکرد دانه ، عملکرد بیولوژیک،شاخص برداشت 141
جدول ۴-۶- مقایسه میانگین اثرات متقابل تاریخ کاشت و رقم بر وزن صد دانه ،وزن پوسته غلاف، عملکرد غلاف،عملکرد دانه ، عملکرد بیولوژیک،شاخص برداشت 142
جدول ۴-۷- تجزیه واریانس درصد روغن ،عملکرد روغن ،درصد پروتئین ،عملکرد پروتئین در تیمار تاریخ کاشت و رقم 155
جدول ۴-۸- مقایسه میانگین اثرات ساده تاریخ کاشت و رقم بر درصد روغن ،عملکرد روغن ،درصد پروتئین ،عملکرد پروتئین 155
جدول ۴-۹- مقایسه میانگین اثرات متقابل تاریخ کاشت و رقم بر درصد روغن ،عملکرد روغن ،درصد پروتئین ،عملکرد پروتئین 156
چکیده :
به منظور تعیین بهترین تاریخ کاشت در ارقام سویا ، آزمایشی در مزرعه تحقیقاتی دانشکده کشاورزی دانشگاه آزاد اسلامی واحد ورامین به صورت اسپلیت پلات در قالب طرح بلوک کامل تصادفی در چهار تکرار در سال 1388 اجرا شد. تیمار های آزمایش شامل چهار تاریخ کاشت 13 اردیبهشت ، 23 اردیبهشت،3 خرداد و 13 خرداد (با فواصل 10 روز) در کرت های اصلی و چهار رقم سویای میان رس بهاره (از گروه سه) شامل Williams،L-17 ،Zin و M7 در کرت های فرعی قرار گرفتند. نتایج نشان داد که بیشترین ارتفاع بوته از تاریخ کاشت سوم و رقم ویلیامز با متوسط 8/95 سانتی متر به دست آمد و تاریخ کاشت چهارم و رقم M7 با میانگین 8/72 ساتی متر کمترین میزان را به خود اختصاص داد. بالاترین مقدار عملکرد دانه از تاریخ کاشت دوم و رقم ویلیامز با متوسط 63/5387 کیلوگرم در هکتار به دست آمد که نسبت به تاریخ کاشت چهارم و ژنوتیپ L-17 با میانگین 71/3168 کیلوگرم در هکتارکه کمترین میزان را دارا بودند ، 2/41 درصد برتری نشان داد. اما بیشترین مقدار عملکرد بیولوژیک از تاریخ کاشت دوم و رقم زان حاصل شد که با تیمار تاریخ کاشت دوم و رقم ویلیامز تفاوت معنی داری نداشته و هردو در گروه اول جای گرفتند. تاریخ کاشت دوم و رقم زان با 8/124 عدد بیشترین تعداد غلاف در بوته را به دست آورد ولی بالاترین تعداد دانه در بوته و وزن صد دانه با متوسط 08/2 عدد ومیانگین 65/9 گرم از تیمار تاریخ کاشت دوم و رقم ویلیامز به دست آمد. درصد روغن و پروتئین نیز تحت تاثیر اثرات متقابل تیمار تاریخ کاشت و ارقام قرار گرفت . بالاترین و پایین ترین میزان درصد روغن به ترتیب از تاریخ کاشت چهارم و رقم ویلیامز با 92/22 درصد و تیمار تاریخ کاشت دوم و ژنوتیپ L-17 با 87/19 درصد به دست آمد ، تیمار تاریخ کاشت دوم و لاین M7 با میانگین 67/34 درصد توانست بالاترین میزان درصد پروتئین را به خود اختصاص داد و کمترین درصد پروتئین از تیمار تاریخ کاشت چهارم و رقم ویلیامز با متوسط 09/30 درصد به دست آمد. شاخص سطح برگ در تاریخ های کاشت مختلف متفاوت بود بالاترین میزان از تاریخ کاشت دوم در مرحله آغاز غلاف دهی با 31/5 به دست آمد. در بین ارقام نیز رقم ویلیامز توانست با 98/4 در مرحله آغاز پر شدن دانه بیشترین مقدار را از آن خود کند. بیشترین میزان سرعت رشد محصول از تاریخ کاشت دوم در مرحله آغاز غلاف دهی با 38/25 کیلو گرم بر متر مربع در روز حاصل شد. بین ارقام نیز رقم ویلیامز با 66/23 کیلو گرم بر متر مربع در روز در آغاز مرحله غلاف دهی بیشترین مقدارسرعت رشد محصول را به دست آورد. بالاترین میزان سرعت جذب خالص از تاریخ کاشت دوم با 41/21 کیلوگرم بر متر مربع در روز در مرحله ظهور نخستین برگ به دست آمد و کمترین مقدار نیز از تاریخ کاشت چهارم در مرحله رسیدگی کامل با 78/0 کیلوگرم بر متر مربع در روز حاصل شد. رقم ویلیامز نیز بالاترین مقدار سرعت جذب خالص را به دست آورد و کمترین مقدار از ژنوتیپ M7 با میانگین 8/0 کیلوگرم بر متر مربع در مرحله رسیدگی کامل حاصل شد . در نهایت با توجه به نتایج به دست آمده تاریخ کاشت دوم و رقم ویلیامز با دارا بودن بیشترین عملکرد و شاخص های رشد مناسب برای منطقه ورامین شناخته شد.نتایج شبیه سازی در این تحقیق در بر گیرنده مناسب بودن مدل رشد DSAT جهت بررسی روند رشد سویا می باشد. بر این اساس نمودارهای ترسیم شده مدل در مورد شاخص سطح برک شاخص برداشت وزن برگ وزن ساقه وزن غلاف و عملکرد دانه شبیه نمودارهای مزرعه ای بوده و ضریب مدل نزدیک به یک می باشد.
فصل اول
مقدمه
1-1- مقدمه و تاریخچه سویا
در واپسین سال های قرن بیستم شاید بتوان سویا را منبع اساسی و عمده پروتئین مصرفی و مردمان قرن آینده خواند. امروزه سویا به عنوان یک کالای استراتژیک نه تنها پاسخگوی مصارف غذایی متنوع و متعدد در زنجیره غذایی است، بلکه مصارف صنعتی فراوانی نیز دارد. گفته ها و مطالبی که در آثار ادبی آمده گویای این واقعیت است که سویا یا لوبیای روغنی از نباتات قدیمی و بومی آسیاست که در سال 2838 قبل از میلاد در نواحی شمال شرقی چین شناسایی و کشت آن مرسوم شد. همچنین سویا یکی از پنج دانه مقدس (برنج، گندم، جو، ارزن و سویا) محسوب می شده است. تاریخچه زراعت سویا دارای سه مرحله است. مرحله اول با کشت آن توسط مردم قدیم چین شروع شد، مرحله دوم در دهه دوم قرن بیستم هنگامی که سویا به صورت یکی از صادرات مهم آسیای شرقی درآمد آغاز گردید و مرحله سوم از حدود سی سال پیش با ابداع روش های مدرن کاشت، داشت و برداشت سویا شروع شد و با تولید ارقام سازگار با شرایط محیطی متفاوت و همچنین پیشرفت صنایع فرآورده های غذایی زمینه مناسبی برای افزایش سریع سطح زیر کشت این گیاه فراهم شد(کوچکی ،1380).
تصور می شود موطن اصلی این گیاه شمال شرقی چین باشد و استرالیا مرکز محتمل پراکندگی برای تمام منطقه اقیانوس آرام از جمله چین است. با توجه به مدارک و اسناد تاریخی، نیمه شرقی شمال چین به عنوان منطقه اهلی شدن سویا شناخته شده است. استخراج روغن از سویا برای اولین بار در سال 1915 در آمریکا انجام شد (ناصری، 1370) و فعالیت های اصلاح بر روی گیاه سویا از سال 1940 بطور جدی آغاز شد که منجر به تولید ارقام با عملکرد بالا و سازگار نسبت به انواع شرایط محیطی گردید.
در ایران اولین بار در سال 1317 مقداری بذر سویای خوراکی برای ناحیه گیلان و نیز مقداری بذر سویای علوفه ای برای ناحیه کرج از آلمان وارد و زیر نظر بنگاه اصلاح بذر مورد ارزیابی قرار گرفت. کلیه آزمایشات حاکی از عملکرد مطلوب این گیاه بود اما بدلیل عدم وجود بازار فروش کشت آن رونق نگرفت (کریمی ،1368). در سال 1341 گروه صنعتی بهشهر مقداری بذر سویا از ژاپن وارد کرد و پس از انعقاد قرارداد با زارعان، در ترویج و افزایش سطح زیر کشت آن تلاش های زیادی مبذول کرد به طوری که در سال 1353 سطح زیر کشت این محصول به حدود 20 هزار هکتار و در سال 1355 به 60 هزار هکتار رسید و محصولی بالغ بر 100 هزار تن تولید نمود (رمزی، 1385).
در حال حاضر آمریکا بزرگترین صادر کننده و تولید کننده سویا در دنیا است که همراه با کشورهای چین و برزیل و آرژنتین بیش از 90% تولید جهان را به خود اختصاص داده اند ( فائو، 2005 ، رستگار، 1385).
کشت سویا هم در زراعت بهاره و هم در زراعت تابستانه صورت می گیرد، کشت دوم آن در ایران بعد از محصولاتی چون گندم، جو، سیب زمینی، کاهو و باقلا انجام می شود و بدین لحاظ نیاز به اختصاص زمینی خاص جهت کشت ندارد. مهم ترین مناطق کشت سویا در استان های گلستان و مازندران (گرگان،گنبد،ساری) و در استان های لرستان وآذربایجان شرقی (دشت مغان) است.
موارد استفاده سویا در کشاورزی و صنعت متکی به روغن زیاد (20%) و پروتئین فراوان (40%) دانه است. از آن جایی که سویا منبع سرشاری از پروتئین و روغن است ماده خاصی برای مصارف گوناگون در صنعت و کشاورزی شده است. سطح کشت آن در تغییر بوده و تحت تأثیر قیمت سویا نسبت به سایر محصولات مخصوصاً ذرت مقدار مازاد، میزان صادرات و وضعیت هوا در فصل کاشت می باشد، به طوری که اگر شرایط برای کشت ذرت مناسب نباشد سطح زیر کشت سویا افزایش می یابد(رمزی ،1385).
1- 2- مشخصات گیاه شناسی :
سوژا یا سویا گیاهی یکساله از خانواده بقولات، جنس گلایسین، و گونه ماکس که به خاطر درصد قابل توجه روغن در دانه آن به عنوان دانه روغنی کشت می شود. این گیاه خودگشن بوده و مقام نخست در تأمین روغن گیاهی در جهان را دارا است. حدود 40 گونه که به صورت بوته های در هم و پیچیده هستند در منطقه آسیا و استرالیا پراکنده هستند. گیاه سویا به عنوان یک گیاه با ارزش از نظر پروتیین و روغن با داشتن حدود 40 درصد پروتیین و 20 درصد روغن امروزه نزدیک به 60 درصد پروتیین گیاهی و 30 درصد روغن گیاهی مورد نیاز جهانیان را تامین می نماید.سویا گیاهی است روز کوتاه که بطول روز حساس بوده و به این خاطر از نظر زمان رسیدگی به ارقام مختلف در گروههای رسیدگی سه صفر تا دوازده (000 تا 12 ) قرار می گیرند.
به طور کلی ارقام سویا از نظر طول دوره رویش به سه گروه تقسیم می شوند :
زودرس 70 تا 95 روز
متوسط رس : 100تا 130 روز
دیر رس : 140 تا 180 روز
در این طبقه بندی زودرس ترین ارقام در گروه های 2 تا 7 قرار می گیرند (فروزان، 1380).
در کشور ما ارقام گروه های 2، 3، 4، 5 و 6 با توجه به نواحی مختلف و شرایط آب و هوایی منطقه تطابق بیشتری را نشان داده و در چهار دسته زیر تقسیم بندی می گردند:
– ارقام زودرس شامل گروه های 2 و3 : مانند ارقام چیپوا، هاراسوی، زان، ویلیامز و سپیده
– ارقام متوسط رس شامل گروه 4 : مانند ارقام کلارک ، بونوس و وین
– ارقام دیررس شامل گروه 5 : مانند ارقام هیل، سحر، ساری و تلار
– ارقام خیلی دیررس شامل گروه 6 : مانند ارقام هود ، لی، فورست
سویا در ایران معمولا در دو فصل بهار و تابستان کشت می شود. در بهار به عنوان کشت اول و در تابستان به عنوان کشت دوم کشت می شود ( فروزان، 1380).
1-2-1-ریشه
سویا دارای یک ریشه اصلی عمیق بوده که تعداد زیادی ریشه های فرعی یا جانبی از آن منشعب می شوند که در صورت وجود رطوبت و عدم خشکی یا وجود لایه غیر قابل نفوذ، ریشه می تواند تا عمق 150 سانتی متری خاک نفوذ نماید ( رمزی، 1385).
ریشه های فرعی حاصل از ریشه اصلی دارای پراکنش افقی بوده که پس از 40 تا 50 سانتی متر رشد با وجود رقابت ریشه های ردیف های کناری به سمت عمق گرایش پیدا کرده و تا عمق نفوذ ریشه اصلی در خاک فرو می روند. رشد ریشه در دوره رویشی سریع تر از رشد قسمت های هوایی بوده و عمق آن در مرحله گلدهی اغلب 2 برابر ارتفاع ساقه است ولی وزن ریشه خشک کمتر از وزن خشک اندام های هوایی می باشد. رشد ریشه تا زمان تشکیل دانه ادامه یافته و سپس قبل از ورود به مرحله رسیدگی فیزیولوژیک متوقف می شود.
سویا از گونه های گیاهی تثبیت کننده نیتروژن است و این عمل از طریق همزیستی با باکتری های خانواده ریزوبیاسه صورت می گیرد. باکتری های این خانواده هوازی و گرم منفی هستند و دارای شکل میله ای می باشند. باکتری مناسب سویا برادی ریزوبیوم ژاپنیکوم نام دارد. مقدار نیتروژن تثبیت شده توسط ریزوبیوم ها ممکن است تا 80 درصد کل نیتروژن مورد نیاز را در شرایط مساعد تثبیت، تامین نماید. قسمت اعظم نیتروژنی که در اختیار گیاه قرار می گیرد به مصرف تولید دانه می رسد (وارول و پاترسون 1992). باکتری ریزوبیوم ژاپونیکوم به طور طبیعی در خاک های ایران وجود نداردو به همین جهت لازم است این باکتری همراه بذر به خاک اضافه گردد (رمزی، 1385).
1-2-2- ساقه :
ساقه و برگ های سویا پوشیده از کرک یا موهای بسیار ظریف خاکستری یا قهوه ای رنگ کوتاهی پوشیده شده است. ارتفاع بوته ها گاهی به 150سانتی متر و حتی بیشتر و گاهی واریته هایی یافت می شود که به طور قابل ملاحظه ای بزرگ تر هستند (کریمی ، 1384). یک ساقه اصلی مستقیم، استوار و استوانه ای که کاملا” مشخص بوده و از بخش تحتانی بوته می تواند شاخه ها و یا انشعابات متعددی ایجاد شود، پایه گل را تشکیل می دهد( کریمی ،1384، رستگار، 1385، خواجه پور، 1383). رشد ساقه با خروج محور لپه ها از خاک شروع شده و با تکامل دانه ها در داخل نیام پایان می یابد. ساقه سویا مخروطی شکل بوده و دارای تعدادی گره یا بند (19تا24) می باشد (رستگار، 1385، لطیفی، 1372). با انجام انشعابات ساقه، از قطر ساقه اصلی کاسته شده و با کاهش تراکم، تعداد شاخه های انشعابی یا فرعی که اغلب در قاعده ساقه اصلی قرار دارند بیشتر می شود. تعداد ساقه های فرعی در ارقام دیررس زیاد بوده و برعکس، در ارقام زودرس تعداد آنها کمتر است. با افزایش ساقه های فرعی در بوته، عملکرد دانه نیز افزایش خواهد یافت. تعداد ساقه های مزبور از صفر تا 6عدد متغیر می باشد( رمزی، 1385).
1-2-3- برگ
سویا دارای برگ های هترومورف یا غیر همگن است. پایین ترین گره نزدیک خاک، محل برگ های لپه ای ، دومین بند محل اتصال برگ های ساده یا اولیه یک برگچه ای و سایر بند ها به ترتیب محل اتصال برگ های سه برگچه ای متناوب بوده و قاعده شاخه ها و پایه گل ها محل برگ های ضمیمه می باشد. (رستگار ، 1385 ).
برگ های لپه ای یا کوتیلدونی اولین برگ هایی هستند که در بوته جوان ظاهر می شوند. این برگ ها بدون دمبرگ و به شکل متقابل می باشند. مواد غذایی درون این دو برگچه قرار دارد. این برگچه ها به صورت اپی جیل یا برون خاکی به سطح خاک راه می یابند.
این برگچه ها در اوایل دوره رشد هنگامی که ظهور برگ های اصلی به تعویق می افتد، دارای اهمیت ویژه ای می باشند، چرا که فعال بودن آنها به مدت 10تا 12روز پس از جوانه زنی که سیستم ریشه ای هنوز فعال نیست، در عملکرد نهائی دخالت دارد. بنابراین هر گونه خسارت یا حذف شدن این برگ ها توسط آفات و یا بیماری ها عملکرد نهائی را کاهش خواهد داد
برگ های ساده یا اولیه، یک برگچه ای و دارای دمبرگ بوده (به طول 1تا 2سانتی متر) که به صورت متقابل و ساده هستند. این برگ ها کمی بزرگ تر از برگچه های دو لپه ای هستند و به شکل بیضوی تا باریک کشیده و بعضا” خیلی کشیده و کرکدار دیده می شوند. برگ های ضمیمه، برگ های ساده و خیلی کوچک هستند که بصورت جفت در قاعده شاخه ها و قاعده پایه گل ها قرار دارند. این گل ها فاقد دمبرگ و برجستگی در محل اتصال می باشند ( رستگار، 1385).
برگ اصلی سویا، برگی است مرکب و هر برگ مرکب از 3 و بندرت 4 برگچه ای تشکیل شده و از این رو این برگ ها را سه برگچه ای (Trifoliate) می نامند. شکل این برگچه ها قلبی شکل یا مثلثی نوک تیز می باشد. برگ های اصلی سویا همانند برگ های اصلی لوبیای معمولی دارای دمبرگ طویل است. با این تفاوت که در سویا، تمامی سطوح اعم از ساقه، شاخه ها، برگچه های اصلی، دمبرگ ها و میوه ها پوشیده از کرک های زبر و خشن بوده، در صورتی که اندام های فوق در لوبیا فاقد کرک های خشن هستند. آرایش برگ ها در سویا می تواند عملکرد را تحت تأثیر قرار دهد. به طور معمول برگ های قائم نسبت به برگ هایی با آرایش افتاده دارای کارایی بالاتری از نظر فتوسنتز بوده و بنابراین گزینش در جهت ایجاد برگ های قائم در حفظ رطوبت و کاهش فشار کمبود آب موثر خواهد بود.
این آرایش برگی به سبب سایه اندازی کمتر به برگ های تحتانی و سهولت نفوذ نورکافی به پای بوته ها، باعث عمر بیشتر برگ های تحتانی و سهولت نفوذ نورکافی به پای بوته ها، افزایش طول عمر برگ های محدوده پایین بوته شده و تولید ماده خشک را افزایش می دهد. از طرف دیگر ارقام دارای برگ های قائم به دلیل حجم کم بوته قابلیت کشت درتراکم های بالا را داشته و در نتیجه ماده خشک بیشتری را تولید خواهند نمود. وجود کرک نیز در اندام های مختلف سویا، تعرق را به میزان 25% کاهش می دهد و برگ های سویا در هنگام رسیدگی دانه، ریزش می کنند ولی در برخی ژنوتیب ها در مرحله رسیدگی، برگ ها بر روی بوته ها باقی می مانند که انجام عمل برگ ریزی توسط مواد برگ ریز صورت می گیرد.
1-2-4- گل و غلاف
مهم ترین عوامل تحریک کنندگی و تشکیل گل در سویا عبارتند از طول روز و شب، درجه حرارت و ویژگی های ژنتیکی گیاه. رنگ گل در سویا متفاوت بوده و اغلب به رنگ های ارغوانی، سفید تا آبی و بنفش دیده می شود ( کریمی، 1384، رستگار، 1385). گل های سویا کوچک بوده، به طول 6تا 7میلی متر و دارای دمگل کوتاه می باشند. اختصاصات خانواده پروانه آسا: هر گل شامل 5 کاسبرگ، 5 گلبرگ ( یک بزرگ به نام درفش یا استاندارد، 2بال و 2 ناو) ، 10پرچم (9عدد بهم چسبیده و یکی آزاد ) و یک مادگی کرک دار می باشد (رستگار، 1385). این گل ها در محل اتصالات دمبرگ به ساقه اصلی یا شاخه فرعی که به آکسیل خوانده می شود، به وجود می آیند.
آرایش گل سویا به صورت خوشه ای می باشد. تعداد گل ها در یک آرایش خوشه ای بین 2 تا 20عدد متغیر بوده و تعدا گل های خوشه ای در یک بوته نیز درحدود 15 تا 20عدد می باشد. گل های سویا 99 درصد خود گشن و حدود1 درصد دگرگشن می باشند ( کریمی، 1384، رستگار، 1385، ویس، 2000) . دلیل این امر آزاد شدن گرده ها پیش از باز شدن گل ها می باشد بطوری که ارقام کاشته شده در کنار هم نیز به ندرت قادر به استفاده از گرده های یکدیگر خواهند بود( ویس، 2000) .تمامی گل های تولید شده در یک بوته، تولید میوه نکرده و تعداد زیادی از آنها (حدود 20 تا 80درصد ) ریزش می کنند. حداکثر ریزش گل و غلاف های جوان در مرحله اوج گلدهی و بعد از آن صورت می پذیرد. در سویا مراحل ریزش گل و میوه های جوان به شرح زیر است :
1- ریزش جوانه گل قبل از گرده افشانی
2- ریزش گل بعد از گرده افشانی و تلقیح
3- ریزش غلاف های جوان و نارس در سنین مختلف
عملکرد در سویا به تعداد گل وابسته بوده و بنابراین با درصد ریزش گل و غلاف همبستگی عکس دارد. به طور کلی در هر بوته سویا 25 تا 30 درصد گل ها تبدیل به غلاف شده و بقیه گل ها ریزش می کنند. متعاقب این امر تعدادی از غلاف های جوان در سنین مختلف می ریزند و تعدادی نیز با وجود رشد کامل عاری از دانه بوده که به آنها غلاف های پوک گفته می شود. بنابراین به طور معمول ریزش توام گل و غلاف در ارقام مختلف سویا زیاد است .
در هر دو سیستم رشد (محدود و نامحدود ) ریزش گل و غلاف در قسمت پایین بوته بیشتر است. در سیستم رشد نامحدود غلاف بندی در بخش فوقانی بوته کم بوده و بیشترین غلاف ها در قسمت وسط بوته تشکیل می گردد. در ارقام با رشد محدود تعداد غلاف ها در انتهای بوته بیشتر بوده و بطور نسبی معادل غلاف های وسط بوته است.
تبدیل گل به غلاف در سویا تدریجی صورت می گیرد بنابراین در بوته سویا به طور همزمان اندام هایی نظیر غنچه، گل و همچنین غلاف ها در سنین مختلف دیده می شود. غلاف ها بعد از تکامل گل شروع به رشد می کنند (فروزان، 1380) و هر گل بارور شده تولید یک نیام می کند (رستگار، 1385) در مراحل اولیه غلاف های کوچک، گوشتی و نرم و پرزدار هستند و به تدریج که بزرگ تر می شوند (فروزان ، 1380) و به طول 3 تا 10سانتی متر و عرض 2 تا 4 سانتی متر می رسند ( رستگار، 1385، ویس، 2000) در مراحل آخر رنگ غلاف ها، زرد، قهوه ای، قهوه ای روشن، متمایل به سفید و استخوانی است و دانه ها سخت شده و حالت شیری ندارند(فروزان، 1380، رستگار، 1385، ویس 2000) .تعداد غلاف ها در بوته ممکن است به 400عدد برسد (رستگار، 1385). غلاف ها معمولا زمانی که می رسند ، می شکنند و بذر آزاد شده می ریزد (رستگار، 1385، ویس، 2000). زود یا زیاد شکستن غلاف ها یک صفت زیان آور محسوب می شود و خشکی هوا و حرارت نیز موجب تشدید ریزش دانه ها می گردد.
ارقامی نیز که غلاف بندی آنها از نزدیکی سطح زمین شروع می شود، در برداشت با کمباین مقدار زیادی تلفات دارند و هرچه غلاف بندی از سطح بالاتری شروع شود این صفت مطلوب تر خواهد بود.
فرمت:word(قابل ویرایش)
تعداد صفحات:70
فصل اول :متانول ،خواص و روشهای تولید. ۱
۱-۱-تاریخچه [۱] ۱
۱- ۲- خصوصیات فیزیکی Physical properties [1] 3
1-3- واکنشهای شیمیایی [۱] ۴
۱-۴- تولید صنعتی و فرآیند آن [۱] ۴
۱-۵-ماده خام [۱] ۹
۱-۵-۱-گاز طبیعی [۱] ۹
۱-۵-۲-باقیمانده های نفتی [۱] ۱۲
۱-۵-۳-نفتا [۱] ۱۴
۱-۵-۴-ذغال سنگ [۱] ۱۵
۱-۶-کاتالیست [۱] ۱۵
۱-۷-تولید در مقیاس تجاری [۱] ۱۵
۱-۸-واکنشهای جانبی [۱] ۱۶
۱-۹-خالص سازی [۱] ۱۷
۱-۱۰-کاربردهای متانول: [۴] ۱۸
۱-۱۰-۱-۱- تولید اسید استیک: ۱۹
۱-۱۰-۱-۲-کاربرد اسید استیک در صنایع: ۲۰
۱-۱۰-۲-تولید وینیل استات: ۲۰
۱-۱۰-۳-فرمالدئید: ۲۱
۱-۱۰-۴-اتیلن گلیکول: ۲۱
۱-۱۰-۵-متیل آمین: ۲۱
۱-۱۰-۶-دی متیل اتر: ۲۲
۱-۱۰-۷- ترکیبات کلرومتان : ۲۲
۱-۱۰-۸-متیل ترشری بوتیل الکل(MTBE). 23
1-10-9-کاربرد متانول در مخلوط با بنزین: ۲۵
فصل دوم: سینتیک و مکانیسم واستوکیومتری[۲] ۲۷
۲-۱-اصول واکنشهای کاتالیستی.. ۲۷
۲-۱-۱-مراحل مستقل در واکنشهای کاتالیستی.. ۲۷
۲-۱-۲-سینیتیک ومکانیسم واکنشهای کاتالیستی.. ۳۰
۲-۱-۳-اهمیت جذب سطحی در واکنشهای کاتالیستی هتروژن.. ۳۱
۲-۱-۴-بررسی سینتیکی.. ۳۷
۲-۱-۵-مکانیسم واکنشهای کاتالیستی هتروژن فاز گاز. ۳۹
۲-۱-۵-۱-مکانیسم Langmuir- Hinshelwood (1421 ). 39
2-1-5-2-مکانیسم Eley –Rideal 42
2-2-ترمودینامیک و سینتیک سنتز فشار پائین متانول[۳] ۴۳
۲-۲-۱-مقدمه. ۴۴
۲-۲-۲-استوکیومتری و ترمودینامیک… ۴۴
۲-۲-۳-سینتیک و مکانیسم. ۴۸
۲-۲-۴-مکانیسم. ۵۳
فصل سوم: شبیه سازی واکنش کاتالیستی هتروژنی توسط Hysys 56
3-1- مدل سینتیکی[۵] ۵۶
۳-۲-مراحل شبیه سازی رآکتور در Hysys [5] 58
3-تعریف واکنش… ۵۹
۴-مراحل نصب رآکتور. ۶۳
۳-۳-نتایج حاصله از شبیه سازی.. ۶۴
منابع : ۶۸
چکیده:
فصل اول :متانول ،خواص و روشهای تولید
۱-۱-تاریخچه
مصریان باستان جهت مومیایی کردن ازمخلوطی استفاده می کردند که شامل متانول نیزبود،که آنرا از پیرولیز چوب به دست آورده بودند با این وجود متانول خالص برای اولین بار توسط رابرت بویل در ۱۶۶۱ جدا سازی شد، که او آنرا Spirit of box نامید. زیرا در تهیه آن از چوب صندوق استفاده کرده بود که بعداً به Piroxilic Spirit معروف شد. در سال ۱۸۳۴ ، شیمیدانان فرانسوی آقایانJean -Baptiste وEugene Peligot عناصر تشکیل دهندة آنرا شناسایی کردند ،آنها همچنین لغت methylene را به شیمی آلی وارد کردند که واژه methu به معنای شراب واژه hyle به معنای چوب بود. سپس در سال ۱۸۴۰ واژه methyl از آن مشتق شد و جهت توصیف Methyl Alcohol استفاده شد. سپس این نام در سال ۱۸۹۲ به وسیله کنفرانس بین المللی نامگذاری مواد شیمیایی بهMethanol کوتاه شد.
در۱۹۲۳،دانشمند آلمانیMattias Pier که برای شرکتBASFکارمی کرد، طرحی را جهت تولید متانول از گاز سنتز (مخلوطی از اکسیدهای کربن و هیدروژن که از زغال به دست می آمد و در سنتز آمونیاک نیز کاربرد دارد ) ارائه کرد. که در آن از کاتالیست روی- کرم استفاده می شد و شرایط سختی از نظر فشاری (۱۰۰۰ الی۳۰۰ اتمسفر) و دما (بالای ) داشت. تولید مدرن متانول هم اکنون توسط کاتالیست هایی که امکان استفاده از شرایط دمایی کمتر را دارند، ممکن است.
متانول ( متیل الکل ) به فرمول یک مایع شفاف سفید رنگ شبیه آب است که در دمای معمولی بوی ملایم دارد . از زمان کشف آن در اواخر قرن هفدهم تاکنون مصرف آن رشد رو به فزونی داشته به طوری که اکنون با تولید سالانة تن متریک رتبه ۲۱ را در بین محصولات شیمیایی صنعتی داراست متانول گاها با عنوان الکل چوب یا ( برخی مواقع Wood Spirite ) نیز خوانده می شود که دلیل آن به تقریبا یک قرن تولید تجاری آن از خرده چوب بر می گردد به هر حال متانولی که از چوب تهیه شده باشد مواد آلوده کنندة بیشتری ( مانند استیلن ، اسید استیک ، الکل الیل ) دارد تا الکلهای صنعتی امروزی .
برای سالهای متوالی مصرف کننده اصلی متانول تولیدی ، فرمالدئید با مصرف تقریبا نیمی از متانول تولید شده بود ولی در آینده از اهمیت آن کاسته می شود زیرا مصارف جدیدی از جمله تولید اسید استیک و MTBE (که جهت بهبود عدد اکتان بنزین به کار می رود ) در حال افزایش است . از طرفی استفاده از متانول به عنوان سوخت در شرایط ویژه قابل توجه خواهد بود .
۱-۳- واکنشهای شیمیایی [۱]
متانول معمولا در واکنشهایی شرکت می کند که از نظر شیمیایی در دسته واکنشهای الکلی قرار می گیرند از مواردی که از نظر صنعتی اهمیت ویژه أی دارد هیدروژن زدایی و هیدروژن زدایی اکسایشی متانول و تبدیل به فرم آلدئید برروی کاتالیست نقره یا مولیبدن – آهن و همچنین تبدیل متانول به اسید استیک بر روی کاتالیست کبالت یا روبیدیوم است .
از طرفی دی متیل اتر (DME) از حذف آب متانول توسط کاتالیست اسیدی قابل تولید است. واکنش ایزوبوتیلن با متانول که توسط کاتالیزور اسیدی انجام می شود و منجر به تولید متیل توشیو بوتیل اتر می شود ( که یک افزایندة مهم عدد اکتان بنزین است ) کاربرد فزاینده أی دارد .
تولید متیل استرها با کاتالیزور اسیدی از اسیدهای کربوکسیلیک و متانول انجام می شود که در آن جهت کامل کردن واکنش از استخراجی آزئوتروپی آب استفاده می شود .
متیل هیدروژن سولفات ، متیل نیترات و متیل هالیدها از واکنش متانول با اسیدهای غیر آلی مربوطه تولید می شوند .
مونو- ، دی– و تری- متیل آمین از واکنش مستقیم آمونیاک با متانول به دست می آیند .
۱-۴- تولید صنعتی و فرآیند آن [۱]
اولین و قدیمی ترین روش تولید عمده متانول تقطیر تخریبی چوب بود که از اواسط قرن نوزدهم تا اوایل قرن بیستم به صورت عملی انجام می شد و هم اکنون در ایالات متحده دیگر انجام نمی شود. این روش تولید با توسعه فرآیند سنتز متانول از هیدروژن و اکسیدهای کربن، در دهه ۱۹۲۰ کنار گذاشته شد .
متانول همچنین به عنوان یکی از محصولات اکسیداسیون غیر کاتالیستی هیدروکربنها تولید می شد. تجربه أی که از سال ۱۹۷۳ کنار گذاشته شد .
متانول را همچنین می توان به عنوان یک محصول فرعی فرآیند Fisher-Tropsch به دست آورد تولید مدرن متانول در مقیاس صنعتی منحصراً بر پایه سنتز آن از مخلوط پر فشار هیدروژن ، دی اکسید کربن و منوکسید کربن در حضور کاتالیست فلزی هتروژنی است .
تولید مدرن در مقیاس صنعتی متانول امروزه منحصرا از مخلوط پر فشار گازهای هیدروژن و اکسیدهای کربن بر روی کاتالیت فلزی است.فشار گاز سنتز به اکتیویته کاتالیست مورد استفاده ، بستگی دارد .
طبق توافق حاصل شده، تکنولوژیهایی تولید متانول به صورت زیر دسته بندی شده اند :فرآیندهای فشار پائین (۵-۱۰ Mpa) ، فرآیندهای با فشار میانی (۱۰-۲۵ Mpa) و فرآیندهای فشار بالا (۲۵-۳۵ Mpa).
در ۱۹۲۳ شرکت BASF درآلمان اولین سنتزتجاری متانول را آغازکرد. در این فرآیند از سیستم کاتالیستی اکسید روی–اکسید کرم بهره گرفته شده بود . که این واقعه را آغاز تکنولوژی تولید فشار بالا می توان برشمرد .
در سال۱۹۲۷ در یک تلاش جداگانه تولید فشار بالای متانول در واحدهای متعلق به شرکت های Dupont و Commercial Sovents آغاز شد .
در سال ۱۹۶۵ یک واحد مدرن تولید متانول با ظرفیتی در حدود ۲۲۵-۴۵۰ t/d ، در فشار ۳۵ Mpa به طور خالصی گاز طبیعی به ازاء تولید یک تن متانول مصرف می کرد که برای فشارهای بالاتر از ۲۱ Mpa از کمپرسورهای پیستونی استفاده می شد .
در اواخر دهه ۱۹۶۰ تکنولوژی تولید فشار میانی و فشار پائین متانول با استفاده از کاتالیست با دوام و اکتیو مس – اکسید روی به صورت عملی مورد بهره برداری قرار گرفت .
شرکت ICI Ltd. در انگلستان ، سنتز فشار پائین متانول را در اواخر سال ۱۹۶۶ آغاز کرد که در آن سال یک واحد تولیدی با ظرفیت ۴۰۰ t/d در فشار ۵Mpa فقط از کمپرسورهای سانتریفوژ استفاده می کرد .
در سال ۱۹۷۱ شرکت Lurgi به صورت آزمایشی یک واحد تولیدی فشار پائین با ظرفیت ۱۱ t/d که از کاتالیست مس استفاده می کرد ، احداث نمود .
مزیتهای تکنولوژی های فشار پائین در کاهش توان مصرفی جهت افزایش فشار، عمر طولانی تر کاتالیست ها و ظرفیت تولید بیشتر بود که در کنار آن می توان به ظرفیت single–train بیشتر و اطمینان از عملکرد اشاره کرد ، که با فشار بالا در تناقض هستند.
از سال ۱۹۷۰ به بعد علی رغم برخی استثناءها هرگونه توسعه واحدهای تولید متانول با استفاده تکنولوژی فشار پائین یا میانی بوده است. درسال ۱۹۸۰ ، ۵۵% تولید متانول در ایالات متحده با استفاده از سنتز فشار پائین بوده و ازآن به بعدواحدهای فشار بالا با تکنولوژی فشار پائین اصطلاحاً “revamp” شده اند، یا اینکه به کل تعطیل شدند .
یک واحد معمول تولید فشار پائین – میانی در سال ۱۹۸۰ با ظرفیت ۱۰۰۰-۲۰۰۰t/d در فشاری در حدود ۸-۱۰ Mpa عمل می کند و در یک فرآیند single – train فقط از کمپرسورهای سانتریفیوژ بهره می برد و جهت تولید ۱ تن متانول گاز طبیعی مصرف می کند .
تنها نوآوری جدیدی که در افق دیده می شود ، فرآیند سه فازی شرکت Chem System است . یک مایع بی اثر جهت سیال سازی کاتالیست و خارج کردن حرارت از سیستم به کار گرفته شده است . ادعا شده است که درصد تبدیل بدون “recycle” این فرآیند ازدرصد تبدیل فرآیند دو فازی معمولی بالاتر است .
[۶]امروزه سه نوع فرآیند به طور عمده در جهان جهت کید متانول مورد استفاده قرار می گیرند که عبارتند از :ICI ، Lurgi ، Mitsubishi
رآکتور طراحی ICI از تعدادی بسترهای کاتالیست ثابت آدیاباتیک تشکیل شده واز گاز سرد خوراک جهت خنک کردن واکنشگرهای بین بسترها استفاده می شود .این باعث ایجاد جهشهایی در پروفیل دمای رآکتور می شود که در شکل دیده می شود .رآکتورهای طراحی شرکت های Lurgi و Mitsubishi پروفیل دمای افقی تری دارند که تقریبا رآکتور را Isothermal می توان فرض کرد که این در اثر تولید مقدار قابل توجهی بخار فشار بالا خواهد بود .غیرفعال شدن کاتالیست در رآکتورهای همدما کندتر خواهد بود.
۱-۵-ماده خام
خوراک معمول جهت تولید گاز سنتز مورد نیاز برای تولید متانول گاز طبیعی و باقیمانده های نفتی است . از دیگر خوراک های مناسب می توان به نفتا و ذغال سنگ اشاره کرد .
گاز طبیعی ، باقیمانده های نفتی و نفتا در مجموع ۹۰% ظرفیت جهانی تولید متانول را تأمین می کنند باقیمانده مربوط به گازهای زائد از فرآیندهای متفرقه است ( off-gas ) .
1-5-1-گاز طبیعی
درفرآیند مدرن تولید متانول ازگاز طبیعی ، گازطبیعی که قسمت اصلی آن را متان تشکیل می دهد سولفورزدایی می شود (حداکثر مقدار سولفور کمتر از ۰٫۲۵ ppm ) و با بخار مخلوط می شود و تا دمای پیشگرم می شود . مخلوط به reformer فرستاده می شود و در آنجا در لوله های حاوی کاتالیست غنی شده از نیکل که از بیرون با شعله Burner ها در تماسند، جریان می یابد .
که شرایط تعادل باید در دمای و فشار ۰٫۷-۱٫۷ Mpa در نظر گرفته شود.واکنش کلی بسیار گرماگیر است و به مقادیر زیادی سوخت جهت مشعل ها نیاز است .
گرمایی که ازreformer توسط گاز سوخت شده و گاز سنتز تولید شده خارج می شود ، جهت تولید بخار با فشار ۴-۱۰ Mpa (بخار HHPS) استفاده می شود که به نوبه خود در تأمین نیروی محرکه (توربینها) و بار حرارتی برجها ، کاربرد دارد . که در کاهش مصرف انرژی کلی فرآیند نقش قابل توجهی دارد .
گاز سنتزی که در Steam reformer از گاز طبیعی به دست می آید نسبت به استوکیومتری واکنش تولید متانول ، مقدار بیشتری هیدروژن دارد . استوکیومتری واکنش سنتزمتانول خوراکی با نسبت در حدود ۱٫۰۵ دارد در حالی که در مخلوط تولیدی از Steam reformer ، این نسبت (اگر به مخلوط اضافه شود ) در حدود ۱٫۴ است. در کاتالیست فرآیند فشار پائین ، این مقدار اضافی هیدروژن ، موجود بهبود عملکرد کاتالیست می شود .
به این جهت هزینه های converter پائین می آید در حالی که در فرآیندهای فشار بالا باید هیدروژن از مخلوط جدا شود که خود مستلزم هزینه و عملیات خاص است . هیدروژن اضافی پس از مرحله سنتز به عنوان سوخت در reformer مورد استفاده قرار می گیرد . بنابراین راندمان کلی انرژی در سطح بالایی نگه داشته می شود که موجب اقتصادی بودن فرآیند خواهد شد .
در طراحی واحد تولید متانول از گاز طبیعی در فشار پائین می توان اضافه کردن را به مخلوط حاصل از reforming ، را در نظر گرفت . که مزیت آن در استفاده از هیدروژن اضافی جهت کاهش مصرف گاز طبیعی به ازاء تولید هر تن متانول متانول است . با توجه به اینکه ماده گرانقیمتی نیست .
اضافه کردن مقدار کافی از باعث بهبود سنتز از نظر استوکیومتری می شود مانند آنچه در مورد خوراک نفتا وجود دارد .بازیافت از گاز سوخته شده در reformer اقتصادی گزارش نشده است .
فرمت:word(قابل ویرایش)
تعداد صفحات:56
مقدمه ۱
فصل یکم - شبکه های بیسیم AD HOC ۳
۱-۱- معرفی شبکه های بیسیم AD HOC ۳
۱-۲- انواع شبکه های AD HOC ۶
۱-۲-۱- شبکه های حسگر هوشمند ۶
۱-۲-۲- شبکه های موبایل ۷
۱-۳- کاربردهای شبکه های AD HOC ۷
۱-۳-۱- شبکه های شخصی ۷
۱-۳-۲- محیط های نظامی ۸
۱-۳-۳- محیط های غیر نظامی ۸
۱-۳-۴- عملکردهای فوری ۹
۱-۳-۵- محیط های علمی ۱۰
۱-۴- خصوصیات شبکه های AD HOC ۱۰
۱-۵- امنیت در شبکه های AD HOC ۱۲
۱-۶- منشا ضعف امنیتی در شبکه های بیسیم و خطرات معمول ۱۲
۱-۷- سه روش امنیتی در شبکه های بیسیم ۱۴
۱-۷-۱- WEP ۱۴
۱-۷-۲- SSID ۱۴
۱-۷-۳- MAC ۱۵
فصل دوم- مسیر یابی در شبکه های AD HOD ۱۷
۲-۱- مسیر یابی ۱۷
۲-۲- پروتکل های مسیر یابی ۱۷
۲-۲-۱- Table Driven Protocols ۱۸
۲-۲-۱-۱- پروتکل ها ۱۸
۲-۲-۱-۱-۱- DSDV ۱۸
۲-۲-۱-۱-۲- WRP ۱۹
۲-۲-۱-۱-۳- CSGR ۱۹
۲-۲-۱-۱-۴- STAR ۲۰
۲-۲-۲- On Demand Protocols ۲۱
۲-۲-۲-۱- پروتکل ها ۲۱
۲-۲-۲-۱-۱- SSR ۲۱
۲-۲-۲-۱-۲- DSR ۲۲
۲-۲-۲-۱-۳- TORA ۲۲
۲-۲-۲-۱-۴- AODV ۲۲
۲-۲-۲-۱-۵- RDMAR ۲۲
۲-۲-۳-Hybrid Protocols ۲۴
۲-۳- شبکه حسگر ۲۴
۲-۳-۱- محدودیت های سخت افزاری یک گره حسگر ۲۴
۲-۳-۲- روش های مسیر یابی در شبکه های حسگر ۲۶
۲-۳-۲-۱- روش سیل آسا ۲۶
۲-۳-۲-۲- روش شایعه پراکنی ۲۷
۲-۳-۲-۳- روش اسپین ۲۸
۲-۳-۲-۴- روش انتششار هدایت شده ۲۹
فصل سوم- شبیه سازی با NS ۳۲
۳-۱- اهمیت شبیه سازی ۳۲
۳-۲- NS گزینه ای مناسب برای کاربران ۳۳
۳-۳- برتری NS نسبت به شبیه ساز های دیگر ۳۵
۳-۴- بررسی یک مثال در NS ۳۸
مراجع ۵۰
هدف از ارایه این مقاله بررسی شبکه های AD HOC و پروتکل های مسیر یابی در آن، به همراه معرفی نرم افزار NS و استفاده از آن در شبیه سازی شبکه های کامپیوتری و استنتاج و بررسی نتایج می باشد.
شبکههای بیسیم AD HOC شامل مجموعهای از گرههای توزیع شدهاند که با همدیگر به طور بی سیم ارتباط دارند. نودها میتوانند کامپیوتر میزبان یا مسیریاب باشند. مهمترین ویژگی این شبکهها وجود یک توپولوژی پویا و متغیر میباشد که نتیجه تحرک نودها میباشد.
با توجه به اینکه پیکربندی واقعی شبکهها برای آزمایش سناریوهای مختلف مشکل بوده و با مشکلاتی همچون خرید، نصب و تنظیم دستگاهها وتجهیزات شبکه همراه است و با بزرگ شدن شبکهها نیز به این مشکلات افزوده میگردد، استفاده از شبیه سازهای شبکه به عنوان یک نیازبه کار میآید. علاوه بر این، تأمین شرایط شبکه مورد نیاز همانند بار ترافیکی شبکه و یا تشخیص الگوهای مورد نظر و کنترل آنها در شبکههای واقعی دشوار است.
NS به عنوان یک شبیهساز شبکه رویدادگرا و شیء گرا، پرکاربردترین و معروفترین شبیهساز شبکه به خصوص در پروژههای دانشگاهی و تحقیقاتی است. شبیهساز NS میتواند انواع مختلف شبکه مانند شبکه LAN، WAN، Ad-Hoc، Satellite و WiMAX را شبیهسازی کند.
با توجه به پیچیدگی شبکه، شبیه سازی نقش بسیار مهمی هم در تعیین خصوصیات رفتار فعلی شبکه و هم در تعیین اثرات احتمالی ناشی از تغییرات پیشنهاد شده روی عملکرد شبکه دارد.
جانشینی برای شبکههای واقعی با توجه به اینکه پیکربندی واقعی شبکهها برای آزمایش سناریوهای مختلف مشکل بوده و با مشکلاتی همچون خرید، نصب و تنظیم دستگاهها وتجهیزات شبکه همراه است و با بزرگ شدن شبکهها نیز به این مشکلات افزوده میگردد، استفاده از شبیهسازهای شبکه به عنوان یک نیازبه کار میآید. علاوه بر این، تأمین شرایط شبکه مورد نیاز همانند بار ترافیکی شبکه و یا تشخیص الگوهای مورد نظر و کنترل آنها در شبکههای واقعی دشوار است.
همانطور که میبینیم با گذشت زمان، پروتکلهای جدید زیادی همانند نسخههای گوناگون TCP اختراع میشوند. این پروتکلها نه تنها باید تحلیل شوند، بلکه نقاط ضعف و قوت آنها نیز باید به دست آید و با پروتکلهای موجود مقایسه گردند.
در مسیریابی در شبکههای AD HOC نوع حسگر سخت افزار محدودیتهایی را بر شبکه اعمال میکند که باید در انتخاب روش مسیریابی مد نظر قرار بگیرند ازجمله اینکه منبع تغذیه در گرهها محدود میباشد و در عمل، امکان تعویض یا شارژ مجدد آن مقدور نیست.در این جا اهمیت شبیه سازی در این شبکه
ها به صورت محسوسی به چشم می خورد.
شبیهسازNS یک شبیهساز شی گرا میباشد که با استفاده از زبانهای c++ و otcl نوشته شده است. نرمافزار NS برای شبیهسازی شبکههای کامپیوتری و شبکــههای گسترده بکـار برده میشود . هدف در این پایان نامه استفاده از این نرم افزار برای شبیه سازی و تحلیل مسیر یابی در شبکه های AD HOC است.
فرمت فایل: WORD (قابل ویرایش)
تعداد صفحات:101
پایان نامه کارشناسی
رشته مهندسی برق گرایش مخابرات
چکیده
دسترسی چندگانه تقسیم کد از تکنولوژی طیف گسترده به وجود می آید . سیستم های طیف گسترده در حین عمل کردن حداقل تداخل خارجی ، چگالی طیفی کم و فراهم کرده توانایی دسترسی چندگانه از تداخل عمدی سیگنالها جلوگیری می کند که عملیات سیستمی با تداخل دسترسی چندگانه و نویز آنالیز می شود . احتمال خطای بیت در مقابل تعداد متنوعی از کاربران و سیگنال به نویز متفاوت محاسبه می شود . در سیستم دسترسی چندگانه تقسیم کد برای گسترده کردن به دنباله تصادفی با معیارهای کیفیت اصلی برای تصادفی کردن نیاز داریم . سیگنال گسترده شده بوسیله ضرب کد با شکل موج چیپ تولید می¬شود و کد گسترده بوجود می¬آید .
بوسیله نسبت دادن دنباله کد متفاوت به هر کاربر ، اجازه می¬دهیم که همه کاربران برای تقسیم کانال فرکانس یکسان به طور همزمان عمل کنند . اگرچه یک تقریب عمود اعمال شده بر دنباله کد برای عملکرد قابل قبولی به کار می¬رود . بنابراین ، سیگنال کاربران دیگر به عنوان نویز تصادفی بعضی سیگنال کاربران دیگر ظاهر می¬شود که این تداخل دستیابی چندگانه نامیده می¬شود . تداخل دستیابی چندگانه تنزل در سرعت خطای بیت و عملکرد سیستم را باعث می¬شود .
تداخل دستیابی چندگانه فاکتوری است که ظرفیت و عملکرد سیستم های دسترسی چندگانه تقسیم کد را محدود می¬کند . تداخل دستیابی چندگانه به تداخل بین کاربران دنباله مستقیم مربوط می¬شود . تداخل نتیجه آفستهای زمان تصادفی بین سیگنالهاست که همزمان با افزایش تعداد تداخل طراحی شده . بنابراین ، آنالیز عملکرد سیستم دسترسی چندگانه تقسیم کد باید برحسب مقدار تداخل دستیابی چندگانه اثراتش در پارامترهایی که عملکرد را اندازه گیری می¬کند وارد می¬شود .
در بیشر جاها روش عادی تقریب گوسی و واریانس مورد استفاده قرار می¬گیرد . ما عملکرد سرعت خطای بیت سیستم دسترسی چندگانه تقسی کد را مورد بررسی قرار می¬دهیم . تقریب گوسی استاندارد استفاده شده برای ارزیابی عملکرد احتمال خطای بیت در سیستم دسترسی چندگانه تقسیم کد است . این تقریب به دلیل ساده بودن در بسیاری جاها مورد استفاده است .
———————————————
1Autocorrelation Function
2 Crosscorrelation Function
3 Code Division Multiple Access
4 Frequncy Hopping
1- 2 تعا ریف
1-2-1 تابع همبستگی متقابل برای سیگنالهای پریودیک [3]
اگر سیگنالهای پیوسته در زمان و پریودیک با پریود زمانی باشند تابع همبستگی متقابل پریودیک آنها را به صورت زیر تعریف می کنیم : (1-1)
برای سیگنال های گسسته در زمان و پریودیک با پریود نیز تعریف معادل زیر را به کار می بریم :
(1-2)
اگر بر طبق که موج گسترش دهنده است تعریف شود تابع همبستگی متقابل به صورت زیر است :
(1-3)
که فرض شده هر دو شکل موج دوره تناوب دارند و تابع همبستگی متقابل آن نیز متناوب با دوره تناوب است .
با جایگذاری در رابطه بالا بدست می آید :
(1-4)
اگر باشد دو پالس هم پوشانی دارند و اگر باشد دو پالس تلاقی ندارند و حاصل انتگرال صفر خواهد بود و اگر باشد دو پالس مجدداً هم پوشانی دارند و اگر باشد دو پالس تلاقی ندارند و در نتیجه حاصل انتگرال صفر خواهد بود .
1-2-2 تابع خود همبستگی برای سیگنالهای پریودیک [3]
متناظر با تعریفهای فوق برای تابع خود همستگی پریودیک نیز تعریفهای زیر را خواهیم داشت .
حالت پیوسته :
(1-5)
و برای حالت گسسته با پریود :
(1-6)
فهرست مراجع
فهرست مطالب
فصل اول : پیش نیازهای ریاضی و تعاریف 1
1-1 مقدمه 2
1-2 تعا ریف 3
1-2-1 تابع همبستگی متقابل برای سیگنالهای پریودیک 3
1-2-2 تابع خود همبستگی برای سیگنالهای پریودیک 4
1-2-3 خواص توابع همبستگی پریودیک گسسته 5
1-3 نامساوی ولچ 6
1-4 نامساوی سید لینکوف 6
1-5 تابع همبستگی غیر پریودیک گسسته 7
فصل دوم : معرفی کدهای ماکزیمال و گلد و کازامی 8
2-1 مقدمه 9
2-2 تعریف 10
2-3 دنباله¬های کلاسیک 10
2-3-1 دنباله¬هایی با طول ماکزیمال 10
2-3-2 خواص دنباله¬های ماکزیمال 11
2-4 انواع تکنیکهای باند وسیع 13
2-4-1 روش دنباله مستقیم (DS) 13
2-5 کدPN 14
2-5-1 دنباله PN و پس خور ثبات انتقالی 15
2-5-2 مجموعه دنباله¬های ماکزیمال دارای همبستگی ناچیز 16
2-5-3 بزرگترین مجموعه به هم پیوسته از دنباله¬های ماکزیمال 17
2-6 دنباله گلد 19
2-7 مجموعه کوچک رشته¬های کازامی 20
2-8 مجموعه بزرگ رشته¬های کازامی 21
فصل سوم : نحوه¬ی تولید کدهای ماکزیمال و گلد و کازامی 22
3-1 تولید کد ماکزیمال 23
3-2 تولید کد گلد 28
3-3 تولید کد کازامی 32
فصل چهارم : مروری بر سیستمهای دستیابی چندگانه تقسیم کد 36
4-1 مقدمه 37
4-2 سیستمهای دستیابی چندگانه تقسیم کد 38
4-3 مزایای سیستمهای دستیابی چندگانه تقسیم کد 40
4-4 نگاهی به مخابرات سیار 41
4-5 طریقه¬ی مدولاسیون 46
4-6 پدیده دور- نزدیک 46
4-7 استفاده از شکل موجهای مناسب CDMA 49
4-8 بررسی مساله¬ی تداخل بین کاربران 49
فصل پنجم : مراحل و نتایج شبیه سازی 50
5-1 مقدمه 51
5-2 بررسی کد ماکزیمال در شبیه سازی 52
5-3 بررسی کد گلد در شبیه سازی 57
5-4 بررسی کد کازامی در شبیه سازی 62
5-5 عملکرد خطای بیت 66
شکلها
شکل (1-1) شکل موج گسترش یافته 5
شکل (1-2) مدار شیفت رجیستر 11
شکل (2-2) بلوک دیاگرام یک سیستم DSSS 14
شکل (2-3) بلوک دیاگرام یک فیدبک شیفت رجیستر 16
شکل (3-1) چگونگی ترکیب کد ماکزیمال با داده ها 23
شکل (3-2) تولید کد ماکزیمال با استفاده از شیفت رجیستر 24
شکل (3-3) تابع همبستگی کد ماکزیمال 25
شکل (3-4) تابع همبستگی متقابل با طول دنباله31 و تعداد 100 کاربر 26
شکل (3-5) تابع همبستگی متقابل با طول دنباله63 و تعداد 100 کاربر 27
شکل (3-6) نحوه¬ی تولید کد گلد 28
شکل (3-7) تابع خود همبستگی و همبستگی متقابل با طول دنباله 31 و تعداد 50 کاربر 29
شکل (3-8) تابع خود همبستگی و همبستگی متقابل با طول دنباله 31 و تعداد 100 کاربر 30
شکل (3-9) تابع خود همبستگی و همبستگی متقابل با طول دنباله 63 و تعداد 50 کاربر 31
شکل (3-10) نحوه¬ی تولید کد کازامی 32
شکل (3-11) تابع خود همبستگی و همبستگی متقابل با طول دنباله 31 و k=2 , m=-1 33
شکل (3-12) تابع خود همبستگی و همبستگی متقابل با طول دنباله 31 و k=-1 , m=10 34
شکل (3-13) تابع خود همبستگی و همبستگی متقابل با طول دنباله 31 و k=-4 , m=4 35
شکل (4-1) مدل سیستم دستیابی چندگانه تقسیم کد 38
شکل (4-2) تقسیم بندی سیستم دستیابی چندگانه تقسیم کد 39
شکل (4-3) هدف سیستم دستیابی چندگانه تقسیم کد 41
شکل (4-4) نمونه¬ای از مخابرات سلولی 42
شکل ( 4-5) مدلهای مختلف سیستمهای چندگانه 45
شکل (4-6) اثر پدیده دور- نزدیک 47
شکل (5-1) فرستنده CDMA 51
شکل (5-2) گیرنده CDMA 52
شکل (5-3) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 40 کاربر 53
شکل (5-4) سیگنال CDMA همراه fft سیگنال برای 40 کاربر 53
شکل (5-5) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 40 کاربر 53
شکل (5-6) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 40 کاربر 53
شکل (5-7) نمودار BER برای 40 کاربر کد ماکزیمال 54
شکل (5-8) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 80 کاربر 55
شکل (5-9) سیگنال CDMA همراه fft سیگنال برای 80 کاربر 55
شکل (5-10) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 80 کاربر 55
شکل (5-11) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 80 کاربر 55
شکل (5-12) نمودار BER برای 80 کاربر کد ماکزیمال 56
شکل (5-13) روش بدست آوردن کد گلد 57
شکل (5-14) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 40 کاربر 58
شکل (5-15) سیگنال CDMA همراه fft سیگنال برای 40 کاربر 58
شکل (5-16) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 40 کاربر 58
شکل (5-17) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 40 کاربر 58
شکل (5-18) نمودار BER برای 40 کاربر کد گلد 59
شکل (5-19) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 80 کاربر 60
شکل (5-20) سیگنال CDMA همراه fft سیگنال برای 80 کاربر 60
شکل (5-21) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 80 کاربر 60
شکل (5-22) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 80 کاربر 60
شکل (5-23) نمودار BER برای 80 کاربر کد گلد 61
شکل (5-24) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 40 کاربر 62
شکل (5-25) سیگنال CDMA همراه fft سیگنال برای 40 کاربر 62
شکل (5-26) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 40 کاربر 62
شکل (5-27) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 40 کاربر 62
شکل (5-28) نمودار BER برای 40 کاربر کد کازامی 63
شکل (5-29) سیگنال مدولاسیون BPSK همراه fft سیگنال برای 80 کاربر 64
شکل (5-30) سیگنال CDMA همراه fft سیگنال برای 80 کاربر 64
شکل (5-31) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای 80 کاربر 64
شکل (5-32) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای 80 کاربر 64
شکل (5-33) نمودار BER برای 80 کاربر کد کازامی 65
شکل (5-34) مقایسه سه کاربر برای کد ماکزیمال 68
شکل (5-35) مقایسه سه کاربر برای کد گلد 69
شکل (5-36) مقایسه سه کاربر برای کد کازامی 70
شکل (5-37) مقایسه سه کد برای 40 کاربر 71
شکل (5-38) مقایسه سه کد برای 80 کاربر 72
جدول (2-1) مقدیری از دنباله¬های ماکزیمال 18
[1] R.L Peterson , R.E Zimer and D.E Borth , introduction to spread spectrum communications , prentice hall 1995.
[2] S.Glisic and B.Vucetio , spread spectrum CDMA systems for wirless communication , Altech , Nor Wood , MA , 1997.
[3] الکس ، وبلیوم و ساواسه تانتارانتا . مترجم : دکتر محمد ابطحی . تئوری و کاربرد سیستم¬های طیف گسترده . موسسه فرمبنایی نص .
[4] E.J,Groth , "Generation of binary sequence with controllable complexity" , IEEE Trans , inf . Teory , Vol . IT-17 . no.3 , p.p.288-269, May 1971.
[5] S.W.Golomb , shift register sequence , revised ED , Langune Hills , CA : Aegean park press , 1982.
[6] C.P.Pfleeger , Security in coputing , Englewood cliffs , Nj : prentice Hall , 1989.
[7] Mohamad A.Landolsi and Wayne E.stark , "DS-CDMA chip waveform design for minimal interference under bandwidth , phase and envelop constraint "IEEE Transations on communications , Vol.47 , no.11 , November 1999.
[8] Shu-Ming Tseng and Mark R.Bell , "Asyncchronous Multicarrier DS-CDMA Using Mutually Orthognonal Complementary Sets of Sequnces" IEEE Transaction on Communication , Vlol.48 , No.1 , janury 2000 .
[9] G.Giunta , "Basic.note on Spread Spectrum CDMA Signals" , Rome , May 2000 .
[10] Fatih Alagoz , "Optimum Multiuser Detection in CDMA system" power point.
[11] S.Das , S.Ganu , N.Rivera , R.Roy , "Performance Analysis of Downlink Power Control Algorithm for CDMA system" power point .
[12] Robert AKL , D.Sc . "Departmenet of Computer Scince and Engineering" power point .
[13] Saraswathi Pulakurty , "Exploration of multi-user Detection Techniques for MC-CDMA" , 12th April 2004 .
[14] Soshant Bal , "on the of Cancellation order is Successive Interference Cancellation for CDMA systems" power point .
[15] www.umtsword.com/CDMA overview.
[16] www.tsp.ece.mcgill-ca/telecom/Dos/CDMA technology.
[17] www.peaple.seas.harvard.eda/~ jones/Code Division Multiple Access-CDMA .
[18] Nazmul Islam , "Simulation of Asynchronous CDMA" , SID#230-85-1670 , E.CE Dept , Vivginia Tech .