یارا فایل

مرجع دانلود انواع فایل

یارا فایل

مرجع دانلود انواع فایل

پایان نامه صنایع : نقش EARENDValue در کنترل پروژه ۱۶۴ صفحه

اختصاصی از یارا فایل پایان نامه صنایع : نقش EARENDValue در کنترل پروژه ۱۶۴ صفحه دانلود با لینک مستقیم و پرسرعت .

پایان نامه صنایع : نقش EARENDValue در کنترل پروژه ۱۶۴ صفحه


پایان نامه صنایع : نقش EARENDValue در کنترل پروژه ۱۶۴ صفحه

 مطالب این پست : پایان نامه نقش EARENDValue در کنترل پروژه 164 صفحه – رشته صنایع

   با فرمت ورد (دانلود متن کامل پایان نامه)

 

 

 

 

مقدمه :

کلیه افرادی در مشاغل و مسئولیتهای مختلف حداقل در طول مدت خدمت خود با یک پروژه سرو کار پیدا می کنند . وظایف و مسئولیت کسانیکه در قسمتهای طرح و برنامه سازمانها کار می کنند عموما در رابطه مستقیم با برنامه ریزی وکنترل پروژه ها می باشد . وکسانیکه در مراکز صنعتی و تولیدی کار می کنند نیز در طول خدمت خود با پروژه های صنعتی از قبیل تولید یک محصول جدید، احداث یک واحد تولید مدرن ویا تعمیرات اساسی ماشین آلات سروکار پیدا می کنند وهم چنین افرادی که در سازمانهای غیر دولتی بکار مشغولند نیز در مواقعی خود را با لزوم برنامه ریزی ادارات جدید ، تغییر مکان مراکز کاری که در نوع خود یک پروژه محسوب می شود روبرومی بینند .

برنامه ریزی آموزش واعزام نیروها ی مسلح به جبهه ، تدارک مهمات و تجهیزات و مهمتراز همه برنامه ریزی عملیات نظامی از نمونه های بارز برنامه ریزی یک پروژه پیچیده می باشد که بیشترین وقت مسئولین مربوطه را به خود اختصاص می دهد .

 

اهداف پروژه :

هر پروژه ای خواه تاسیس یک ساختمان جدید باشد ویا تهیه ماشین آلات وتولید یک محصول تازه ، متضمن صرف هزینه وسرمایه گذاری قابل توجهی میگردد. بازده این سرمایه گذاری واهداف پروژه باید کاملا روشن ومنطقی باشند.کسانیکه مسئولیت تخصیص بودجه وتصویب اجرای یک پروژه را بر عهده دارند باید بطور دقیق از چگونگی صرف پول واهداف پروژه آگاه باشند ، این اهداف بطور کلی در سه گروه به شرح زیر خلاصه می شوند :

  • کیفیت ومشخصات فنی کار تمام شده که در مورد پروژه های ساختمانی مشخصات بنا ومقاومت لازم قسمتهای مختلف ساختمان ودر مورد طرحهای صنعتی ، میزان بازدهی ماشین آلات وحدود دقت قطعات ماشین شده اهداف فنی کار را مشخص می نمایند .
  • بودجه ای که در چهار چوب آن کار باید انجام گیرد .
  • مدت زمان اجرای کار .

 

معمولا با افزایش وطولانی تر شدن مدت یک پروژه از زمان برنامه ریزی شده آن هزینه های آنهم افزایش می یابد . این افزایش از طرفی بخاطر وجود تورم واز بین رفتن قدرت خرید بودجه اختصاصی طرح واز طرف دیگر بخاطر معطل نگهداشتن نیروی انسانی و تجهیزات بیش از مدت لازم وعدم استفاده از آنها درانجام پروژه های دیگر بوجود می آید . این رابطه روشن ومستقیم بین هزینه وزمان و توجه به اثرات زیانبار عدم اتمام بموقع پروژه، لزوم استفاده از روشهای علمی برنامه ریزی وکنترل پروژه را بیش از پیش آشکار می سازد .

 

مشخصات یک برنامه ریزی خوب و قابل اجرا:

اکنون که لزوم برنامه ریزی پروژه تا اندازه ای روشن شد بهتر است قبل از پرداختن به یک روش خاص برنامه ریزی، مشخصات یک برنامه موثر و قابل اجرا بررسی گردد و ملاکهای ارزیابی یک برنامه ریزی موفق بدست آید .

بطور کلی یک برنامه موثر وقابل اجرا باید دارای موارد ذیل باشد :

  • از نظر فنی امکان پذیر باشد .
  • بر برآوردها ی قابل اطمینان استوار باشد .
  • متناسب با منابع موجود و قابل دسترس باشد .
  • در صورت استفاده مشترک از منابع یک پروژه دیگر با برنامه آن پروژه هماهنگ باشد .
  • در مقابل لزوم ایجاد تغییراتی در مشخصات و ترتیب اجزای کارهای پروژه انعطاف پذیر باشد .
  • فعالیتهای بحرانی را بخوبی مشخص ومتمایز سازد .

علاوه بر رعایت نکات فوق ، برای اجرای موفقیت آمیز یک پروژه ، ایجاد یک سازمان اجرایی منسجم و تعیین یک مدیر کاردان و با اختیارات کافی که برای وی خطوط ارتباطاتی موثری در نظر گرفته شده باشد ضروری می باشد .

  • فعالیتهای بحرانی را بخوبی مشخص و متمایز سازد . علاوه بر رعایت نکات فوق ، برای اجراء موفقیت آمیز یک پروژه ، ایجاد یک سازمان اجرائی منسجم و تعیین یک مدیر کاردان و با اختیارات کافی که برای وی خطوط ارتباطاتی موثری در نظر گرفته شده باشد ضروری می باشد .

 

فهرست:

 

عنوان

صفحه مقدمه1مفاهیم پروژه4محدودیت‌های مدیریت پروژه14

برنامه ریزی کلان ، تفصیلی و عملیاتی پروژه

29مراحل یک پروژه37محاسبه زمان پروژه38شبکه‌های پرت و سیستم تخمین زمان45گام‌های اجرای پروژه و انواع ساختار پروژه49معرفی تکنیک EARNED VALUE55مقایسه روشهای پیش‌بینی شده دوره طرح متفاوت با استفاده از متریک ارزش کسب شده68دودیدگاه در باره EARNED VALUE87تفاوت MSP و PrimAvera94پروژه طرح افزایش ظرفیت و توسعه سیمان مازندران101

توضیحات پروژه سیمان مازندران

103چارت پروژه104اجزای تشکیل دهنده پروژه و بررسی پروژه105توضیحات،Mazandaran Cement MSP108نقش Value engineering در اجرا پروژه119فرم ارزیابی پیمانکار158مشکلات شرکت صنایع آذراب161منابع163ضمیمه164

 


دانلود با لینک مستقیم

دانلود پایان نامه رشته مکانیک : تست کارآیی بویلر ۲۴۰ صفحه

اختصاصی از یارا فایل دانلود پایان نامه رشته مکانیک : تست کارآیی بویلر ۲۴۰ صفحه دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه رشته مکانیک : تست کارآیی بویلر ۲۴۰ صفحه


دانلود پایان نامه رشته مکانیک : تست کارآیی بویلر ۲۴۰ صفحه

 پایان نامه تست کارآیی بویلر 240 صفحه با فرمت ورد (دانلود متن کامل پایان نامه)

استاندارد PTC 4.1

تست کارآیی بویلر

 

 

 

فصل اول: استاندارد PTC 4.1 تست کارآیی بویلر

فهرست مطالب

عنوان                                                                                                                      صفحه

مقدمه. 4

هدف و حوزه دید. 8

علائم و تعاریف آنها 19

اصول راهنما 27

محاسبه راندمان توسط روش ورودی – خروجی. 43

محاسبه راندمان به کمک روش تلفات حرارتی. 59

تلفات خاکستر و تشعشعات.. 77

اطلاعات متفرقه. 81

راندمان با روش ورودی – خروجی. 90

 

 

فصل دوم: چگونه می توان راندمان بویلر را افزایش داد

فهرست مطالب

عنوان                                                                                                                      صفحه

1-3- مقدمه: 156

2-3- احتراق: 157

3-3- روش های افزایش راندمان بدون صرف هزینه. 160

اثر هوای اضافی روی راندمان در ارتباط با متغیرهای دیگر: 173

تاثیر هوای اضافی بر روی خوردگی سطوح: 174

2-3-3- کاهش دمای دود خروجی. 180

4-3- افزایش راندمان با صرف هزینه و سرمایه گذاری مجدد: 192

شاخصهای دیگر کارکرد 208

ضمیمه. 213

  1. 5- بدست آوردن وزن هوای خشک: 213

 

 

بخش (0)

مقدمه

1-0- کد PTC شامل دستورالعملهایی به منظور تست واحدهای مولد بخاری می‌باشد این واحد ترکیبی از وسایلی هستند که برای آزاد سازی و بازیابی حرارت به همراه وسایل انتقال حرارت به یک سیال عامل استفاده گردیده تا بدینوسیله بتوان از حرارت آزاد شده استفاده نمود واحد مورد نظر این کد ممکن است شامل تجهیزات بویلر، کوره، سوپر هیتر، ری هیتر، اکونومایزر، گرمکن هوا (ایرهیتر) و مشعل سوخت باشد. در صورتیکه حرارت جذب شده توسط اکونومایزر و گرمکن هوا به واحد برگردانده نشود نمی توان آنها را به عنوان بخشی از واحد در نظر گرفت. هدف از روشهای این تست دستیابی اطلاعاتی به منظور ایجاد معیارهای طراحی قسمت های مختلف یک مولد بخاری نمی باشد. کدهای تکمیلی PTC 4.2 و PTC 4.3 به ترتیب شامل تستهای تجهیزات پودر کننده و گرمکن هوا می باشند.

2-0- ما قصد داریم برای استفاده از این کد، آزمایش جامعی از کد مربوط را با دستورالعمل PTC 1 و سایر کدهای اشاره شده قبل از آغاز مراحل مقدماتی تستها، انجام دهیم. این بررسی به منظور اطمینان از یک روش تست کامل و مرتب می باشد زیرا این بررسی یک درک کلی از نیازمندیهای کدهای تست قدرت ASME را به کاربر می دهد و او می تواند به سرعت روابط بین کدهای مختلف را درک نماید. برای دستیابی به آخرین اصلاحات مربوط به این کدها و استفاده از آنها باید دقت کافی را مبذول داشت.

3-0- اگرچه بخش دوم این کد در ارتباط با نشانه ها و تعاریف مربوط به آنها در اجرای تست واحدهای مولد بخاری می باشند، کاربر بایستی به منظور بحث کاملتر برای مواردی که در پیش رو دارد به کد مربوط به تعاریف و مقادیر PTC 2 مراجعه نماید.

4-0- ضمائم مربوط به ابزار دقیق و وسایل PTC 19 که در اینجا به آنها اشاره شده بایستی بطور کامل مورد مطالعه قرار گیرند زیرا ارزش و اعتبار نتایج این تست به انتخاب ابزار و طریقه استفاده، کالیبراسیون و دقت قرائت آنها بستگی دارد.

1-4-0- سایر موارد بسیار مهم برای ارزش و اعتبار این تست عبارتند از تعیین دقیق مقدار ارزش حرارتی بالا و دیگر خواص سوخت مصرفی کد مناسب برای نوع سوخت و روش استاندارد ASTM مربوط به گرمای احتراق بایستی به دقت پیگیری گردد.

5-0- این کد بعنوان یک راهنما برای انجام کلیه تستهای مولد بخاری مورد نظر می‌باشد اما احتمالاً قادر نیست کاربر یک آزمایش را با اشکال گوناگون در طراحی‌های مختلف مولدهای بخاری به تفصیل شرح دهد. در هر صورت یک مهندس ذیصلاح بایستی واحد خاصی را که مرود نظر می باشد مطالعه نموده و رابطه آن را با بقیه سیکل سنجیده و دستورالعملهای تست را که از نظر کلی درست بوده و با مفاهیم این کد مطابقت دارد بهبود بخشد. مثالهای مربوط به طراحی های گوناگون در هنگام آماده سازی این کد، واحدهای مولد بخاری مادون بحرانی و مافوق بحرانی تک گذر و سیکل مضاعف می باشد.

چنین واحدهایی نیز در هنگام آماده سازی این کد در نظر گرفته شده و عقیده بر این است که قوانین مربوطه در تست این واحدهای بخاری نیز اقبل اجرا می باشد.

6-0- دستورالعملهای کلی که در این کد بیان شده است همچنین در تست گرمکن‌های آب تغذیه فشار قوی قابل اجرا هستند با این تفاوت که تعیین راندمان فقط توسط روش تلفات حرارتی که در بخش 5 توضیح داده شده است، بدست می آید. روش ورودی – خروجی در تعیین راندمان قابل قبول نمی باشد زیرا عدم دقت زیادی به علت وجود مقادیر غیر قابل تعیین بخار در خروجی و خطاهای کوچک اندازه گیری درجه حرارت میزان دبی حجمی زیاد وجود دارد. ظرفیت تست یا خروجی توسط راندمان و گرمای ورودی و یا توسط اندازه گیری مستقیم گرمای خروجی در صورتیکه دقت بالا لازم نباشد، قابل تعیین خواهد بود.

7-0- تست واحدهای اتمی و مولدهای بخاری سیکل ترکیبی در این کدها نمی باشد زیرا گسترش توسعه مولدها در زمان اصلاح این کدها انجام می گرفته در نتیجه توصیه های ویژه اضافه نگردیده است.

8-0- سیستمهای ابزار دقیق پیشرفته مانند ادوات الکترونیکی یا تکنیکهای اندازه‌گیری دبی جرمی، ممکن است با یک توافق دو جانبه به عنوان یک انتخاب برای ملزومات کد ابزار دقیق اجباری استفاده گردند چون کاربردهای این ابزارها دقت لازم برای این کد را نشان داده است.


دانلود با لینک مستقیم

پایان نامه مکانیک – اندازه گیری ۳۹۲ صفحه

اختصاصی از یارا فایل پایان نامه مکانیک – اندازه گیری ۳۹۲ صفحه دانلود با لینک مستقیم و پرسرعت .

پایان نامه مکانیک – اندازه گیری ۳۹۲ صفحه


پایان نامه مکانیک – اندازه گیری ۳۹۲ صفحه

محتوای این بخش : پایان نامه رشته مکانیک – اندازه گیری 392 صفحه

 دانلود متن کامل پایان نامه با فرمت ورد

 

 

 

 

 

تمامی مهندسین ( بدون توجه به اینکه در چه شاخه ای کار می کنند )پیوسته با مسائل اندازه گیری روبرو هستند . مسائلی نظیر اندازه گیری جرم ، نیرو ، دما ، مقدار یک جریان الکتیرکی ، طول ،زاویه و غیره و یا مسائلی مربوط به اثرات جمعی از آنها .نتایج این قبیل اندازه گیری ها خط مشیی را به مهندس نشان می دهد و اطلاعاتی را فراهم می کند که می توان بر اساس آنها تصمیم گرفت .

این قبیل اندازه گیری ها بخشی از علم متالوژی را شکل می دهد به خصوص مربوط به مهندسان مکانیک یا مهندسان تولید می شوند چرا که با اندازه گیری طول و زوایا ارتباطند .

در این بین طول یکی از اجزاء مهم اندازه گیری است و با کاربرد خاصی از اندازه گیری خطی می توان اندازه گیری زاویه را نز انجام داد.

در حقیقت مقصود از اندازه گیری حصول وسیله ای است برای کمک به تصمیم گیری هر چه بهتر. البته باید گفت که اندازه گیری تا زمانی بر اساس دقت قابل قبولی نباشد یک اندازه گیری کامل نخواهد بود.اگر چه هیچ اندازه گیری دقیق نیست اما ذکر دقت در اندازه گیری به ابعاد اندازه گیری بسیار مفید است. می دانیم عضو لاینفک اندازه گیری است و گریزی از آن نیست ولی به حد اقل رساندن آن ممکن است. در این جا مثالی آورده می شود: فرض کنید که یک اپراتور در اختیار دارید و اندازه اسمی آن 30 mm است. آیا بیان اندازۀ اپراتور به تنهایی کافی است؟ حال اطلاعات زیر را در نظر می گیریم:

(a : خطای اندازه گیری شده در راپراتور -0.0002mm است.

(b : و دقت آن +-0.0004 mm است.

حال هر کسی از این راپراتور استفاده کند اطلاعات کاملی در اختیار دارد و د جهت اندازه گیری دقیق تر یاری اوست.

گاهی اوقات دقت اندازه گیری بالا نیست و می توان از خطا چشم پوشی کرد مثلاً فرض کنید از یک راپراتور(بلوک اندازه گیری) برای اندازه گیری خط مبنای یک ورنیه که فقط mm 0.02 دقت دارد استفاده شود. در اینجا خطا قابل چشم پوشی است چرا که مقدار آن ناچیز است حالا اگر از همین راپراتور برای تنظیم یک کمپراتور (مقیاسه گر) که درجه بندی آن تا mm 0.001 را نشان می دهد استفاده شود مقدار خطا مهم بوده و باید در نظر گرفته شود. با ترتیب دقت اندازه گیری راپراتور دقت کمپراتور، کل دقت اندازه گیری حاسل می شود.

در انتها باید گفت این فصل مرجعی خواهد شد برای مطالب بعدی کتاب .

 

2-1   انواع خطاها

معمولا در هر اندازه گیری دو نوع خطا می توان تشخیص داد. یک نوع آنهایی می باشند که با دقت بیشتر در کار می توان حذفشان کرد و نوع دیگر که عضو لاینفک اندازه گیری می باشد و به عبارت دیگر نمی توان آنها را به صفر رساند.

1-2-1) خطاهایی که می توان آنها را حذف کرد (آنها را به صفر رساند)

الف) خطاهای ناشی از غلط خواندن:

مثلاً یک میکرومتر به مقدار 28/5 را نشان می دهد 78/5 یا 28/6 خوانده می شود.

ب) خطاهای محاسباتی.

این نوع خطا معمولاً به هنگام جمع کردن اعداد پیش می آید. مثلاً برای جمع کردن یک ستون از اعداد دو راه وجود دارد یآ از بالا، اعداد را با هم جمع کنیم یا از پایین ستون شروع به جمع زدن می کنیم که در هر دو صورت باید جوابها بر هم منطبق باشند در بسیاری مواقع این قبیل خطاها (همچنین خطاهای ناشی از غلط خواندن) نتایج دور از انتظاری به دست می آیند و با تکرار اندازه گیری آشکار می شود. البته همیشه با تکرار ایرادها مشخص نمی شود تنها راه جلوگیری از پیشامد چنین خطاهایی دقت و توجه به جزئیات است.

ج) خطاهای محوری :

این نوع خطاها زمانی اتفاق می افتد که وسیله اندازه گیری با قطعه کاردر راستای صحیح قرار نداشته باشند که معمولا بین اندازه واقعی یعنی D ومقدار غیر حقیقی یعنی M یک رابطه مثلثاتی برقرار خواهد بود.(شکل1-1)

با توجه به شکل، صفحه مدرج با قطعه کار زاویه می سازد بنابراین (1-1) در حالت دیگری همین نوع خطا در اثر نا راستایی بین امتداد خط دید و درجه بندی دستگاه اندازه گیری پدید می آیند.

اکثر اندازه گیری ها کم و بیش متأثر از شرایط محیطی در آن نانجام می شوند هستند و مهمترین عامل نیز دماست و هم دمای محیط چندان سودمند نخواهد بود بنابریان باید سعی کرد خود جسم نیز دمای ثابت و حتی الامکان دمای محیط دمای محیط اندازه گیری را داشته باشد. دست زدن به وسیله اندازه گیری خود می تواند دمای وسیله را تغییر داده از دقت آن بکاهد.

بنابراین بهتر است که در طول مدت انداز گیری کلیه وسایل روی یک سطح چوبی یا پلاستیکی قرار داده شوند، همچنین تا آنجا که امکان دارد وسیله اندازه گیری دارای دسته عایق باشد.

وقتی که درباره اندازه گیری ، بحث می شود باید دو نکته مهم را مورد توجه قرار داد :

1) اندازه گیری مستقیم: قطعه مستقیماً به وسیله ابزار اندازه گیری ، اندازه گرفته می شود. در این حالت تأثیر حاسل از به کار بردن یک دمای غیر استاندارد تولید یک خطای نسبی می کند.

           (2-1)            

L :طول واقعی (اندازه گرفته شده در دمای استاندارد

X : ضریب انبساط طولی قطعه

: میزان انحراف دما از دمای استاندارد

(2) اندازه گیری غیر مستقیم (نسبی یا مقایسه ای ):

اگر فرض کنیم که دو قطعه داریم که ضریب ننبساطی طولی آنها به ترتیب باشند.

 

آنگاه خطای ناشی از کاربرد دمای غیر استاندارد عبارت است از.

در صورتیکه مقادیر x1 و x2 کوچک باشند و میزان خطا کوچک می شود.

با توجه به مطالب فوق واضح است که اندازه گیری مستقیم هم دما بودن تمامی اجزاء سیستم اندازه گیری مهم بوده بهتر است که تا حد امکان نزدیک به دمای استاندارد باشد.

در بعضی از وسائل اندازه گیری علاوه بر ، عوامل دیگر نظیر میزان رطوبت هوا، فشار هوا، میزان دی اکسید کربن و… قادر به تغییر دقت اندازه گیری می باشند. پس باید در تمام طول اندازه گیری عوامل فوق ثبت شده و بعد از اندازه گیری آنها تغییر ایجاد می کنند می توان به تداخل سنجها اشاره کرد.

هـ) خطاهای ناشی از تغییر شکل کشسان :

هر شیء کشسان برای تحمل نیرویی بر آن وارد می شود تغییر شکل می دهد به بزرگی این تغییر شکل وابسته به بزرگی نیرو، بزرگی سطح تماس و خواص میکانیکی مواد در حال تماس دارد. پس باید مراقب بود تا میزان بار یا فشار اندازه گیری به هنگام استفاده از روش اندازه گیری. مقایسه ای (یعنی اندازه گیری با کمپراتورها)ثابت باشند.

در بسیاری از کارخانجات برای داشتن اندازه گیری بهتر از کمپراتورها و میکرومترهای رومیزی استفاده می کنند فشار اندازه گیری و منظور از فشار بین سطوح قطعۀ مورد اندازه گیری و وسیلۀ اندازه گیری است ثابت است و اگر سطوح تماس که البته می توانند از انواع مختلف باشند صحیح تنظیم نشوند اندازه واقعی به دست نخواهد آمد.

بنابراین قبل از خواندن هر گونه اندازه گیری یا هر برداشتی از اندازه و ابعاد قطعه کار، باید آن را نسبت به وسیلۀ اندازه گیرهی دقیقاً تنظیم نمود. فرمول زیر تغییر شکل نهایی، در اثر فشارw وارد بر قطعه ای کره ای شکل را نشان می دهد. به عبارت دیگر اگر یک کره استاندارد به شعاع استاندارد و یک قطعه اندازه گیری کره ای شکل به شعاع قابل اندازه گیری داشته باشیم که هر دو تحت فشار اندازه گیری W قرار دارند تغییر در فاصله مراکز این دو کره می شود.


دانلود با لینک مستقیم

پایان نامه لیزر ۲۳۰ صفحه

اختصاصی از یارا فایل پایان نامه لیزر ۲۳۰ صفحه دانلود با لینک مستقیم و پرسرعت .

پایان نامه لیزر ۲۳۰ صفحه


پایان نامه لیزر ۲۳۰ صفحه

 مطالب این پست :  پایان نامه لیزر 230 صفحه

   با فرمت ورد (دانلود متن کامل پایان نامه)

 

 

 

 

 

پیشگفتار

پس از ستایش بی پایان خداوند یکتا, این مقاله حاصل نیاز به رساله ای جامع در مورد نتایج نوپای لیزر laser است که با بهره گیری از مکتوبات علمی- تخصصی و نتایج کنفرانس ها و مقالات متعددی که در طی چندین سمینار در زمینه کاربرد لیزر توسط دانشمندان و محققین و کلیه صاحبنظران ارائه شده است محقق گردیده است.

در این نوشتار سعی شده با جمع آوری اطلاعات و دانسته های جدید علمی و عملی در مورد کاربردهای لیزر در پزشکی و خصوصاً در فیزیوتراپی, در حد توان سعی شده است که این پدیده نوین معرفی گردد. هدف اصلی از ارائه این تحقیق جمع آوری و تعمیم مفاهیم در خصوص لیزرهای کم قدرت Low Power laser‌ که با توان خروجی پایین کار می کنند (حدود میلی وات) که اثر حرارتی ندارند و همینطور شرح پدیده های فیزیکی و اثرات غیرحرارتی مربوط به آنها و همینطور تأثیرات این لیزرها بر بدن و متعاقب آن، فراهم آوردن رهیافتی به ریشه و اساس متقابل بافت- لیزر است. ضمن اشاره به پدیده هایی که با نور و ماده سرکار دارند از قبیل بازتاب، جذب, پراکندگی که بیشتر جنبه فیزیکی آنها مورد بحث است و در هر مورد توجه خاصی به عملیات ریاضی اجتناب ناپذیر است. بنابراین با شرح اصول لیزرها و روش های کاربرد بالینی آنها و بیان انواع لیزرها و همینطور در مورد ایمنی لیزر و حفاظت چشم و محاسبات و اندازه گیری های مربوط به لیزر بحث خاتمه خواهد یافت.

البته امید است اساتید و همکاران گرامی, این تحقیق را با وجود تمام نقائص و کاستی هایش به عنوان هدیه ای ناچیز پذیرفته باشند تا این مقاله بعنوان شروعی برای امید به ثمره یک تلاش بی وقفه تلقی گردد.

از خوانندگان گرامی خواهشمندیم که اشتباهات موجود را به اینجانب متذکر شوند تا در رفع آنها اقدامات لازم مبذول را بدارم. اینجانب در تکمیل و تصحیحی مطالب مستتر در این تحقیق از راهنمایی استاد ارجمند آقای دکتر سیدمحمودرضا آقامیری و سایر اساتید محترم بهره گرفته ام و بدینوسیله از کلیه کسانی که مرا راهنمایی کرده اند صمیمانه سپاسگزاری می نمایم. ضمناً از همکاری پژوهشکده لیزر و سایر بخش های مربوطه در دانشگاه شهید بهشتی قدردانی می کنم.

 

 

مقدمه

لیزر…. از اعجاز آمیزترین موهبتهای طبیعت است که برای مصارف گوناگون سودمند است. و یکی از پدیده های شگرف قرن بیستم کشف و توسعه لیزر (laser) است. قرن بیستم را شاید بتوان به جای قرن اتم و یا قرن ماشین, «قرن لیزر» هم نامید. این اختراع شگرف و پردامنه فیزیکی روز به روز توسعه بیشتری می یابد و کاربردهای آن در زمینه های مختلف بسیار متعدد است. در حوزه پزشکی نیز در حال حاضر لیزرها در درمان انواع مختلفی از بیماریها شرکت داده می شوند. اگرچه لیزرهای بالینی جدید و کاربردهای آنها احتمالاً در حال گذران دوران نوباوگی پزشکی لیزری هستند ولی در آینده نه چندان دور لیزرهای دیگری پدید خواهند آمد که جایگاه خود را در بیمارستانها و مراکز پزشکی خواهند یافت بنابراین تحقیق علمی آینده به اندازه کاربردهای بالینی حاصل از آن, زیربنایی خواهند بود.

به علت تنوع سیستم های لیزر موجود و تعداد پارامترهای فیزیکی آنها و همینطور علاقه چندین گروه تحقیقاتی در واقع انواع مختلف لیزر بصورت ابزار بی رقیبی در پزشکی مدرن درآمده اند و اگرچه کاربردهای بالینی در ابتدا محدود به چشم پزشکی بوده اند، ولی امروزه قابل ملاحظه ترین و جاافتاده ترین جراحی لیزری در خصوص انعقاد خونریزی عروق با استفاده از لیزر یون آرگون Ar+ است. لذا تقریباً تمام شاخه های جراحی پزشکی معطوف به این قضیه شده اند. البته نباید این گفته را به عنوان انتقاد برشمرد ولی اشکالات زیادی در برخی از موارد ایجاد شده است،‌ بخصوص در زمینه تحریک زیستی biostimulation. لذا به نظر این بنده حقیر لازمست برای کسب پیروزیهای جدید، محققان عزم خود را در سایر زمینه ها پژوهش پزشکی لیزر و تکنیک های فنی و حرفه ای مربوط به آنها نیز مجدانه جذب کنند و در پی وسعت دادن ابعادی به این امر مهم باشند. البته در کل، بسیاری از تکنیکهای لیزری واقعاً مفید، که از لحاظ بالینی محقق شده اند، به کمک انواع دانشمندان قرن حاضر توسعه یافته اند. این روشهای معالجه توسط محققان دیگر تأیید شده و در مجلات علمی معتبر به نحوه مناسب به نوشتار درآمده است. حتی اخیراً در رابطه با کاربردهای اولیه لیزر که اساساً بر نتایج درمانی متمرکز شده بودند, چندین روش جالب تشخیصی نیز اضافه شده است. برای نمونه می توان تشخیص تومورها توسط رنگهای فلورسانس و یا تشخیص پوسیدگی دندان بوسیله تحلیل طیف سنجی بارقه پلاسمایی حاصل از لیزر را نام برد.

همانطور که میدانیم در اواخر دهه 1960 لیزر در زمینه های پزشکی بکار رفت. امروزه تعداد بسیاری از روش های کاربرد لیزر در سراسر جهان بکارگرفته می شود. بیشتر این روشها متعلق به خانواده جراحی با کمترین تهاجم (MIS) minimally invasive surgery می باشند. این اصطلاح جدید که در دهه حاضر پدید آمده است به تکنیک های جراحی ای اطلاق می شود که در آنها تماس با بدن و خونریزی صورت نمی گیرد. لذا این دو مشخصه بطور عمده باعث شده اند که لیزر به عنوان یک تیغ جراحی و وسیله درمان جهانی بکار گرفته شود. در واقع بسیاری از بیماران و همچنین جراحان بر این باورند که لیزر وسیله ای اعجاب انگیز است. البته این شیوه تفکر منجر به نگرشهای گمراه کننده و توقع های نابجا نیز شده است. در حقیقت قضاوت دقیق در مورد پیشرفتهای جدید همیشه لازم است. مثلاً وقتی که یک روش درمان توسعه لیزر معرفی می شود, تا هنگام تأیید شدن آن توسط مطالعات مستقل دیگر، نباید مورد قبول واقع شود. اثرات ناشی از لیزر همانطور که می دانیم بسیار متعدداند. بیشتر آنها را می توان بطور علمی توضیح داد. البته برخی اثرات که برای یک درمان ویژه مفید هستند, برای موارد دیگر ممکن است خطرناک باشند بعنوان مثال گرم کردن یک بافت سرطانی توسط پرتوی لیزر می تواند منجر به اثر مطلوب نکروز (تخریب) تومور شود. و بالعکس بکار بردن پرتوی لیزری برای قطع خونریزی شبکیه چشم با پارامترهای فوق، می تواند منجر به سوختن خود شبکیه و نابینایی غیرقابل برگشت شود. به هرحال با توجه به تسهیلاتی که پدیده لیزر در امر تشخیص و درمان در علم پزشکی فراهم نموده, آینده روشن تری را می توان برای نسل بشر پیش بینی کرد.

 

تاریخچه لیزر:

اساس لیزر در سال 1960 با ساختن لیزر یاقوت توسط مایمن (Maimen) شناخته شد. این اکتشاف ابتدا به ساکن اتفاقی نبوده, بلکه خود دنباله ای از مجموعه جریانات و تحولات علم فیزیک به شمار می آید و محصول پژوهش های پیگیر دانشمندانی که سالهای متمادی دورتر از آن, در این زمینه کندوکاو می کردند, محسوب می شود. دانشمندانی از قبیل «وبر»، «تاونز»، «انیشتن»، «باسوف»، «پروخوف»، «میمن» و سایرین بر مبنای این نظریه بود که در سال 1954 تاونز و شاگردانش اولین تقویت کننده نور را بوسیله نشر تابش برانگیخته در دانشگاه کلمبیا ساختند.

Microwave Amplification by stimulated Emission of Radiation (MASER)

اساس نظری لیزر از سال 1917 توسط آلبرت انیشتن (Einstein) شناخته و بیان شد. اما امکان تولید پرتوی لیزر بین سالهای 1957 تا 1960 تحقق یافت. بعداً در سال 1954 یک گروه از محققین در آمریکا تحت مدیریت تاونز و بر اساس تئوری انیشتن، اولین تقویت کننده نور برانگیخته را با استفاده از مولکولهای آمونیاک مورد آزمایش قرار دادند و بالاخره اولین دستگاه میرز Maser با فرکانس (حدود Hz1011× 3/2) هرتز ساخته شد. در سال 1958 شاولو (schawlow) به اتفاق تاونز ضمن یک مطالعه مشترک نظری امکان به کاربردن یک میزر با فرکانس در ناحیه اپتیکی (حدود فرکانس های نور مرئی) را تحقق بخشیدند و آنرا لیزر «Laser» نامیدند و بالاخره در سال 1960 اولین دستگاه لیزر توسط میمن (Maimen) با استفاده از کریستال یاقوت (Rubylaser) که در درمان گلوکوم استفاده شد، ساخته شد. پس از مدت کوتاهی, پروفسور علی جوان دانشمند ایرانی و همکارانش اولین لیزر گازی هیلیوم نئون,‌ در ناحیه مادون قرمز I.R. (نزدیک μm5/1 میکرومتر) را مورد بهره برداری قرار دادند و از سال 1960 تا کنون عده بیشماری از دانشمندان و محققین جهان، با هزینه

سالیانه میلیاردها دلار, برای تحقیق روی دستگاه های مختلف لیزر و نیز کاربردهای آن کوشش کرده اند.

لیزر یک پدیده بزرگ زمان ماست. موارد کاربرد ویژه خود را دارد و اثر آن عاری از عوارض جانبی هم نیست. همیشه نمی تواند جای روش های جراحی و دارویی یا رادیوتراپی را بگیرد. با این همه اگر آنرا معجزه قرن بیستم بنامیم, گزاف نگفته ایم.

فهرست مطالب

 

پیشگفتار………………………….. 1

مقدمه…………………………….. 3

تاریخچه لیزر………………………. 5

تعریف لیزر………………………… 6

فیزیک لیزر………………………… 8

مبانی نظری لیزر……………………. 49

انواع لیزر………………………… 84

معرفی لیزرهای توان پایین……………. 92

اثرات لیزرهای کم قدرت………………. 161

مکانیسم برهمکنش بافت – لیزر…………. 171

درمان فتودینامیک…………………… 182

مقایسه لیزرهای توان بالا با لیزرهای توان پایین.. 200

روش های کاربرد لیزر توان پایین………. 239

رویکرد بالینی لیزرهای توان پایین…….. 242

کاربرد در فیزیوتراپی……………….. 244

کاربرد در دندانپزشکی……………….. 281

کاربرد در پزشکی (افتالموژی – اورولوژی – دستگاه گوارش – دستگاه تنفس)…………………………………. 293

کاربرد در پوست و اعصاب……………… 296

عوارض احتمالی درمان با لیزرهای کم توان.. 310

سایر روش های درمان بالینی…………… 313

خطرات جانبی لیزرها و نکات ایمنی و حفاظتی 315

نتیجه گیری………………………… 325

مراجع…………………………….. 326

 


دانلود با لینک مستقیم

دانلود پایان نامه برق – مخابرات ۱۰۰ صفحه (کامل)

اختصاصی از یارا فایل دانلود پایان نامه برق – مخابرات ۱۰۰ صفحه (کامل) دانلود با لینک مستقیم و پرسرعت .

دانلود پایان نامه برق – مخابرات ۱۰۰ صفحه (کامل)


دانلود پایان نامه برق – مخابرات ۱۰۰ صفحه (کامل)

 مطالب این پست : دانلود پایان نامه مخابرات 100 صفحه

   با فرمت ورد  word  ( دانلود متن کامل پایان نامه  )

پایان نامه برق – مخابرات

 

 

 

 

فهرست مطالب

فصل 1: اجزای یک سیستم رادیویی

مدولاسیون

مقایسه سیستمهای مدولاسیون

نویز الکتریکی

حلقه های قفل شده در فاز

توصیف ساده عملکرد PLL

آشکارساز فاز

اصلاحات PLL

فصل 2: مدولاسیون

مدولاسیون دامنه

سیستمهای دو کنار باندی و تک کنار باندی

روش تغییر فاز

مدولاسیون زاویه

مدولاسیون فاز FM

مدولاسیون فرکانس FM

تعریف ضریب مدولاسیون برای FM

طیف امواج مدوله شده زاویه ای

تحلیل نویز

داتاکید در سیستمهای FM

مدولاسیون پالس

مدولاسیون زمان پالس PTM

مدولاسیون کدهای پالسی PCM

فصل 4:

گیرنده های FM

مشخصات آشکار ساز FM

پاسخ به سیگنال های تداخلی و نویز

جداسازها

آشکارساز با PLL

آشکار ساز برای FM دیجیتالی

نمونه ای از یک گیرنده FM کامل

اعوجاج مدولاسیون تداخلی و بایاس

فصل 5

فرستنده های FM

مدولاتورهای تغییر فاز

فصل 6

مدولاتورهای FM

فصل 7

دمولاتور FM

تقدیر نامه

 

مقدمه

زمان زیادی از اولین پیامی که مارکونی مخترع رادیو مخابره کرد نمی گذرد. اما در همین زمان کم ارتباطات توسعه فراوانی داشته است. با توجه به پیشرفت های اخیر در زمینه ارتباطات نام عصر ارتباطات برای قرن حاضر بسیار مناسب است عمده ارتباطات و ارسال امواج مخابراتی توسط دو موج FM و AM صورت می گیرد.

مدارات مخابراتی برای دستگاههای فرستنده و گیرنده ، جدا
کننده ها، تقویت کننده ها ، که خود انواع مختلف دارند با استفاده از مدل ها و روابط ریاضی تعریف می شوند. آماده سازی و ارسال امواج توسط موج (FM) برای مخابره اطلاعات و پیامها (مدولاسیون FM) و دریافت کردن و جداسازی اطلاعات فرستاده شده جهت استفاده کازربر (مدولاسیون FM) موضوع مورد بررسی این پروژه می باشد.

 

 

اجزای یک سیستم رادیویی

فرآیندی که طی آن پیام اصلی به شکل مناسب برای انتقال تبدیل می‌شود مدولاسیون نام دارد. در فرآیند مدولاسیون مشخصه ای – مانند دامنه، فرکانس یا فاز – از یک حامل[1] فرکانس بالا متناسب با مقدار لحظه ای سیگنال مدوله کننده (پیام) تغییر می کند. به این ترتیب محتویات پیام اصلی به بخشی از طیف فرکانسی در حوالی فرکانس حامل منتقل می شود. در گیرنده فرآیند معکوس صورت گرفته، آشکارساز سیگنال اصلی را بازیابی می کند.

در شکل 1 نمودار بلوکی ساده ای از یک فرستنده و یک گیرنده رادیویی نشان داده شده تا پردازشهای انجام گرفته بر روی سیگنالها نشان داده شود. عمل هر بلوک در زیر تشریح شده است.

  1. منبع سیگنال پیام می تواند میکروفون، سوزن گرام، دوربین تلویزیون و یا دیگر وسایل تبدیل کننده اطلاعات مطلوب به سیگنال الکتریکی باشد.
  2. سیگنال تقویت شده معمولاً برای محدود شدن پهنای باند از یک فیلتر پایین گذر عبور داده می شود.
  3. نوسانساز RF فرکانس حامل یا کسر صحیحی از آن را ایجاد می‌کند. چون برای ماندن گیرنده در فرکانس اختصاص یافته به آن، پایداری نوسانساز باید خوب باشد این نوسانساز معمولاً توسط کریستال کوارتز کنترل می شود.
  4. یک یا چند طبقه تقویت کننده سطح توان سیگنال نوسانساز را به حد لازم در ورودی مدولاتور می رساند. برای دستیابی به یک بازده خوب در صورت امکان از تقویت کننده های کلاس C استفاده می شود. مدار خروجی در یک هارمونیک فرکانس ورودی تنظیم می شود و به این ترتیب عمل «چند برابر کردن فرکانس» صورت می گیرد تا فرکانس حامل مضرب صحیحی از فرکانس نوسانساز باشد.
  5. مدولاتور سیگنال و مولفه های فرکانسی حامل را ترکیب کرده، یکی از انواع موجهای مدوله شده بخش   را ایجاد می کند. در سیستم ساده شده شکل 1 طیف سیگنال خروجی در حوالی فرکانس حامل RF مطلوب قرار دارد. در بسیاری از فرستنده ها یک نوسانساز و مخلوط کننده دیگر (شبیه بلوکهای 10 و 11) بین بلوکهای 5 و 6 قرار می گیرد تا موج مدوله شده به گستره فرکانسی بالاتری برود.
  6. پس از مدولاسیون تقویت کننده های دیگری لازم است تا توان سیگنال به مقدار مطلوب برای تحویل شدن به آنتن برسید.
  7. آنتن فرستنده انرژی RF را به یک موج الکترومغناطیسی با پلاریزاسیون مطلوب تبدیل می کند. اگر تنها یک گیرنده (ثابت) مورد نظر باشد، آنتن طوری طرح می شود که انرژی تشعشعی تا حد ممکن در جهت آنتن گیرنده منتشر شود.

8 . آنتن گیرنده ممکن است همه جهته و یا در مورد مخابرات فقط به نقطه جهتدار باشد. موج منتشر شده ولتاژ کوچکی در آنتن گیرنده القا می کند. ولتاژ القایی، بسته به شرایط متفاوت بین چند ده میلی ولت تا کمتر از 1 میکرو ولت است.

9 . طبقه تقویت کننده RF توان سیگنال را به مقدار مناسب برای ورودی مخلوط کننده می رساند و به جداسازی نوسانساز محلی از آنتن نیز کمک می کند. این طبقه فرکانس گزینی چندانی ندارد و تنها سیگنالهای خیلی دور از فرکانسهای کانال مورد نظر را حذف می کند. داشتن یک تقویت کننده قبل از مخلوط کننده به خاطر نویز غیر قابل اجتناب مخلوط کننده نیز مطلوب است.

10 . نوسانساز محلی گیرنده طوری تنظیم می شود که فرکانس آن، ، به اندازه فرکانس میانی، ، با فرکانس ورودی، ،‌ داشته باشد؛ یعنی می تواند مقادیر و را داشته باشد.

11 . مخلوط کننده یک عنصر غیر خطی است که فرکانس دریافتی را به فرکانس میانی می برد. موج مدوله شده سوار بر حامل نیز به فرکانس میانی برده می شود.

  1. تقویت کننده IF توان سیگنال را به حد مناسب برای آشکارسازی می رساند و فرکانس گزینی آن در حدی است که سیگنال مطلوب را گذرانده و سیگنالهای نامطلوب موجود در خروجی مخلوط کننده را حذف می کند. چون مدارهای تنظیم شده موجود در بلوکهای 11 و 12 همیشه در فرکانس ثابت کار می کنند می توان آنها را طوری طراحی کرد که فرکانس گزینی بالایی داشته باشند. در این بلوکها غالباً از فیلترهای سرامیکی یا کریستالی استفاده می شود.

13 . آشکار ساز سیگنال پیام را از ورودی مدوله شده IF جدا می‌کند.

  1. تقویت کننده صوتی یا تصویری توان خروجی آشکارساز را به حد مطلوب برای دادن به بلندگو، صفحه تلویزیون، یا دیگر دستگاههای خروجی می رساند.
  2. دستگاه خروجی سیگنال اطلاعات را به شکل اصلی (موج صوتی، تصویر و غیره) تبدیل می کند. علاوه بر اینکه سیگنال مطلوب توسط گیرنده پردازش می شود، نویز الکتریکی در مسیر انتشار به سیگنال مطلوب اضافه می شود. همچنین در تقویت کننده RF ، نوسانساز محلی، مخلوط کننده و دیگر طبقه ها نیز نویز تولید می شود. نمودار بلوکی شکل 1   تنها برای نشان دادن کل سیستم آورده شده است. سیستمهای فرستنده و گیرنده در عمل آنقدر می توانند تغییر کنند که هیچ بلوکی را نمی توان به عنوان یک بلوک اصلی در نظر گرفت. در فصلهای بعد آرایش عمومی فرستنده ها و گیرنده های کاربردهای خاص مورد بحث قرار خواهد گرفت.

[1] – حامل می تواند یک موج سینوسی یا یک قطار پالس باشد.


دانلود با لینک مستقیم