فرمت فایل : word(قابل ویرایش)
تعداد صفحات:14
فهرست مطالب:
4ج خواص رسوبها و واکنشگرهای رسوب دهنده
4 ج -1 اندازه ذره و قابلیت صاف شدن رسوبات
عوامل تعیین کننده ذره رسوبها
مکانیسم تشکیل رسوب
کنترل تجربی اندازه ذره
4ج -2 رسوبهای کلوییدی
انعقاد کلوییدها
والختی کلوییدها
طرز کار با رسوبهای کلوییدی
4ج – 3 رسوبهای بلوری
روشهای بهبود اندازه ذرات و قابلیت صاف شدن
4ج – 4 همرسوبی
جذب سطحی
روشهای به حداقل رساندن ناخالصی های جذب سطحی شده روی کلوییدها
رسوبگیری مجدد
تشکیل بلور مخلوط
حبس شدن و به دام افتادن مکانیکی
خطاهای همرسوبی
4ج – 5 رسوبگیری از محلول همگن
4ج خواص رسوبها و واکنشگرهای رسوب دهنده
4c Properties of precipitates and precipitating Reagents
یک عامل رسوب دهنده وزنی ایده آل ( رسوب دهنده ) باید به طور اختصاصی یا لااقل به طور انتخابی با آنالیت به طور کامل واکنش دهد . واکنشگرهای اختصاصی که نادر هستند ، تنها با یک گونه شیمیایی منفرد واکنش می دهند . واکنشهای انتخابی که متداولترند ، با تعداد محدودی از گونه ها واکنش می دهند . به علاوه ، برای انتخاب یا اختصاصی بودن واکنشگرها ، این رسوب دهنده ایده آل باید با آنالیت طوری واکنش دهد که :
1- به سهولت صاف شده و با شستشو از آلوده کننده ها عاری شود .
2- خلالیت باندازه کافی کم باشد به طوری که در طی صاف کردن و شستن ، کاهش قابل توجهی در آنالیت حاصل نشود .
3- با هوا واکنش ندهد .
4- بعد از خشک کردن یا احیاناً اشتعال ، ترکیب شناخته شده ای داشته باشد .
تعداد بسیار کمی از واکنشگرها ، رسوبهایی تولید می کنند که تمام این خواص را دارا هستند .
متغیرهایی که حلالیت را تحت تأثیر قرار می دهند در فصلهای 6 ، 7 و 8 شرح داده شده اند . در این بخش روشهایی برای به دست آوردن جامدات خالصی که به سهولت صاف شده و دارای ترکیب معلوم هستند ، مورد بحث قرار می گیرد .
4 ج -1 اندازه ذره و قابلیت صاف شدن رسوبات
-1 Particle Size and Filterability of Precipitates 4c
رسوبها که عموماً دارای ذرات بزرگی هستند ، برای کار وزنی مناسبترند ، زیرا ذرات بزرگ به راحتی صاف شده و با شستشو از ناخالصی ها عاری می شوند ، در مجموع ، چنین رسوبهایی معمولاً از رسوبهای ریز خالص ترند .
عوامل تعیین کننده ذره رسوبها
Factor that Determine the Particle Size of Precipitates
اندازه ذرات جامداتی که توسط عمل رسوب دادن تشکیل می شوند ، بسیار متفاوت است . از یک سو ، تعلیقهای کلوییدی دارای ذرات ریزی هستند که با چشم غیر مسلح قابل مشاهده نیستند ( به قطرcm 10 تا cm10 ) . ذرات کلوییدی نه تمایلی به ته نشین شدن از محلول دارند و نه به آسانی صاف می شوند . از سوی دیگر ، ذراتی با ابعادی به اندازه یکدهم میلی متر یا بیشتر وجود دارند . پراکندگی موقتی چنین ذراتی در فاز مایع ، تعلیق بلوری نامیده می شود . ذرات تعلیق بلوری تمایل دارند که به طور خود بخودی ته نشین شوند و به آسانی صاف می گردند .
سالهاست که دانشمندان تشکیل رسوب را مطالعه می کنند ، اما مکانیسم این فرایند تاکنون به طور کامل درک نشده است . واضح است که اندازه ذرات تحت تأثیر متغیرهای تجربی مانند حلالیت رسوب ، دما ، غلظت واکنش دهنده و سرعتی که واکنش دهنده ها مخلوط می شوند ، قرار می گیرد . به فرض اینکه اندازه ذرات تنها به یک خاصیت سیستم که فوق اشباع نسبی نامیده می شود ، حداقل می توان به طور کیفی اثر این متغیرها را شرح داد .
(4-3 ) = فوق اشباع نسبی
در این معادله Q غلظت ماده حل شده در لحظه و S حلالیت تعادلی آن است .
واکنشهای رسوبی عموماً آهسته هستند . بنابراین ، حتی هنگامی که یک واکنشگر رسوب دهنده قطره قطره به محلول آنالیت اضافه می شود ، احتمال تشکیل بعضی از فوق اشباعها وجود دارد . شواهد تجربی نشان می دهد که در طی زمان ورود واکنشگر به محلول ، اندازه ذرات یک رسوب با متوسط فوق اشباع نسبی به طور معکوس تغییر می کند . بنابراین ، هنگامی که بزرگ است رسوب تمایل دارد که کلوییدی باشد و وقتی که کوچک می باشد ، احتمال تشکیل جامد بلورین بیشتر است .
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:22
فهرست مطالب:
درباره نانو تکنولوژی 1
انواع رویکردهای نانو تکنولوژی 8
فناوری نانو در آینده نه چندان دور 8
نانو تکنولوژی در ایران 9
کاربردهای نقاط کوانتومی 10
میکروسکوپ پیمایشگر الکترونی SEM 12
جداسازی مولکول ها از یکدیگر 14
رزین های متداول تبادل یونی 17
انتقال گرما به وسیله نانو سیالات 18
جداسازی ایزوتوپ ها و فناوری نانو 20
غربالی مولکولی 20
غربالی کوانتومی 21
اصل عدم قطعیت هایزنبرگ 21
منابع 22
درباره نانو تکنولوژی :
در دو دهه اخیر، پیشرفتهای تکنولوژی وسایل و مواد با ابعاد بسیار کوچک به دست آمده است و به سوی تحولی فوق العاده که تمدن بشر را تا پایان قرن دگرگون خواهد کرد ، پیش می رود . برای احساس اندازه های مادون ریز ، قطر موی سر انسان را که یک دهم میلیمتر است در نظر بگیرید ، یک نانومتر صدهزار برابر کوچکتراست 9- 10متر . تکنولوژی و مهندسی در قرن پیش رو با وسایل ، اندازه گیریها و تولیداتی سروکار خواهد داشت که چنین ابعاد مادون ریزی دارند . درحال حاضر پروسه های در ابعاد چند مولکول قابل طراحی و کنترل است . همچنین خواص مکانیکی ، شیمیایی ، الکتریکی ، مغناطیسی ، نوری و... مواد در لایه ها در حدود ابعاد نانومتر قابل درک و تحلیل و سنجش است . تکنولوژی درقرن گذشته در هرچه ریزتر کردن دانه های بزرگتر پیشرفت چشمگیری داشت ، بطوریکه به مزاح گفته شد که دیگر کشف ذرات ریز اتمی ((Sub-Atomic)) نه تنها جایزه نوبل ندارد ، بلکه به آن جریمه هم تعلق می گیرد ! تکنولوژی نو درقرن حاضر مسیر عکس را طی می کند . یعنی مواد مادون ریز را باید ترکیب کرد تا دانه های بزرگتر کارآمد به وجود آ ورد . درست همان روشی که در طبیعت برای تولید کردن حاکم است . مجموعه های طبیعی ، ترکیبی از دانه های مادون ریز قابل تشخیص با خواص مشابه و یا متفاوت با اندازه های در حدود نانو است .
اثر تحقیقات در فناوریهای مادون ریز هم اکنون در درمان بیماریها و یا دست یافتن به مواد جدید به ظهور رسیده است . موارد بسیاری در مرحله تحقیقات کاربردی و آزمایشی است .اکنون ساخت رایانه های بسیار کوچکتر و میلیونها بار سریعتر در دستور کار شرکتهای تحقیقاتی قرار دارد .
در بیانی کوتاه نانوتکنولوژی یک فرایند تولید مولکولی است . همانطور که طبیعت مجموعه ها را بطور خودکار مولکول به مولکول ساخته و روی هم مونتاژ کرده است ، ما هم باید برای تولید محصولات جدید ، با این اعتقاد که هرچه در طبیعت تولید شده قابل تولید در آزمایشگاه نیز هست ، نظیر طبیعت راهی پیدا کنیم . البته منظور این نیست که چند هسته از مواد راپیدا کنیم و با رساندن انرژی و خوراک پس از چند سال یک نیروگاه از آن بسازیم که شهری را برق دهد . بلکه برای ترکیب و تکامل خودکار تولیدات مادون ریزکه به نحوی در مجموعه های بزرگتر مصرف دارد ، راهی بیابیم . در اندازه های مادون ریز ، روشها و ابزارآلات متعارف فیزیکی مانند تراشیدن و خم کردن و سوراخ کردن و...جوابگو تیستند . برای ساختن ماشینهای ملکولی باید روش پروسه های طبیعی را دنبال کرد . با تهیه نقشه های ساختاری بدن یعنی آرایش ژنها و DNA که ژنم نامیده شده است و به موازات آن دست یافتن به تکنولوژی مادون ریز ، در دراز مدت تحولات بسیاری در هستی ایجاد خواهد شد . تولید مواد جدید ، گیاهان ، جانداران و حتی انسان متحول خواهد شد . اشکالات ساختاری موجودات در طبیعت رفع می شود و با ترکیب و خواص اورگانیک گیاهان و جانوران ، موجودات جدیدی با خواص فوق العاده و شخصیتهای متفاوت بوجود خواهد آمد .آینده علوم و مهندسی که چندین گرایشی Multi- Disciplinary )) است ، به طرف تولید ماشینهای مولکولی سوق داده خواهد شد تا در نهایت بتواند مجموعه های کارآیی از پیوندهای ارگانیک و سایبریک را عرضه نماید .
هستی را به رایانه ( سخت افزار ) و برنامه ( نرم افزار ) که دو پدیده مختلف ولی ادغام شده هستند ، می توان تشبیه کرد . سخت افزار مصداق ماده ( اغلب اتم هیدروژن ) و نرم افزار یا برنامه ، قابلیت نهفته در خلقت آن است . اتم به نظر ساده و ابتدایی هیدروژن در طی میلیاردها سال با قابلیت نهفته در خود توانسته است میلیونها نوع آرایش مختلف را در هستی بوجود آورد . بشر از بوجود آوردن اساس ماده عاجز است . ولی در برنامه ریزیهای جدید و یافتن اشکال دیگری از آنچه در طبیعت وجود دارد ، پیش خواهد رفت . طبیعت را خواهد شناخت و به اصطلاح ، قفلهای شگفت آور آن را باز خواهد کرد . احتمالا انسان در شرایط مناسبتری از درجه حرارت و فشار که درتشکیل طبیعی مواد مختلف از هیدروژن لازم است ، بتواند اتمهای مورد نباز خود را تولید کند ، سیارات دیگری را در نهایت در اختیار بگیرد و بعید نیست که نواده های دوردست ما بتوانند در نیمه های راه ابدیت در اکثر نقاط جهان هستی و کهکشانها سکنی گزینند. به احتمال زیاد قبل از پایان هزاره سوم انسانها در بدن خود انواع لوازم مصنوعی و دیجیتالی راخواهند داشت. از بیماری ، پیری ، درد ستون فقرات ، کم حافظه ای و... رنج نخواهند برد .قابلیت فهم و تحلیل اطلاعات در مغز آنها در مقایسه با امروز بی نهایت خواهد شد . در هزاره های آینده انسانهای طبیعی مانند امروز احتمالا برای مطالعات پژوهشی نگهداری شده و به نمونه های آزمایشگاهی و بطور حتم قابل احترام تبدیل خواهند شد و مردمان آینده از اینهمه درد و ناراحتی که اجداد آنها در هزاره های قبل کشیده اند ، متعجب و متاثر خواهند بود . اکنون جا دارد همگام با تحولات جدید در مهندسی و علوم ، دانشگاهها و مراکز تحقیقاتی بطور جدی به پژوهشهای تکنولوژی مادون ریز مشغول شوند تا حداقل ما هم بتوانیم مرزهای دانش روز را به نسلهای آینده تحویل دهیم و در تشکلهای جدید هستی سهمی داشته باشیم . باشد هرچه زودتر به خود آییم و عمق شکوهمند و
معجزه آسای اندیشه بشررا دریابیم و از کوتاه بینی و افکار فرسوده موروثی فاصله بگیریم . گفته شیخ اجل سعدی در آینده مصداق واقعی تری خواهد داشت : چه انتظاری باید از نانوتکنولوژی داشت :
این تکنولوژی جدید توانایی آن را دارد که تاثیری اساسی بر کشورهای صنعتی در دهه های آینده بگذارد . در اینجا به برخی از نمونه های عملی در زمینه نانوتکنولوژی که بر اساس تحقیقات و مشاهدات بخش خصوصی به دست آمده است ، اشاره می شود .
انتظار می رود که مقیاس نانومتر به یک مقیاس با کارایی بالا و ویژگیهای منحصربفرد ، طوری ساخته خواهند شد که روش شیمی سنتی پاسخگوی این امر نمی تواند باشد .
نانوتکنولوژی می تواند باعث گسترش فروش سالانه 300 میلیارد دلار برای صنعت نیمه هادیها و 900 میلیون دلار برای مدارهای مجتمع ، طی 10 تا 15 سال آینده شود . نانوتکنولوژی ، مراقبتهای بهداشتی ، طول عمر ، کیفیت و تواناییهای جسمی بشر را افزایش خواهد داد .
تقریبا نیمی از محصولات دارویی در 10 تا 15 سال آینده متکی به نانوتکنولوژی خواهد بود که این امر ، خود 180 میلیارد دلار نقدینگی را به گردش درخواهد آورد . کاتالیستهای نانوساختاری در صنایع پتروشیمی دارای کاربردهای فراوانی هستند که پیش بینی شده است این دانش ، سالانه 100 میلیارد دلار را طی 10 تا 15 سال آینده تحت تاثیر قرار دهد .
نانوتکنولوژی موجب توسعه محصولات کشاورزی برای یک جمعیت عظیم خواهد شد و راههای اقتصادیتری را برای تصویه و نمک زدایی آب و بهینه سازی راههای استفاده از منابع انرژیهای تجدید پذیر همچون انرژی خورشیدی ارائه نماید . بطور مثال استفاده از یک نوع انباره جریان گذرا با الکترودهای نانولوله کربنی که اخیرا آزمایش گردید ، نشان داد که این روش 10 بار کمتر از روش اسمز معکوس ، آب دریا را نمک زدایی می کند . انتظار می رود که نانوتکنولوژی نیاز بشر را به مواد کمیاب کمتر کرده و با کاستن آلاینده ها ، محیط زیستی سالمتر را فراهم کند . برای مثال مطالعات نشان می دهد در طی 10 تا 15 سال آینده ، روشنایی حاصل از پیشرفت نانوتکنولوژی ،مصرف جهانی انرژی را تا 10 درصد کاهش داده ، باعث صرفه جویی سالانه 100 میلیارد دلار و همچنین کاهش آلودگی هوا به میزان 200 میلیون تن کربن شود. در چند سال گذشته بازارچند میلیارد دلاری برپایه نانوتکنولوژی کسترش یافته اند . برای مثال در ایالات متحده ، IBM برای هد دیسکهای سخت ، یک سری حسگرهای مغناطیسی را ابداع کرده است .
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:22
فهرست مطالب:
تعریف:
هدف:
دیدکلی :
زمینههای تاریخی تجریه کیفی
رده بندی روشهای تجزیهای
روشهای جداسازی
انتخاب روش برای یک مسئله تجزیهای
دستگاهوری در تجزیه
سیر تحولی و رشد
انواع تجزیه
ماهیت روشهای تجزیهای
کاربردهای شیمی تجزیه
کنترل کیفیت محصول
نمایش و کنترل آلوده کنندهها
مطالعات پزشکی و بالینی
عیارگیری
شیمی تجزیه در آزمایشگاه :
نقش شیمی تجزیه در علوم
طبقهبندی روشهای تجزیه کمی
انتخاب روش تجزیه
تهیه نمونه آزمایشگاهی
استفاده از نمونههای همتا
تهیه محلولهای نمونه
حذف تداخل کنندهها
درجهبندی و اندازه گیری
محاسبه نتایج
ارزیابی نتایج و برآورد میزان اطمینان آنها
جداسازی :
نگاه اجمالی
تبلور
تقطیر
انواع تقطیر
تقطیر استخراجی
تقطیر جزء به جزء
فرایند تقطیر جزء به جزء
تقطیر جزء به جزء مخلوطهای دو جزئی و چند جزئی
رسوب دادن
استخراج
کروماتوگرافی
کروماتوگرافی تبادل یونی
آینده شیمی تجزیه
تعریف:
شیمی تجزیه شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه از ماده است.
هدف:
هدف یک تجزیه شیمیایی ، فراهم آوردن اطلاعاتی درباره ترکیب نمونهای از یک ماده است. در بعضی موارد اطلاعات کیفی در مورد حضور یا عدم حضور یک یا چند جزء در نمونه کافی است. در مواردی دیگر ، اطلاعات کمی مورد نظر است. بدون در نظر گرفتن هدف نهایی ، اطلاعات مورد نیاز در انتها ، توسط اندازه گیری یکی از خواص فیزیکی بدست میآیند که این خاصیت بطور مشخص به جزء یا اجزاء سازنده مورد نظر مربوط است.
دیدکلی :
شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصلههای بسیار زیاد علمی خواهد شد. نقش این فنون در فعالیتهای تولیدی روز به روز گستردهتر و پردامنهتر میگردد. امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ویژهای دارد که اساس این کنترل کیفیت را تجزیههای شیمیایی انجام شده به کمک روشهای مختلف تجزیهای تشکیل میدهد. شیمی تجزیه (Analytical chemistry) ، شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه از ماده است. شیمی تجزیه کیفی ، هویت شیمیایی گونهها را در نمونه آشکار میسازد. تجزیه کمی ، مقدار نسبی یک یا چند گونه یا آنالیت را بهصورت عددی معلوم میدارد. پیش از انجام تجزیه کمی ، ابتدا لازم است اطلاعات کیفی بدست آید. معمولا تجزیه کیفی و کمی شامل یک مرحله جداسازی نیز هستند.
زمینههای تاریخی تجریه کیفی
به ابتکار "پروفسور رونالد بلچر" که به نارساییهای متعدد سیستمهای تجزیه کیفی معدنی موجود پی برده و تصمیم به اصلاح این سیستمها از طریق تحقیقات تجربی و به بحث گذاشتن موضوع در یک گروه از آنالیستهای باتجربه گرفته بود، موسسه MAQA (موسسه تجزیه کیفی میدلندز) تاسیس شد. هدفهای موسسه عبارت بود از تهیه طرحهایی برای توصیه در:
1. بررسی سیستماتیک کاتیونهای معمولی مبتنی بر روشهای کلاسیک جا افتاده.
2. بررسی آنیونها.
3. بررسی عناصر غیر معمول.
4. بررسی نامحلولها.
طرح MAQA یکی از سلسله سیستمهای تجزیه کیفی هدف است که برخی از آنها به قرن هیجدهم برمیگردد. طرحهای قدیمیتر از بعضی جهات جالباند، به این معنی که بسیاری از جداسازیها و واکنشهای انتخابی که هنوز هم جای خود را در اعمال تجزیه کیفی حفظ کردهاند، از آنها نشات گرفته است.
نیاز مبرم به تشخیص سنگها و مواد معدنی مفید موجب پدید آمدن تجزیه کیفی معدنی شد. در نتیجه ، در جاهایی که صنایع پیشرفته استخراج شکوفا میشد، این هنر رشد سریعی کرد که نمونه بارز آن ، در سوئد بود. بدون آن که حق سایر بنیانگذاران تجزیه را فراموش کرده باشیم، شیمیدان سوئدی به نام "توربون برگمن" را ممکن است بتوان بعنوان بنیانگذار تجزیه کیفی سیستماتیک معرفی کرد.
رده بندی روشهای تجزیهای
رده بندی روشهای تجزیهای معمولا بر طبق خاصیتی است که در فرآیند اندازه گیری نهایی مشاهده میشود. در جدول زیر فهرستی از مهمترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها میباشند، دیده میشود. بر این نکته توجه داشته باشیم که تا حدود سال 1920 تقریبا تمام تجزیهها براساس دو خاصیت جرم و حجم قرار داشتند. در نتیجه ، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیهای شهرت یافتهاند.
بقیه روشها شامل روشهای دستگاهی است. علاوه بر تاریخ توسعه این روشها ، جنبههای معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز میسازند. بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک میباشند. ولی بعضیها حساستر نیستند. با ترکیب خاصی از عناصر یا ترکیبات ، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد. در مواردی دیگر ، یک روش حجمی یا وزنی ، کمتر در معرض مزاحمت قرار دارد. مشکل است که گفته شود که کدامیک از نظر صحت ، راحتی و صرف زمان بر دیگری برتری دارد.
همچنین این مساله درست نیست که روشهای دستگاهی ، الزاما دستگاههای گرانتر یا پیچیدهتری را بکار میگیرند و در حقیقت ، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیدهتری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شدهاند.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:11
فهرست مطالب:
شیمی شیشه
دید کلی
تاریخچه
ترکیبات سازنده شیشه
اجزای اصلی تشکیل دهنده شیشه
گدازآورها
تصفیه کنندهها
افزودنیها
تثبیت کنندهها
انواع شیشه و کاربرد آنها
شیشه رنگی
شیشه ضد آتش (پیرکس(
شیشه مسطح
شیشه دوجداره (مضاعف(
شیشه سکوریت
شیشه نشکن
شیشه ضد گلوله
شیشه انعکاسی (بازتابنده(
منابع :
شیمی شیشه
شیشه ، مایعی میباشد که بسیار سرد شده است و در حرارتی پایینتر از نقطه انجماد آن ، در حالت مایع قرار دارد و بطور عمومی ، جسمی است شفاف که نور بخوبی از آن عبور میکند و پشت آن بطور وضوح قابل روئیت میباشد.
دید کلی
شیشه از نظر ساختمان مولکولی در حالت جامد آرایش مولکولی نامنظم دارد. در درجه حرارتهای بالا ، شیشه مثل هر مایع دیگری رفتار میکند. اما با کاهش دما ، گرانروی آن بطور غیر عادی افزایش مییابد و باعث میشود مولکولها نتوانند در آرایشی که لازمه کریستال شدن است، قرار گیرند. به این ترتیب شیشه از نظر ساختمان مولکولی مانند مایعات نامنظم است، ولی این ساختمان غیر منظم ، دیگر متحرک نیست.
شیشه جسمی سخت است که سختی آن در حدود 8 میباشد و همه اجسام بجز الماسهها را خط میاندازد. وزن مخصوص شیشه 2.5 گرم بر سانتیمتر مکعب بوده و بسیار تُرد و شکننده است. شیشه در مقابل تمام مواد شیمیایی حتی اسیدهای قوی و بازها مقاومت کرده و تحت تاثیر خورندگی واقع نمیشود، به همین علت ظرف آزمایشگاهی را از شیشه میسازند. فقط اسید فلوئوریدریک (HF) بر آن اثر داشته و شیشه را در خود حل مینماید.
تاریخچه
شیشه گری ، یکی از قدیمیترین حرفههایی است که بشر بدان اشتغال داشته است. مصریها سازنده اولین اشیای شیشهای بودهاند که ظروف بدست آمده از حفاریهای مصر قدمت 5000 ساله دارد. رومیان نیز در فن شیشه گری مهارت داشتهاند و در این صنعت از سایرین پیشرفتهتر بودند. رونق شیشه سازی در نخستین ادوار تاریخ اسلامی صورت گرفته است، زیرا هنری بود که در مساجد و زیارتگاهها و تزئینات مذهبی جلوه خاصی داشته و مورد استفاده قرار میگرفت.
در ایران نیز ساختن شیشه قدمت چند هزار ساله دارد. و نخستین واحد ماشینی تولید شیشه ساختمانی در ایران در سال 1340 شروع بکار کرد.
ترکیبات سازنده شیشه
اجزای اصلی تشکیل دهنده شیشه
با نگاه به جدول عناصر ، کمتر عنصری را میتوان یافت که از آن شیشه بدست نیاید، ولی سه ماده کربنات دو سود ، سنگ آهک و سیلیس ، مواد اصلی تشکیل دهنده شیشه میباشند. مواد شیشه ساز مورد تایید موسسه استاندارد و تحقیقات صنعتی ایران عبارتند از سیلیس (SiO2) ، دیاکسید بور (B2O3) ، پنتا اکسید فسفر (P2O5) که از هر کدام بتنهایی میتوان شیشه تهیه نمود.
گدازآورها
کربنات سدیم (Na2CO3) ، کربنات پتاسیم (K2CO3) و خرده شیشه ، سیلیکات سدیم و پتاسیم (Na2SiO3 , K2SiO3) که حاصل ترکیب سیلیس با گدازآورها میباشند، در آب حل میشوند و از شفافیت شیشه به تدریج کم میکنند. به همین علت است که اغلب شیشههای مصرف شده در گلخانه پس از چند سال کدر میشوند و نور از آنها بخوبی عبور نمینماید.
فرمت فایل : word(قابل ویرایش)
تعداد صفحات:42
فهرست مطالب:
خوردگی
1-1- خوردگی الکترو شیمیایی
جدول (1 ـ 1 ) پتانسیل تعدادی از فلزات در مقایسه با الکترود استاندارد در 250
1-1-1 پیل های گالوانیکی
1ـ1ـ2 ـ پیل گالوانیکی با الکترود اسیدی یا بازی
1-1-3- پیل گالوانیکی میکروسکوپی ، خوردگی تک الکترودها
1-1-5 پیل گالوانیکی با اختلاف غلظت اکسیژن
1ـ1ـ6ـ پیل گالوانیکی ایجاد شده در نتیجه اختلاف در تر کیب ، ساختار و تنش
1ـ 1ـ7ـ پیلهای الکتروشیمیایی مرز دانه ای
نا خالصی هـــــا
1ـ 2ـ سرعت خوردگی
1 ـ 3 ـ انواع خوردگی
1 – 3 – 1 - خوردگی یکنواخت
1 ـ 3 ـ 2 ـ خوردگی گالوانیکی
1 ـ 3 ـ 3 ـ خوردگی حفره ای
1 ـ 3 ـ 4ـ خوردگی شکافی
جـدول ( 1 ـ 3) تعدادی از محیط هایی که می تواند موجب خوردگی تنشی فلزات وآلیاژ ها گردد .
1ـ 3 ـ6ـ خوردگی تنشی
مکانیزم تخریب در خوردگی تنشی
1 ـ 3 ـ 7 ـ خوردگی توام با خستگی
1 ـ 3 ـ 8 ـ خوردگی فرسایشی
1 ـ 3 ـ 9 ـ خوردگی سایشی
1 ـ 3 ـ 10 ـ خوردگی در اثر فلزات مذاب
جدول ( 1ـ 4 )چگونگی مقاومت خوردگی تعدادی از فلزات و آلیاژها در محیطهای خورنده
1 ـ 4 ـ روشهای حفاظت از خوردگی
1 ـ 4 ـ 1 ـ عوامل طراحی
1 ـ 4 ـ 12 ـ انتخاب مواد از نظر خواص
مواد غیر فلزی
1 ـ 4 ـ 3 ـ ایجاد تغییرات مناسب در محیط خورنده
1 ـ 5 ـ پوشش دادن
خوردگی
تغییراتی راکه در مواد در نتیجه واکنش های شیمیایی یا الکتروشیمیایی سطحی با محیط اطراف آنها ایجاد شده و باعث تخریب تدریجی قطعات می شود خوردگی نامند. مقاومت شیمیایی به عنوان قابلیت ماده از نظر ایستادگی در مقابل تخریب در اثر واکنش شیمیایی بین سطح تماس قطعه و محیط اطراف آن (اعم از مایع مانند آب ،گاز مانند( s, o2 , n o x Nh3 )جامد مانند ماده سوخت هسته ای و جدار داخلی ظرف حاوی سوخت ) تعریف شده است ، کافی نبودن این مقاومت شیمیایی یکی از دلایل برای محدود بودن طول عمر قطعات یا ماشین آلات وتجهیزات صنعتی است . بنا بر این خوردگی واکنشی نامطلوب است که سبب جداشدن تدریجی اتمها از سطح قطعه و تخریب آن میگردد .
سرعت فعل و انفعال خوردگی بستگی به عواملی مانند درجه حرارت و غلظت محیط اثر کننده خواهد داشت . البته عوامل دیگری مانند تنش مکانیکی و فرسایش میتواند به خوردگی کمک کند .
پدیده خوردگی بیشتر در فلزات و آلیاژهای آنها ظاهر می گردد ، زیرا که اغلب فلزات و آلیاژها تمایل به ایجاد ترکیباتی با اتمها یا مولکولهایی از محیط اطراف خود ( در بسیاری از حالات محیط اکسید کننده از ناپایداری کمتری برخوردار است ) که تحت شرایط موجود از لحاظ ترمودینامیکی پایدار است ، دارد.
مواد غیر فلزی مانند مواد سرامیکی ( بویژه از نوع اکسید) و پلیمری تحت تاثیر واکنشهای الکترو شییمیایی قرار نمی گیرد ، اما تحت شرایطی واکنش های شیمیایی میتواند بطور مستقیم بر روی این مواد تاثیر نموده و موجب تخریب آنها گردد .برای مثال سرامیکهای نسوز در درجه حرارتهای بالا میتواند با نمک مذاب واکنش های شیمیایی انجام دهد . پلیمرهای آلی هم میتواند با انجام واکنش شیمیایی با حلالهای آلی تخریب گردد . بعضی
اوقات هم مولکولهای آب می تواند توسط بعضی از مواد آلی جذب شده و سبب ایجاد تغییراتی در ابعاد و خواص مکانیکی آنها گردد.
مثالهایی که می توان از مشاهدات عینی روزمره خود برای خوردگی بیان نمود عبارت است از : خوردگی لوله های آب ، خوردگی بدنه اتومبیل در هوای مرطوب، خوردگی کشتی ها ، خوردگی تجهیزات و ماشین آلات در صنایع مختلف ، بویژه صنایع شیمیایی در مجاورت هوای مرطوب و یا در مجاورت با گازها ( مانند NH3 ، Nox ، H2S ، SO2 ) خوردگی شوفاژها با آب گرم ، خوردگی تجهیزات ماشین های تولید بخار و تور بین های گازی .
1-1- خوردگی الکترو شیمیایی
فعل و انفعالات خوردگی بیشتر الکترو شیمیایی است . آبی که شامل نمکهای محلول است ( مانند آ ب دریا، آب لوله کشی ، آب باران ) یکی از مایعات الکترو لیتی است که سبب انجام بیشترین واکنش های خوردگی میگردد .برای درک بهتر این این نوع خوردگی به بیان واکنشهای الکترو شیمیایی می پردازیم .
موقعی که قطعه فلزی مانند روی در مایع الکترو لیتی مانند اسید هیدروکلریک (HCL ) قرار گیرد اتمهای این فلز در اسید حل میشود یا به عبارتی دیگر توسط اسید خورده می شود . بدین ترتیب اتمهای فلز بصورت یون از فلز جدا شده و داخل الکترولیت میشود و در نتیجه جریان الکتریکی بین فلز و الکترولیت برقرار می گردد . در اینجا واکنش شیمیایی زیر به صورت اکسیداسیون در آند انجام میگیرد :
( واکنش آندی )
Zn Zn 2+ 2e-
( بداخل فلز ) (بداخل الکترو لیت ) (درسطح فلز)
و یا واکنش آندی در تولید مس( خالص) الکترودی از مس خام ( مس آندی )